表面图案化超顺磁性复合微球的制备、表征及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,磁性复合微球和具有表面图案结构的有机-无机复合微球成为人们关注的热点,而将具有磁性和表面图案结构二者结合于一体的表面图案化磁性复合微球的制备还鲜有报道。基于此,本实验室提出了以高分子微凝胶为模板通过外源和内源沉积的方法引进磁性、荧光等活性物质制备复合材料的新思想,在此思想指导下,通过改变沉积物的种类,模板组分含量等手段,设计、制备得到了一系列表面图案奇特、磁响应性好、易于修饰的磁性复合微球材料。
     本论文在对磁性复合微球材料和表面图案化复合材料综述基础上,结合本实验室已有研究工作,利用高分子共聚微凝胶为模板,通过变化沉积物种类,浓度,微凝胶的组成,沉积方法等手段设计、制备了多种表面图案结构各异、磁响应性不同的复合微球材料。具体来讲,主要完成了以下工作:
     (1)采用反相悬浮聚合法合成了丙烯酸(AA)含量不同的N-异丙基丙烯酰胺-丙烯酸共聚微凝胶P(NIPAM-co-AA)、并以其作为微反应器,通过加入Fe_3O_4胶体溶液溶胀、渗透,SiO_2前驱物四乙氧基硅烷水解(Stober法)制备了一系列微米级、具有图案结构的超顺磁性有机-无机复合微球SiO_2-Fe_3O_4-P(NIPAM-co-AA)。结果表明:微球的表面图案可以通过改变模板中丙烯酸含量来调节;磁响应性可以通过变化Fe_3O_4胶体加入量来调控;无机物沉积量的多少,决定磁性复合微球的比重大小,SiO_2沉积量越多,微球的比重相对越大,煅烧后有助于提高微球骨架和表面形貌的热稳定性。扫描电镜、透射电镜观察表明:所制备的超顺磁性复合微球SiO_2-Fe_3O_4-P(NIPAM-co-AA)球形结构完美,表面图案奇特;Fe_3O_4颗粒分布均匀、无聚集现象且被SiO_2完全包覆,无泄露。粒径统计显示:微球粒径分布较窄,单分散性好。综上所述:微凝胶的固有优点及复合微球良好的磁响应性、SiO_2的生物相容性、易修饰性等达到完美结合,显示出这类复合微球材料有可能在吸波减震、活性物质担载和缓释、快速温和吸附分离等方面获得应用。
     (2)考虑到上述系列磁性复合微球的形貌和性能对模板和溶胀沉积过程的依赖性,以及模板组成的变化会引起微球表面图案结构的极大变化差异,因此,在第三章工作中用N-异丙基丙烯酰胺-丙烯酸共聚微凝胶为模板,将溶胀法变为易于操作的原位沉积Fe_3O_4方法,制备了系列表面结构细密的微球,不同于前者,磁性复合微球材料的磁滞回线偏离平衡位置,存在单方向交换的磁各向异性。造成这一结果的原因是:磁性微球材料中有铁磁性和反铁磁性物质相互作用。在第五章工作中,用丙烯酰胺和甲基丙烯酸共聚微凝胶作为模板,得到了另外一种复合微球材料。类似地,通过多种手段对复合微球的结构进行了表征。不同于上述复合微球材料的表面图案结构,这类微球的表面结构略显粗糙。煅烧时,微球表面因融合而变得光滑。总的来说,磁性复合微球表面结构、磁响应性、比重等也可以通过改变反应条件来控制。这为表面图案化磁性复合微球的合成提供了更多的新思路。
     (3)在本论文的第三部分工作中,考虑到无机物对表面图案化微球应用的限制及对模板的特殊要求,采用N-异丙基丙烯酰胺-丙烯酸共聚微凝胶为模板,通过溶胀法制备了互贯网络表面图案化有机-有机复合微球脲醛树脂-P(NIPAM-co-AA)材料,研究了酸度、尿素和甲醛浓度、配比等对所形成复合微球表面图案结构的影响,通过扫描电镜、冷冻干燥等对其进行表征。结果表明:以甲醛与尿素配比为1:2和3:1在P(NIPAM-co-AA)模板微球表面形成的丝状网络结构复合微球和小球密堆积结构表面形貌最为典型,从而使模板法制备复合微球的模板变得多样化,为模板法制备更多结构特异的复合微球材料奠定了基础。
     (4)最后将环氧树脂与磁性有机-无机复合微球材料混合制备成测试块,研究了它们的吸声性能,结果表明该磁性复合材料在高频范围吸声效果较好,有望在吸波减震、降噪等领域获得应用。
     本论文的主要创新点:
     (1)首次以溶胀的方法将纳米级超顺磁性微粒均匀引入到微米级复合微球中,从而使得所制备的微米级微球具有超顺磁性。同时表面图案的存在大大增加了此类微球的比表面积。
     (2)根据实验所建立起来的方法,可以大幅度调整微球的表面结构、表面性质、微球的磁响应性以及微球中有机无机成分的相对比例。
     (3)建立了微纳米颗粒超声吸收模型。
In recent years, magnetic composite microspheres and organicinorganic composite materials with patterned surface structures have attracted growing attention due to their potential applications. Preparation of composite microspheres with patterned surface structures integrated with super-paramagnetism has seldom reported in literatures. Based upon this consideration, a new strategy for preparing composite materials via introducing magnetism into template in a manner of outer and inner sediment on/in microspheres was proposed in our laboratory, and a series of the magnetic composite micrspheres exhibiting novel surface morphologies, which have excellent magnetic responsibility, and easiness in the chemical modification of their surfaces, were successfully created by simply varying kinds of aggradations and the ratio of the two monomer units in the template microgels, etc. respectively.
