酵母细胞催化的(S)-2-辛醇的不对称合成研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
(S)-2-辛醇是合成铁电液晶材料和许多光学活性药物的重要中间体。目前(S)-2-辛醇的合成主要采用酶催化还原和酶催化拆分法。本工作采用酵母FD-12催化还原2-辛酮,合成(S)-2-辛醇。
     从不同的酵母菌株筛选获得酵母菌株FD-12(Saccharomyces cerevisiae),对底物2-辛酮具有较高的催化还原活性和对映体选择性。还原产物主要是(S)-2-辛醇。
     研究了纯水相反应体系中FD-12的生物还原特性。2-辛酮和2-辛醇在水相中的溶解度很低,在Tris-HCl缓冲液中2-辛酮和2-辛醇的溶解度约为2.01 mmol·L~(-1)和3.03 mmol·L~(-1)(32℃)。高浓度2-辛酮和2-辛醇对酵母FD-12有较大的毒性。当底物浓度高于15 mmol·L~(-1)时,存在底物的抑制作用。最优的反应条件为16%接种量,10g·L~(-1)葡萄糖,pH8.0,32℃,初始底物浓度10mmol·L~(-1)。在该反应条件下,反应96小时,产物得率达92.23%,ee(S)可达78.80%。
     研究了高浓度底物2-辛酮时酵母FD-12的抑制效应,建立底物抑制动力学模型。采用最小二乘法和拟牛顿法进行参数估计,μpm=0.0346 mmol·h~(-1)·g~(-1) dcw,最适底物浓度为14.25mmol·L~(-1)。底物抑制数学模型可较好地拟合实验数据。
     研究3种表面活性剂对2-辛酮还原反应的影响。SDS、OP和CTAB均能起到较好的助溶作用。在0.2mmol·L~(-1)浓度下对酵母催化的不对称还原反应表明OP和SDS有效地提高了产物得率和ee(S)。但仍无法减弱高浓度底物的抑制作用。
     本工作重点研究了FD-12在水/有机溶剂两相体系中的生物转化。在所选择的6种有机溶剂中,酵母FD-12在水/正十二烷两相体系中的糖代谢活性保留值和细胞存活率最高达90%以上。对FD-12在水/正十二烷两相体系的生物催化活性进行了研究,最优的反应条件为水/正十二烷两相相比20/5,pH8.0,32℃。在2-辛酮初始浓度为50mmol·L~(-1),10g·L~(-1)葡萄糖为共底物,反应96h后,产物得率可达45.65%,ee(S)达90.23%;当以100mmol·L~(-1)甲醇为共底物时,产物得率可达46.11%,ee(S)达95.72%。水/正十二烷两相体系较好地解决了高浓度底物和产物对酵母细胞的毒害作用。在200mmol·L~(-1)2-辛酮时,反应96h, (S)-2-辛醇浓度可达63.98mmol·L~(-1),ee(S)达93.42%。
     采用固定化细胞在水/正十二烷体系中进行2-辛酮的不对称还原反应。结果表明,固定化酵母细胞进一步提高了细胞对有机溶剂的耐受性,ee(S)提高至97%以上。
     本工作关于水/正十二烷两相体系中酵母FD-12催化的(S)-2-辛醇不对称合成研究,提供了一种新型的(S)-2-辛醇的生物合成路线,具有潜在的应用价值。
(S)-2-octanol can be used as building block for the synthesis of FLCD(ferroelectricLCDs) and several optically active pharmaceutical intermediates. The reduction of 2-octanone or the resolution of (R,S)-2-octanol catalyzed by enzyme have been used for the synthesis of (S)-2-octanol. In this study the asymmetric reduction of 2-octanone to (S)-2-octanol catalyzed by FD-12 was studied.
     FD-12(Saccharomyces cerevisiae) was screened from different strains of Saccharomyces cerevisiae, which showed a high bioreduction activity and enantioselectivity. The product of asymmetric reduction was mainly (S)-2-octanol.
     FD-12’characteristic of the bioreduction was studied. The solubility of 2-octanone and 2-octanol in the aqueous phase was very low, with the value being 2.01 mmol·L~(-1) and 3.03 mmol·L~(-1) in the Tris-HCl buffer(32℃). The high concentrations of 2-octanone and 2-octanol showed a toxic damage to Yeast FD-12. The bioreduction activity of FD-12 was inhibited at the higher concentration of 2-octanone(>15 mmol·L~(-1)). At optimal conditions, pH8.0, 32℃, 16% inoculation, initial glucose concentration of 10g·L~(-1) and initial substrate of 10mmol·L~(-1) ,the yield of 2-octanol and the ee(S) value reached 92.23% and 78.80% respectively after 96h reaction.