     On the bases of the above-mentioned research works conducted in our laboratory and the review (Chapter 1) on magnetic composite microspheres and composite materials with patterned surface structures, several magnetic composite microspheres were designed and prepared. It has been demonstrated that the magnetic responsibilities and surface structures of the microspheres we produce can be adjusted via various ways. The main works conducted in my thesis are outlined below.
     First, N-isopropylacrylamide (NIPAM) and acrylic acid (AA) copolymer microgels P(NIPAM-co-AA) of different amount of AA were prepared by employing a reverse suspension polymerization technique. The polymeric microgels were used firstly as micro-containers to include Fe_3O_4 nano-particles and then as micro-reactors to control the hydrolysis of tetraethyl orthosilicate (TEOS). In this way, various superparamagnetic composite microspheres SiO_2-Fe_3O_4-P(NIPAM-co-AA) with different morphologies in the micrometer size range were prepared. It was demonstrated that the sensitivity of the composite microspheres to external magnetic field was controlled by the amount of Fe_3O_4 adding; the morphologies of the composite microspheres could be tailored to a certain extent by either varying the ratio of the two-monomer units in the template microgels or the amount of SiO_2 deposited. The more the amount of SiO_2 deposited, the more specific gravity of microspheres was, and then after calcined, thermal stabilities of the skeleton and morphologies of microspheres enhanced. Images of SEM and TEM show that the microspheres morphology is novel and perfect, Fe_3O_4 nano-particles were dispersed uniformly in the microgel templates and coated completely by SiO_2. Statistic results of microspheres size indicated that the particles sizes are about 35μm and occupied a good monodispersity. The excellent magnetic responsibility of the composite microspheres, the easiness of modifying of the surfaces and the better biocompatibility of SiO_2 may make the microspheres find important uses in the mild separation of bioactive materials, loading of active materials, and radiation and shock absorption, etc.
     Considering the fact that the morphologies and performance of magnetic composite microspheres depend on the depositing methods and the microgels templates, the swelling method was substituted with preparation of Fe_3O_4 in-situ during the preparation process of the magnetic composite microspheres. A series of magnetic composite microspheres with fine patterned surface structures were prepared and characterized. Compared with the microspheres mentioned above, the magnetic hysteresis loops of the composite microspheres are not identical, asymmetrical loop, which clearly revealed the presence of unidirectional exchange anisotropy, which can be understand by the interaction between an anti-ferromagnetic material and ferromagnetic material. Besides this work, we also introduced acrylamide (AM) and methyl acrylic acid (MAA) copolymer microgels as template, and got another kinds of composite microspheres with fancy morphology. The surface became smoother after calcinations. In general, simply adjusting the reaction condition could control the surface structures, the magnetic responsibility and the density of these magnetic microspheres. This offers a new strategy for designing and preparation of the super-paramagnetic composite microspheres with patterned surface structures.
     In the third part of this thesis, a lot of full-IPN urea-formaldehyde resinP(NIPAM-co-AA) (UFR-P(NIPAM-co-AA)) polymer composite microspheres with patterned surface structures were prepared by employing P(NIPAM-co-AA) microgel as a template. This organic-organic composite microspheres were designed and to be prepaed in order to extend the applications of the microspheres with patterned surface structures. The influence of acidity, concentration, the ratio of urea and formaldehyde on the surface pattern structures of the UFR-P(NIPAM-co-AA) composite microspheres were interrogated by using SEM and FTIR techniques. It was demonstrated that the morphologies of the polymer-polymer composite microspheres are determined by the initial ratios of urea to formaldehyde. As examples, the morphologies of the surfaces are characterized by a network and a dense deposit structures when the ratio are 1:2 and 3:1, respectively. Furthermore, these fancy pattern structures, which may offer a diversification template for preparing composite microspheres, make them worth to be exploited further.
     Acoustic absorbing test of the magnetic composite microspheres with patterned surface structures have been measured with an ultrasonic system, the magnetic composite materials. The magnetic microspheres were compounded into epoxy resin during the absorbing test. It shows good performance at high frequency ranges. It is anticipated that the magnetic composite microspheres may be used as novel materials for radiation absorbance and shock absorption.
     The main contributions of this thesis are as follow:
     (1) A swelling method was used firstly to introduce super-paramagnetic Fe_3O_4 nano-particles into polymeric microgel templates and via this way, a number of inorganic-organic composite microspheres of a size in the micrometer range with patterned surface structures and super-paramagnetic properties have been succefully prepared.
     (2) The patterns of the surface structures, the chemical properties of surface, and the magnetic responsibility of the composite microspheres could be adjusted in a great range, according to the methodology we established in this work.
     (3) The model for acoustic absorbing measurement of the panicles in micrometer or nanometer size range was proposed.
引文
[1] A. Rembaum, W. J. Dreyer, Immunomicrospheres reagents for cell labeling and separation, Science, 1980, 208, 364-368.
    [2] J. Zhang, S. Xu, E. Kumacheva, Polymer microgels: reactors for semiconductor, metal, and magnetec nanoparticles, J. Am. Chem. Soc., 2004, 126, 7908-7914.
    [3] S. Nayak, L. A. Lyon, Soft nanotechnology with soft nanoparticles, Angew. Chem. Int. Ed., 2005, 44, 7686-7708.
    [4] P. L. Kronick, G. L. Campbell, K. Joseph, Magnetic microspheres prepared by redox polymerization used in a cell separation based on gangliosides, Science, 1978, 200, 1074-1076.
    [5] H. A. Oktem, G. Bayramoglu, V. C. Ozalp, M. Y. Arica, Single-step purification of recombinant thermus aquaticus DNA polymerase using DNA-aptamer immobilized novel affinity magnetic beads, Biotechnol. Prog., 2007, 23, 146-154.
    [6] R. S. Molday, Magnetic iron-dextran microspheres, U.S. Patent, 4452773, 1984.
    [7] A. Hu, G. T. Yee, W. Lin, Magnetically recoverable chiral catalysts immobilized on magnetite nanoparticles for asymmetric hydrogenation of aromatic ketones, J. Am. Chem. Soc., 2005, 127, 12486-12487.
    [8] P. Pǐikryl, D. Horáik, M. Tichá, Z. Kucerová, Magnetic IDA-modified hydrophilic methacrylate-based polymer microspheres for IMAC protein separation, J. Sep. Sci., 2006, 29, 2541-2549.
    [9] 程彬,朱玉瑞,江万权,李玉芝,陈祖耀,王翠英,周刚毅,张培强,无机-高分子磁性复合粒子的制备与表征,化学物理学报,2000,13,359-362.
    [10] 丁小斌,孙宗华,万国祥,磁性高分子微球的制备和应用研究进展,化学通报,1997,1-6.
    [11] T. Bahar, S. S. Celibi, Immobilization of glucoamylase on magnetic poly(strene) particles, J. Appl. Polym. Sci., 1999, 72, 69-73.
    [12] S. Margel, U. Beitler, Polyacrolein-type microspheres, US 4783336, 1988 [Chem. Abstr. 1989, 89, 144027k].
    [13] 谢刚,张秋禹,李铁虎,磁性高分子微球,高分子通报,2001,38-45.
    [14] M. Tricot, J. C. Daniel, Process for the preparation of magnetic beads of vinylaromatic polymers, US 4339337, 1982 [Chem. Abstr. 1982, 94, 209819j].
    [15] J. Richard,; S. Vaslin, Latex of calibrated monodisperse magnetizable microspheres, process of preparation and use of the said latex in chemistry or in biology, US 5976426, 1999 [Chem. Abstr. 1999, 126, 239161k].
    [16] D. Charmot, C. Vidil, Magnetizable composite microspheres of hydrophobic crosslinked polymer, process for preparing them and their application in biology, US 5356713, 1994 [Chem. Abstr. 1994, 114, 93841k].
    [17] M. Tsursta, JP 62204501, 1987 [Chem. Abstr. 1988, 108, 47978p].
    [18] 邱广明,杨春雁,孙宗华,单分散亚微米级磁性微球的合成,功能高分子学报,1996,9,565-571.
    [19] A. Kondo, H. Kamura, K. Higashitani, Development and application of thermo-sensitive magnetic immuno-microspheres for antibody purification, Appl. Microbiol. Biotechnol., 1994, 41, 99-105.
    [20] N. Yanase, H. Noguchi, H. Askura, T. Suzuta, Preparation of magnetic latex particles by emulsion polymerization of styrene in the presence of a ferrofluid, J. Appl. Polym. Sci., 1993, 50, 765-776.
    [21] 丁小斌,孙宗华,万国祥,江英彦,热敏性高分子包裹的磁性微球的合成,高分子学报,1998,628-631.
    [22] 丁小斌,孙宗华,万国祥,江英彦,热敏性高分子包裹的磁性微球的性质及表征,高分子学报,1999,674-679.
    [23] 程彬,朱玉瑞,陈祖耀,周刚毅,江万权,王翠英,张培强,超细金属铁颗粒的高分子修饰及其悬浮液的磁流变性能,化学物理学报,2000,13,215-219.
    [24] R. S. Molday, S. P. S. Yen, A. Rembaum, Application of magnetic microspheres for labebelling and separation, Nature, 1977, 268, 437-438.
    [25] Y. Wang, C. Pan, Dielectric behavior and magnetic properties of poly(styrene-co-acrylic acid)metal microspheres, Eur. Polym. J., 2001, 37, 699-704.
    [26] P. H. Wang, C. -Y. Pan, Polymer-metal composite particles: metal particles on poly(St-co-MAA) microspheres, J. Appl. Polym. Sci., 2000, 75, 1693-1698.
    [27] 王延梅,封麟先,潘才元,高分子金属微球的磁性能研究,功能高分子学报,2000,13,129-132.
    [28] P. Tierno, W. A. Goedel, Using electroless deposition for the preparation of micron sized polymer/metal core/shell particles and hollow metal spheres, J. Phys. Chem. B., 2006, 110, 3043-3050.
    [29] H. Guo, X. Zhao, G. Ning, G. Liu, Synthesis of Ni/polystyrene/TiO_2 multiply coated microspheres, Langmuir, 2003, 19, 4884-4888.
    [30] H. Guo, X. Zhao, H. Guo, Q. Zhao, Preparation of porous SiO_2/Ni/TiO_2 multicoated microspheres responsive to electric and magnetic fields, Langmuir, 2003, 19, 9799-9803.
    [31] F. Caruso, A. S. Susha, M. Giersig, H. Mohwald, Magnetic core-shell particles: preparation of magnetite multilayers on polymer latex microspheres, Adv. Mater., 1999, 11, 950-953.
    [32] F. Caruso, Hollow inorganic capsules via colloid-templated layer-by-layer electrostatic assembly, Top. Curr. Chem., 2003, 227, 145-168.
    [33] 陈騑职,周伟敏,谭家隆,陈树川,宋学孟,材料物理性能,机械工业出版社,北京,2006.
    [34] 铁磁性,http://info.datang.net.
    [35] 安丽娟,李兆强,徐娓,陈欣芳,杨柏,超顺磁性高分子微球的制备与表征,高等学校化学学报,2005,26,366-369.
    [36] X. Liu Y. Guan, Z. Ma, H. Liu, Surface modification and characterization of magnetic polymer nanospheres prepared by miniemulsion polymerization, Langmuir, 2004, 20, 10278-10282.