     Through parameter estimation with least squares fit method and Quasi-Newton algorithm, the model proposed can be fitted to the experimental data well.μpm was 0.0346 mmol·h~(-1)·g~(-1) dcw and the optimal concentration was 14.25mmol·L~(-1).
     The influence of three kinds of surfactant on the reduction of 2-octanone by FD-12 was studied. The solubility of 2-octanone in aqueous phase was improved greatly in the presence of SDS、OP and CTAB. An increase of yield and ee(S) could be obtained with a concentration of 0.2mmol·L~(-1)SDS and OP. But the inhibition of the high concentration substrate would not be weakened.
     The water/organic solvent biphasic system was employed to the reduction of 2-octanone. Yeast possessed the best tolerance in the water/n-dodecane biphasic system than in the other 5 biphasic systems assayed. The metabolic activity retention and livability were as high as 90% in the water/n-dodecane. Under the optimal conditions in water/n-dodecane biphasic system, Vaq/Vorg 20/5, pH8.0, 32℃, a yield of 45.65% and an ee(S) value of 90.23% could be obtained when the co-substrate 10g·L~(-1) glucose and substrate 2-octanone of 50mmol·L~(-1) were used after 96h reaction. A yield of 46.11% and an ee(S) value of 95.72% were obtained with
引文
[1] 何煦昌,手性药物的发展, 中国医药工业杂志.1997,28(11):519-524.
    [2] Eliel EL. Wilen SH. Mander LM. Stereochemistry of Organic Compounds. New York:John Wiley&Sons, 1994:201-208.
    [3] Ariens.E. Nonchiral, homochiral, and composite chiral drugs. TIBS, 1993, 14:68-76.
    [4] 戴立信,陆熙炎,朱光美。手性技术的兴起,化学通报,1995,6:15-23。
    [5] 李伟. 手性药物方兴未艾, 上海医药,2003 年 24(6):275-278.
    [6] 谢红光,周宏颧. 手性药理学概要,湖南医学.1995,6:172-173.
    [7] Goodwin SD.Gallis HA.Chow AT .et al. Pharmacokinetics and safety of levofloxacin in patients with human immunodeficiency virus infection. Antimicrob Agents Chemother, 1994, 38(4):799-832.
    [8] Caldwell J.The importance of stereochemistry in drug action and disposition. J Clin Pharmacol, 1992,32:925-931.
    [9] Wilson H, Camp DE. Chiral drugs: the FDA perspective on manufacturing and control. J Pharm Biomed Anal 1993, 11(11/12):1167-1182.
    [10] 林国强, 陈耀全, 陈新滋, 等. 手性合成——不对称反应及其应用. 北京: 科学出版社, 2001.
    [11] 孙万儒. 手性化合物的生物合成与转化. 化工科技市场, 2003, 26 (6): 5-7.
    [12] 欧志敏, 吴坚平, 杨立荣, 等. 微生物法还原苯乙酮及氯代苯乙酮制备手性醇. 杭州: 2002 年全国生化工程学术年会论文集, 346-349.
    [13] 朱文洲, 许建和等. 面包酵母催化乙酰乙酸乙酯的不对称还原反应. 华东理工大学学报, 2000, 26 (2): 154-156.
    [14] 夏仕文, 尉迟力, 俞俊棠, 等. 单相和两相发酵体系中 Methylomonas Z201 细胞的生长和 环氧丙烷的合成. 微生物学报, 1998, 38 (5): 371-375.
    [15] 杜灿屏. 生物合成和生物转化领域的研究. 化学进展, 2002, 11(2): 218-219.
    [16] Nasipurip. Sterechemisty of organic compounds, New Dethi: Johnwiley, 1991:135-162
    [17] ChanASC. A Chemtech, 1993,44(3):145,15.
    [18] 郑卫. 手性技术在抗生素等医药工业中的应用. 中国抗生素杂志,2000,25(4):241-249.
    [19] Fessner W D. “Biocatalysis: From discovery to application”. [M].New York Springer Press, 1999, 163-165.
    [20] Olivieri. R., Fascetti. E., Angelini,L., et al. Enzymatic conversion of N carbamoyl- -amino acids to -amino acids ? ARTICLE, Enzyme Microbiol. Technol., 1979, 1(3):201-208.
    [21] Nan.X, Ng.H.H, Johnson.C.A, etal. Nature, 1998.393:386-389
    [22] 陈绍怡,杨秀,秦玉静. 手性药物中的合成转化. 生物工程进展,2000,20(4):60-63.
    [23] 樊晓焕,张明杰,陈小林. 面包酵母在不对称合成中的应用.化学通报,2003,9:610-614.山 东农业大学学报(自然科技版),2003,34(3):459-462.