    [37] X. Liu, Y. Guan, H. Liu, Z. Ma, Y. Yang, X. Wu, Preparation and characterization of magnetic polymer nanospheres with high protein binding capacity, J. Magn. Magn. Mater., 2005, 293, 111-118.
    [38] H. Xu, L. Cui, N. Tong, H. Gu, Development of high magnetization Fe3O4/polystyrene/silica nanospheres via combined miniemulsion/emulsion polymerization, J. Am. Chem. Soc., 2006, 128, 15582-15583.
    [39] W. Zheng, F. Gao, H. Gu, Magnetic polymer nanospheres with high and uniform magnetite content, J. Magn. Magn. Mater., 2005, 288, 403-410.
    [40] 邱广亮,邱广明,胡玲,稀土磁性复合微球的显微形貌及复合微相结构,电子显微学报,2001,20,364-365.
    [41] 邱广明,微米级Fe_3O_4/P(St-Ac)磁性微球的合成,应用化学,1999,16,46-49.
    [42] A. Pich, S. Bhattacharya, Y. Lu, V. Boyko, H.-J. P. Adler, Temperature-sensitive hybrid microgels with magnetic properties, Langmuir, 2004, 20, 10706-10711.
    [43] P. Tartaj, C. J. Serna, Synthesis of monodisperse superparamagnetic Fe/Silica nanospherical composites, J. Am. Chem. Soc. 2003, 125, 15754-15755.
    [44] P. Tartaj, C. J. Serna, Microemulsion-assisted synthesis of tunable superparamagnetic composites, Chem. Mater., 2002, 14, 4396-4402.
    [45] P. Tartaj, M. P. Morales, T. Gonzalez-Carreno, S. Veintemillas-Verdaguer, C. J. Serna, Advances in magnetic nanoparticles for biotechnology applications, J. Magn. Magn. Mater., 2005, 290-291, 28-34.
    [46] P. Tanaj, T. González-Carreno, O. Bomatí-Miguel, C. J. Serna, Magnetic behavior of superparamagnetic Fe nanocrystals confined inside submicron-sized spherical silica particles, Phys. Rev. B, 2004, 69, 094401.
    [47] P. Tartaj, T. Gonzalez-Carreno, C. J. Serna, Magnetic behavior of γ-Fe2O3 nanocrystals dispersed in colloidal silica panicles, J. Phys. Chem. B., 2003, 107, 20-24.
    [48] P. Tartaj, T. González-Carreno, C. J. Serna, From hollow to dense spheres: control of dipolar interactions by tailoring the architecture in colloidal aggregates of superparamagnetic iron oxide nanocrystals, Adv. Mater., 2004, 16, 529-533.
    [49] P. Tartaj, T. González-Carreno, C. J. Serna, Single-step nanoengineering of silica coated maghemite hollow spheres with tunable magnetic properties, Adv. Mater., 2001, 13, 1620-1624.
    [50] P. Tartaj, T. González-Carreno, M. L. Ferrer, C. J. Serna, Metallic nanomagnets randomly dispersed in spherical colloids: toward a universal route for the preparation of colloidal composites containing nanoparticles, Angew. Chem. Int. Ed., 2004, 43, 6304-6307.
    [51] P. Tierno, W. A. Goedel, Using electroless deposition for the preparation of micron sized polymer/metal core/shell panicles and hollow metal spheres, J. Phys. Chem. B., 2006, 110, 3043-3050.
    [52] 刘学涌,常昆,王晓川,丁小斌,彭宇行,氨基两亲高分子磁性微球的制备与表征,高分子学报,2005,4,519-523.
    [53] 刘学涌,丁小斌,郑朝晖,彭宇行,龙新平,常昆,王晓川,陈新滋,李蓓,两亲磁性高分子微球的合成与表征,高分子学报,2003,1,104-108.
    [54] X.-Y. Liu, x.-B. Ding, Z.-H. Zheng, W.-C. Zhang, Y.-X. Peng, A. S. C. Chan, C. W. Yip, X.-P. Long, Synthesis of amphiphilic magnetic microspheres by dispersion copolymerization of styrene and poly(ethylene oxide) macromonomer, Polym. Int., 2003, 52, 235-241.
    [55] 袁定重,张秋禹,张和鹏,侯振宇,李丹,张军平,磁性高分子微球研究进 展及其在生化分离中的应用,材料科学与工程学报,2006,24,306-310.
    [56] 周超,戴红莲,磁性微球制备方法,磁性材料及器件,2006,37,6-10.
    [57] 张和鹏,张秋禹,王巍,罗绍兵,谢钢,张军平,王曙正,可控制自由基聚合DPE法制备P(AA-MMA-ST)/Fe_3O_4磁性复合微球,化学学报,2006,64,1831-1836.
    [58] M. Lattuada, T. A. Hatton, Functionalization of monodisperse magnetic nanoparticles, Langmuir, 2007, 23, 2158-2168.
    [59] I. Gourevich, H. Pham, J. E. N. Jonkman, E. Kumacheva, Multidye nanostructured material for optical data storage and security labeling, Chem. Mater., 2004; 16, 1472-1479.
    [60] H. H. Pham, I. Gourevich, J. K. Oh, J. E. N. Jonkman, E. Kumacheva, A multidye nanostructured material for optical data storage and security data encryption, Adv. Mater., 2004, 16, 516-520.
    [61] N. Shpaisman, S. Margel, Synthesis and characterization of air-stable iron nanocrystalline particles based on a single-step swelling process of uniform polystyrene template microspheres, Chem. Mater., 2006, 18, 396-402.
    [62] U. Akiva, S. Margel, Surface-modified hemispherical polystyrene/polybutyl methacrylate composite particles J. Colloids Interface Sci., 2005, 288, 61-70.
    [63] J. Ugelstad, T. Ellingsen, A.Berge, O. B. Hellgee, Magnetic polymer particles and process for the preparation thereof, U.S. Patent, 4,654,267, 1987.
    [64] J. Ugelstad, P. C. Mork, K. H. Kaggerud, T. Ellingsen, A. Berge, Swelling of oligomer-polymer particles. New methods of preparation of emulsions and polymer dispersions, Adv. Colloid Interface Sci., 1980, 13, 101-140.
    [65] J. Ugelstad, A. Berge, T. Ellingsen, R. Schmid, T.-N. Nilsen, P. C. Mork, P. Sienstad, E. Homes, O. Olsvik, Preparation and application of new monosized polymer particles, Prog. Polym. Sci., 1992, 17, 87-161.
    [66] T. Lea, F. Vartdal, K. Nustad, S. Funderud, A. Berge, T. Ellingsen, R. Schmid, P. Sienstad, J. Ugelstad, Monosized, magnetic polymer particles: their use in separation of cells and subcellular components, and in the study of lymphocyte function in vitro, J. Mol. Recognit., 1988, 1, 9-18.
    [67] X. Hong, J. Li, M. Wang, J. Xu, W. Guo, J. Li, Y. Bai, T. Li, Fabrication of magnetic luminescent nanocomposites by a layer-by-layer self-assembly approach, Chem. Mater., 2004, 16, 4022-4027.
    [68] F. Caruso, Nanoengineering of particle surfaces, Adv. Mater., 2001,13,11-22.
    [69] Q. Li, J. F.Quinn, Y. Wang, F. Caruso, Preparation of nanoporous polyelectrolyte multilayer films via nanoparticle templating, Chem. Mater., 2006, 18, 5480-5485.
    [70] J. Cho, J. F. Quinn, F. Caruso, Fabrication of polyelectrolyte multilayer films comprising nanoblended layers, J. Am. Chem. Soc, 2004,126, 2270-2271.
    [71] J. F. Quinn, F. Caruso, Multivalent-ion-mediated stabilization of hydrogen -bonded multilayers, Adv. Funct. Mater., 2006,16,1179-1186.
    [72] C. Cortez, E. Tomaskovic-Crook, A. P. R. Johnston, B. Radt, S. H. Cody, A. M. Scott, E. C. Nice, J. K. Heath, F. Caruso, Targeting and uptake of multilayered particles to colorectal cancer cells, Adv. Mater. 2006,18, 1998-2003.
    [73] A. Yu, Y. Wang, E. Barlow, F. Caruso, Mesoporous silica particles as templates for preparing enzyme-loaded biocompatible microcapsules, Adv. Mater., 2005, 17, 1737-1741.
    [74] D. A. Foucher, B.-Z. Tang, I. Manners, Ring-opening polymerization of strained, ring-tilted ferrocenophanes: a route to high molecular weight poly(ferrocenyl- silanes), J. Am. Chem. Soc, 1992, 114, 6246-6248.
    [75] K. Kulbaba, R. Resendes, A. Cheng, A. Bartole, A. Safa-Sefat, N. Coombs, H. D. H. Stover, J. E. Greedan, G. A. Ozin, I. Manners, Polyferrocenylsilane and magnetic ceramic microspheres, Adv. Mater., 2001,13, 732-736.
    [76] M. J. MacLachlan, M. Ginzburg, N. Coombs, T. W. Coyle, N. P. Raju, J. E. Greedan, G. A. Ozin, I. Manners, Shaped ceramics with tunable magnetic properties from metal-containing polymers, Science, 2000, 287,1460-1463.
    [77] H. Deng, X. Li, Q. Peng, X. Wang, J. Chen, Y. Li, Monodisperse magnetic single-crystal ferrite microspheres, Angew. Chem. Int. Ed., 2005,44, 2782-2785.
    [78] L. Wang, J. Bao, L. Wang, F. Zhang, Y. Li, One-pot synthesis and bioapplication of amine-functionalized magnetite nanoparticles and hollow nanospheres, Chem. Eur. J., 2006,12, 6341-6347.
    [79] J. Guo, W. Yang, C. Wang, J. He, J. Chen, Poly(N-isopropylacrylamide)-coated luminescent/magnetic silica microspheres: preparation, characterization, and biomedical applications, Chem. Mater., 2006, 18, 5554-5562.
    [80] S. Sun, C. B. Murray, D. Weller, L. Folks, A. Moser, Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices, Science, 287, 1989-1992.
    [81] S. Sun, H. Zeng, D. B. Robinson, S. Raoux, P. M. Rice, S. X. Wang, G. Li. Monodisperse MFe_2O_4 (M = Fe, Co, Mn) Nanoparticles, J. Am. Chem. Soc, 2004,126, 273-279.
    [82] M. Chen, J. Kim, J. P. Liu, H. Fan, S. Sun, Synthesis of FePt nanocubes and their oriented self-assembly, J. Am. Chem. Soc, 2006,128, 7132-7133.
    [83] S. Sun, H. Zeng, Size-controlled synthesis of magnetite nanoparticles, J. Am. Chem. Soc, 2002,124,8204-8205.
    [84] J. Xie, C. Xu, Z. Xu, Y. Hou, K. L. Young, S. X. Wang, N. Pourmond, S. Sun, Linking hydrophilic macromolecules to monodisperse magnetite (Fe_3O_4) nanoparticles via trichloro-s-triazine, Chem. Mater., 2006,18, 5401-5403.
    [85] S. Sun, S. Anders, T. Thomson, J. E. E. Baglin, M. F. Toney, H. F. Hamann, C. B. Murray, B. D. Terris, Controlled synthesis and assembly of FePt nanoparticles, J. Phys. Chem. B., 2003,107, 5419-5425.