    [24] Antonio Trincone,Licia Lama and Virginia.Biotechnology and bioengineering, Vol. 35:559-564(1990).
    [25] Jurden Heidlas. Enantioselectivities of enzymes involved in the reduction of methylketones by Baker’s yeast. Emzyme Microb. Technol., 1991,13:817-821.
    [26] Thomas R. gervais, Giorgio Carta, and John L.gainer. Biotechnol. Prog. 2000, 16.208-212.
    [27] V.Prolog.Helvetica Chemica ACTA,1953,39.
    [28] Gillois J, Butsson D, Azerad R , et al. Eantioselective microbial reduction of transition-metal -complexed aromatic ketones[J]. J.Chem.Soc, Chem, Commum, 1988, 1224-1230.
    [28] K.Nakamura, T.Miyar. Bull.Biocatalysis Grows for Drug Synthesis [J]. Chem. Soc.Jpn., 1986, 62:1179-1185.
    [29] Patrick Adlercreutz. Enzyme Microb. Technol, 1991,13:9-14.
    [30] TFujisawa,EKojima,TSato.Chem.Lett,1987:2227~2228.
    [31] 徐寿昌 有机化学(第二版).高等教育出版社.286.
    [32] S.Servi. J.Org.Chem., 1985, 50:5865-5872.
    [33] Ariens.E. Nonchiral, homochiral, and composite chiral drugs. TIBS, 1993, 14:68-76. 朝阳. 手性技术. 自然杂志,2002,24(4):219-223.
    [34] Denis J, Kertesz, Arthur F. Kluge Application of bakers' yeast-mediated reductions of bicyclo[4.2.0]oct-2-en-7-ones to the enantioselective synthesis of prostacyclin analogs. J. Org. Chem..1988, 53(21):4962-4968.
    [35] Roberts SM. In Proceedings of the NATO Advanced Research Workshop, Enzymes as Catalysts in Organic Synthesis. Schneider M P Ed. Reidel Press, Dordercht, 1986, 55:178-186.
    [36] DWBrooks,KWWoods.J.Org.Chem.1987,52:2036~2039.
    [37] 岳保珍,李润涛编.有机合成基础.北京:北京医科大学出版社,2000:298~300.
    [38] Florey P, Smalieridge AJ, Ten A,et al. Chemo- and Stereoselective Reduction of α-Cyanoketone by Baker’s Yeast at Low Temperature[J]. Org Lett, 1999, 1(12):1879-1886.
    [39] Imuta M, Ziffer H.J.Org.Chem., 1978, 43(17):3319
    [40] S.Tsubio, M.Utaka, A.Takeda, et al. Stereoselectivity of pesticides:Biological and chemical problems[J]. J.Org.Chem., 1987, 52:1359-1367.
    [41]Zhou B,ASGopalan,FVan Middleswortheal.J.Am.Chem.Soc,1983,105:5925-5926.
    [42] 张玉彬. 生物催化的手性合成[M]. 北京:化学工业出版社,2001:187.
    [43] Nakamura K, Kawai Y, Nakajima N, et al. Stereochemical control of microbial reduction: a method for controlling the enantioselectivity of reductions with
    [44] 肖斌,杨忠华.面包酵母在手性化合物不对称合成中的类型. 天津化工,2003, 17(6): 10-13. [45 ]K.Nakamura, T.Miyar. Bull.Biocatalysis Grows for Drug Synthesis [J]. Chem. Soc.Jpn., 1986, 62:1179-1185.
    [46] Tsuboi S, Nishiyama E, Furutani H, et al. J.Org.Chem.,1 987, 52(7):1359-1362.
    [47] M.Utaka, H.Watabu, A.Takeda. J.Org. Chem.,1987, 52:4663-4669.
    [48] J.W.Renato,J.SM.Paulo,J.Rodrigu.J.Mol.Catal.B:Enzymatic,1998,69.
    [49] 于平.酵母还原乙酰乙酸乙酯制备(S)-3-羟基丁酸乙酯的研究.菌物系统,22(3):430-435,2003.
    [50] 闫婕,陈五岭,秦蓉.酵母细胞催化还原 4-氯-乙酰乙酸乙酯的不对称还原反应.2004, 24(4):46-48.
    [51] Chansheng Zheng. Catalysis Today,22:607-620(1994).
    [52] A. Liese, T.Zelinski, M.-R.Kula, et al. J. Mol Catal B: Enzym., 5: 129-132.(1998)
    [53] Jan-Olof WINBERG, Rolf HOVIK, Jonh S. McKINLEY-McKEE, et al. Biochem. J, 235, 481-490,(1988).