    [86] S. Sun, Recent advances in chemical synthesis, self-assembly, and applications of FePt nanoparticles, Adv. Mater., 2006, 18, 393-403.
    [87] M. J. Murray, M. J. Snowden, The preparation, characterisation and application of colloidal microgels, Adv. Colloid Interface Sci., 1995, 54, 73-91.
    [88] W. Wang, L. Deng, Z. Peng, X. Xiao, Study of the epoxydized magnetic hydroxyl particles as a carrier for immobilizing penicillin G acylase, Enzyme Microb. Technol., 2007, 40, 255-261.
    [89] H. Lei, W. Wang, L. L. Chen, X. C. Li, L. Deng, The preparation and catalytically active characterization of papain immobilized on magnetic composite microspheres, Enzyme Microb. Technol., 2004,35,15-21.
    [90] A. S. Lubbe, C. Bergemann, W. Huhnt, T. Fricke, H. Riess, J. W. Brock, D. Huhn, Preclinical experiences with magnetic drug targeting tolerance and efficancy, Cancer Res., 1996, 56, 4694-4701.
    [91] M. Suda,; M. Nakagawa,; T. Iyoda,; Y. Einaga, Reversible photoswitching of ferromagnetic FePt nanoparticles at room temperature, J. Am. Chem. Soc, 2007, DOI: 10.1021/ja0682374.
    [92] Y. Okamoto, F. Kitagawa, K. Otsuka, Online concentration and affinity separation of biomolecules using multifunctional particles in capillary electrophoresis under magnetic field, Anal. Chem., 2007, 79, 3041-3047.
    [93] A.S. Bahaj, P.A.B. James, F.D. Moeschler, Wastewater treatment by bio-magnetic separation: A comparison of iron oxide and iron sulphide biomass recovery, Water Sci. Technol., 1998, 38, 311-317.
    [94] 张立德,纳米材料研究的现状、特点和发展趋势,http://www.chinainfo.gov.cn/data/200112/1_20011212_24624.html
    [95] M. S. Fleming, T. K. Mandal, D. R. Walt; Nanosphere-microsphere assembly: methods for core-shell materials preparation, Chem. Mater., 2001, 13, 2210-2216.
    [96] D. Wang, F. Caruso, Polyelectrolyte-coated colloid spheres as templates for sol-gel reactions, Chem. Mater., 2002, 14, 1909-1913.
    [97] M. V. Artemyev, U. Woggon, R. Wannemacher, Photons confined in hollow microspheres, Appl. Phys. Lett., 2001, 78, 1032-1034.
    [98] E. Tjipto, K. D. Cadwell, J. F. Quinn, A. P. R. Johnston, N. L. Abbott, F. Caruso, Tailoring the interfaces between nematic liquid crystal emulsions and aqueous phases via layer-by-layer assembly, Nano Lett., 2006, 6, 2243-2248.
    [99] Y. Xia, J. A. Rogers, K. E. Paul, G. M. Whitesides, Unconventional Mmethods for fabricating and patterning nanostructures, Chem. Rev., 1999, 99, 1823-1848.
    [100] Y. Lvov, H. Moehwald, Protein architecture: interfacing molecular assemblies and immobilization biotechnology, New York: Marcel Dekker. Inc, 1999.
    [101] G. Zhang, D. Wang, H. Mohwald, Nanoembossment of Au patterns on microspheres, Chem. Mater., 2006, 18, 3985-3992.
    [102] G. Zhang, D. Wang, H. Mohwald, Patterning microsphere surfaces by templating colloidal crystals, Nano Lett., 2005, 5, 143-146.
    [103] C. Bai, Y. Fang, Y. Zhang, B. Chen, Synthesis of novel metal sulfide-polymer composite microspheres exhibiting patterned surface structures, Langmuir, 2004, 20, 263-265.
    [104] Y. Fang, C. Bai, Y. Zhang, Preparation of metal sulfide-polymer composite microspheres with patterned surface structures, Chem. Commun., 2004, 7, 804-805.
    [105] J. Yang, Y. Fang, C. Bai, D. Hu, Y. Zhang, CuS-poly(N-isopropylacrylamide-co-acrylic acid) composite microspheres with patterned surface structures: preparation and characterization, Chin. Sci. Bull., 2004, 2026-2032.
    [106] Y. Zhang, Y. Fang, S. Wang, S. Lin, Preparation of spherical nanostructured poly(methacrylic acid)/PbS composites by a microgel template method, J. Colloid Interface Sci., 2004, 272, 321-325.
    [107] J. Yang, D. Hu, Y. Fang, C. Bai, H. Wang, Novel method for preparation of structural microspheres poly(N-isopropylacrylamide-co-acrylic acid)/SiO_2, Chem. Mater., 2006, 18, 4902-4907.
    [108] Y. Zhang, Y. Fang, H. Xia, Y. Xie, R. Wang, X. Li, Preparation of AgCl-polyacrylamide composite microspheres via combination of a polymer microgel template method and a reverse micelle technique, J. Colloid Interface Sci., 2006, 300, 210-218.
    [109] 杨菊香,房喻,白超良,胡道道,张颖.表面图案化CuS-P(NIPAM-co-AA)复合微球的制备和表征,科学通报,2004,39-44.
    [110] 杨柏,姚计敏,闫新,陆广,张恺,陈鑫,揭起软刻技术进行胶体晶体图案化微加工的方法,申请号:CN200310110094.X.公开号:CN1544308.
    [111] 陆广,曹召良,卢振武,李伟,姚计敏,张刚,杨柏,沈家骢,利用去湿现象制备图案化的离子刻蚀聚合物保护层,高等学校化学学报,2002,23,2390-2392.
    [112] Z. Wang, J. Yuan, J. Zhang, R. Xing, D. Yan, Y. Han, Metal transfer printing and its application in organic field-effect transistor fabrication, Adv. Mater., 2003, 15, 1009-1012.
    [113] Z. Wang, J. Zhang, R. Xing, J. Yuan, D. Yan, Y. Han, Micropatterning of organic semiconductor microcrystalline materials and OFET fabrication by "Hot Lift Off", J. Am. Chem. Soc., 2003, 125, 15278-12579.
    [114] Z. Wang, R. Xing, J. Zhang, J. Yuan, X. Yu, Y. Han, Micropatterning of metal films coated on polymer surfaces by hot lift off and its applications in OFET fabrication, Appl. Phys. Lett., 2004, 85, 831-833.
    [115] Z. Y. Cheng, B. X. Gao, M. L. Pang, S. Y. Wang, Y. C. Han, J. Lin, Preparation and characterization of a novel layered perovskite-type organic/inorganic hybrid material containing silica networks, Chem. Mater., 2003, 15, 4705-4708.
    [116] M. Yu, J. Lin, Z. Wang, J. Fu, S. Wang, H. J. Zhang, Y. C. Han, Fabrication, patterning and optical properties of nanocrystalline YVO: A (A=Eu~(3+), Dy~(3+), Sm~(3+), Er~(3+)) phosphor films via sol-gel soft lithography, Chem. Mater., 2002, 14, 2224-2231.
    [117] K. Müller, J. F. Quinn, A. P. R. Johnston, M. Becker, A. Greiner, F. Caruso, Polyelectrolyte Functionalization of Electrospun Fibers, Chem. Mater. 2006, 18, 2397-2403.
    [118] P. T. Miclea, A. S. Susha, Z. Liang, F. Caruso, C. M. Sotomayor Torres, S. G. Romanov, Reflectivity behavior of opals of gold nanoparticle coated spheres, Appl. Phys. Lett., 2004, 84, 3960-3962.
    [119] Z. Liang, A.S. Susha, F. Caruso, Metallodielectric Opals of Layer-by-Layer Processed Coated Colloids, Adv. Mater., 2002, 14, 1160-1164.
    [120] V. Valtchev, Core-shell polystyrene/zeolite a microbeads, Chem. Mater., 2002, 14, 956-958.
    [121] J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, G. M. Whitesides, Self-assembled monolayers of thiolates on metals as a form of nanotechnology, Chem. Rev. 2005, 105, 1103-1169.
    [122] Y. Xia, J. Tien, D. Qin, G. M. Whitesides, Non-photolithographic methods for fabrication of elastomeric stamps for use in microcontact printing, Langmuir, 1996, 12, 4033-4038.
    [123] J. C. Love, A. R. Urbach, M. G. Prentiss, G. M. Whitesides, Three-dimensional self-assembly of metallic rods with submicron diameters using magnetic interactions, J. Am. Chem. Soc. 2003, 125, 12696-12697.
    [124] K. M. Chen, X. Jiang, L. C. Kimerling, P. T. Hammond, Selective selforganization of colloids on patterned polyelectrolyte templates, Langmuir, 2000, 16, 7825-7834.
    [125] P. Li, X. Lim, Y. Zhu, T. Yu, C.-K. Ong, Z. Shen, A. T.-S. Wee, C.-H. Sow, Tailoring wettability change on aligned and patterned carbon nanotube films for selective assembly, J. Phys. Chem. B, 2007, 111, 1672-1678.
    [126] B. J.-Y. Tan, C.-H. Sow, K.-Y. Lim, F.-C. Cheong, G.-L. Chong, A. T.-S. Wee, C.-K. Ong, Fabrication of a two-dimensional periodic non-close-packed array of polystyrene particles, J. Phys. Chem. B, 2004, 108, 18575-18579.
    [127] 邹勃,张丽,吴立新,迟力峰,张希,界面分子组装与表面图案化,科学通报,2001,48,441-443.
    [128] L. Zhang, F. Huo, Z. Wang, L. Wu, X. Zhang, S. Hoppener, L. Chi, H. Fuchs, J. Zhao, L. Niu, S. Dong, Investigation into self-assembled monolayers of a Polyether Dendron Thiol: Chemisorption, Kinetics, and Patterned Surface, Langmuir, 2000, 16, 3813-3817.
    [129] B. Varghese, F. C. Cheong, S. Sindhu, T. Yu, C.-T. Lim, S. Valiyaveettil, C.-H. Sow, Size selective assembly of colloidal particles on a template by directed self-assembly technique, Langmuir, 2006, 22, 8248-8252.
    [130] H. Huang, J. N. A B. Varghese, F. C. Cheong, S. Sindhu, g, R. Kopelman, Magnetically assisted and accelerated self-Assembly of strawberry-like nano/microparticles, J. Phys. Chem. B., 2006,110,19929-19934.
    [131] J. Park, J. Moon, Control of colloidal particle deposit patterns within picoliter droplets ejected by ink-jet printing, Langmuir, 2006,22,3506-3513.
    [132] J. Wang, K. P. Loh, Y. L. Zhong, M. Lin, J. Ding, Y. L. Foo, Bifunctional FePt core-shell and hollow spheres: sonochemical preparation and self-Assembly, Chem. Mater., ASAP Article, DOI: cm0703728.
    [133] Y. Lin, J. Zhang, E. H. Sargent, E. Kumacheva, Photonic pseudo-gap-based modification of photoluminescence from CdS nanocrystal satellites around polymer microspheres in a photonic crystal, Appl. Phys. Lett., 2002, 81, 3134-3136.
    [134] B. J. Siwick, O. Kalinina, E. Kumacheva, R. J. D. Miller, J. Noolandi, Polymeric nanostructured material for high-density three-dimensional optical memory storage, J. Appl. Phys., 2001, 90, 5328-5334.