    [54] G.L.Lemiere, J.A.Lepoivre, F.C.Alderweireldt. Tetrahedron Letters. 26(37), 4527 (1985).
    [55] 杨红.微环境对脂肪酶催化拆分外消旋 2-辛醇的影响.生物化学杂志.1996,12(3): 377-379.
    [56] 李英.CTAB 微乳液中脂肪酶酯化合成反应拆分(R,S)-2-辛醇.137-138.
    [57] Toshiyuki Nishio. J.Biochem,105:510-513,1989.
    [58] A.J.M Janssen. Tetrahydron, 47(36): 7645-7662,1991.
    [59] Klibanov A M. Asymmetric transformations catalyzed by enzymes in organic solvent. Acc Chem Res, 1990,23:114-120.
    [60] Santaniello,E. ;Ferraboschi,P.;Grisenti,P.:EnzymeMicrob.Technol.,1993,15(5),367.
    [61] MitsudaS..ApplMicrobialBiotechnol,1989,31(4),334~337.
    [62] SaoshiM.Preparation of an Optically Pure Secondary Alcohol of Synthetic Pyrethroids Using Microbial Lipase[J].ApplMicrobialBiotechnol,1988,29(4):310~315
    [63] 叶韵华.在有机溶剂中进行的酶催化反应.大学化学,1992,7(4):17-22.
    [64] 宋宝东,吴金川,王世昌.表面活性剂包衣酶在有机溶剂中拆分对映异构体.现代化工,2002,22(2):15-17.
    [65] 辛嘉英,李树本,徐毅等.脂肪酶的固定化及其在有机酶促反应中稳定性研究.分子催化.1999,13(2):103-108.
    [66] Ycshiyasu TERAO. Pharmaceutical Social of Japan.1989.
    [67] 高修功.微生物脂肪酶生产及非水相催化性质与应用研究..无锡轻工大学博士论文.1995
    [68] 朱洁、刘洪湖、胡英等.有机溶剂中脂肪酶催化的 2-辛醇动力学拆分.分子催化,1998,12(5):323-328.
    [69] Gerald Kirchmer, Mark P.Scollar, and Alexander. J.Am.Chem.Soc, 1985 , 107: 7072-7076.
    [70] Liisa T.Kanerva. Acta Chemica Scandinavica.1990,44:1032-1035.
    [71] Paul A.Fitzpatrick. J.Am.Chem.Soc, 113:3166-3171,1991.
    [72] Yoshinobu Naoshima. J.Am.Chem.Soc,Perkin Trans,1:557-561,1993.
    [73] 欧志敏、吴坚平、杨立荣,等.酿酒酵母 B5 不对称还原制备手性药物中间体 R-2’-氯-苯乙醇的研究.生物工程学报。2003,19(2):206-211.
    [74] 李纪敏,李正名. 酶催化反应在立体有机合成中的应用.合成化学.1996,4(4):352-357.
    [75] 杨 忠 华 , 姚 善 泾 , 夏 海 峰 , 等 . 酵 母 催 化 2- 辛 酮 不 对 称 还 原 为 2- 辛 醇 . 化 工 学报.2004,55(8):1301-1305.
    [76] Yoshikaru Chtsuka,Osamu Katoh,Takashi Sugai,et al. Bull Chem. Soc.Jpn, 70, NO.2.483,(1997).
    [77] Jiang Qun, Yao Shanjing, MeiLehe. Enzyme Microb.Technol.,2002 ,30:720-725.
    [78] 胡健,徐岩. 不对称还原 2 辛酮的菌株筛选和反应条件的研究, 生物加工过程,2005,3(3):42-46.
    [79] Raffaella Gandolfia, Attilio Convertib, Domenico Pirozzic.Journal of Biotechnology.92,21-26,2001.
    [80] Michael Dickman,Richard C.Lloyd and J.Bryan Jones. Tetrahedron: Asymmetry. 1998,,8: 4099-4102.
    [81] 蒋群.有机相微生物活细胞催化羰基还原反应的研究.浙江大学博士学位论文.2002.7.
    [82] 刘湘. 面包酵母用于苯乙酮的不对称还原研究. 分子催化. 2002, 16(2): 107-120.
    [83] 肖美添,黄雅燕,郭养浩,等.生物不对称合成 R-(-)-扁桃酸的影响因素。过程工程学报,2004,4(1):32-36.
    [84] 娄文勇,宗敏华,范晓丹,等.水/有机溶剂双相中固定化啤酒酵母细胞催化有机硅酮不对称还原.生物化学与生物物理进展.2002,29(2):297-301.
    [85] 何成,许建和,刘幽燕,等. 固定化酵母非水相催化羰基不对称还原反应的研究. 化学研究与应用. 2001, 13(6): 632-635.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700