    [135] G. Liu, H. Yang, J. Zhou, S.-J. Law, Q. Jiang and G. Yang, Preparation of magnetic macrospheres from water-in-oil emulsion stabilized by block copolymer dispersant, Biomacromolecules, 2005, 6, 1280-1288.
    [136] L. Casa, A. Roig, E. Molins, J. M. Greneche, J. Asenjo, J. Tejada, Iron oxide nanoparticles hosted in silica aerogels, Appl. Phys. A, 2002, 74,591-597.
    [137] S. M. Klein, V. N. Manoharan, D. J. Pine, F. F. Lange, Synthesis of spherical polymer and titania photonic crystallites, Langmuir, 2005, 21, 6669-6674.
    [138] H. Strohm, P. Lobmann, Porous TiO_2 hollow spheres by liquid phase deposition on polystyrene latex-stabilised pickering emulsions, J. Mater. Chem., 2004,14, 2667-2673.
    [139] X. Hong, J. Li, M. Wang, J. Xu, W. Guo, J. Li, Y. Bai, T. Li, Fabrication of magnetic luminescent nanocomposites by a layer-by-layer self-assembly approach, Chem. Mater., 2004,16, 4022-4027.
    [140] M. Cavallini, J. Gomez-Segura, D. Ruiz-Molina, M. Massi, C. Albonetti, C. Rovira, J. Veciana, F. Biscarini, Magnetic information storage on polymers by using patterned single-molecule magnets, Angew. Chem. Int. Ed., 2005, 44, 888-892.
    [141] Y. A. Barnakov, M. H. Yu, Z. Rosenzweig, Manipulation of the magnetic properties of magnetite-silica nanocomposite materials by controlled stober synthesis, Langmuir, 2005, 21, 7524-7527.
    [142] 房喻,王公正,张颖,顾忠泽,表面图案化磁性高分子复合微球的制备方法,中国发明专利,申请号为:200510043200.6,公开号为:CNl762571.
    [143] Y. V. Pan, R. A. Wesley, R. Luginbuhl, D. D. Denton, B. D. Ratner, Plasma polymerized N-isopropylacrylamide: synthesis and characterization of a smart thermally responsive coating, Biomacromolecules, 2001, 2, 32-36.
    [144] 杨前荣,陈新,邵正中,天然聚电解质壳聚糖/羧甲基壳聚糖配合物膜的研制,化学学报,2005,63,259-262.
    [145] W. H. Meiklejohn, Exchange anisotropy--a review, J. Appl. Phys., 1962, 33, 1328-1335.
    [146] W. H. Meiklejohn, C. P. Bean, New magnetic anisotropy, Phys. Rev., 1957, 105, 904-913.
    [147] E. Kumacheva, O. Kalinina, L. Lilge, Three-dimensional arrays in polymer nano-composites, Adv. Mater., 1999, 11, 231-234.
    [148] Y. L. Cui, D. D. Hu, Y. Fang, J. Ma, Preparation and mechanism of Fe_3O_4/Au core/shell super-paramagnetic microspheres, Sci. China, Ser. B, 2001, 44, 404-410.
    [149] R. Massart, Preparation of aqueous magnetic liquids in alkaline and acidic media, IEEE Trans. Magn., 1981, 17, 1247-1248.
    [150] J. Peng, Y. Zhang, H. Xia, C. Bai, Y. Fang, Studies on the template composition dependence of the surface morphologies of the metal sulfides-P(NIPAM-co-MAA) composite microspheres, Acta. Phys. Chim. Sin., 2006, 22, 424-429.
    [151] S. Dubus, J.-F. Gravel, B. Le Drogoff, P. Nobert, T. Veres, D. Boudreau, PCR-free DNA detection using a magnetic bead-supported polymeric transducer and microelectromagnetic traps, Anal. Chem., 2006, 78, 4457-4464.
    [152] R. Abu-Reziq, H. Alper, D. Wang, M. L. Post, Metal supported on dendronized magnetic nanoparticles: highly selective hydroformylation catalysts, J. Am. Chem. Soc., 2006, 128, 5279-5282.
    [153] X. Xu, S. A. Asher, Synthesis and utilization of monodisperse hollow polymeric particles in photonic crystals, J. Am. Chem. Soc., 2004, 126, 7940-7945.
    [154] P. Fulmer, M. Manivel Raja, A. Manthiram, Chemical synthesis, processing, and characterization of nanostructured Fe-B for the magnetically assisted chemical separation of hazardous waste, Chem. Mater., 2001, 13, 2160-2168.
    [155] A. Dyal, K. Loos, M. Noto, S. W. Chang, C. Spagnoli, K. V. P. M. Shafi, A. Ulman, M. Cowman, R. A. Gross, Activity of candida rugosa lipase immobilized on Fe_2O_3 magnetic nanoparticles, J. Am. Chem. Soc., 2003, 125, 1684-1685.
    [156] B. R. Saunders, B. Vincent, Microgel particles as model colloid: theory, properties and applications, Adv. Colloid and Interface Sci., 1999, 80, 1-25.
    [157] T. Matthew Cocker, C. J. Fee, R. A. Evans, Preparation of magnetically susceptible polyacrylamide/magnetite beads for use in magnetically stabilized fluidized bed chromatography, Biotechnol. Bioeng., 1997, 53, 79-87.
    [158] C. Tayapiwatana, R. Chotpadiwetkul, W. Kasinrerk, A novel approach using streptavidin magnetic bead-sorted in vivo biotinylated survivin for monoclonal antibody production, J. Immunol. Methods, 2006, 317, 1-11.
    [159] H. Sun, J. Hong, F. Meng, P. Gong, J. Yu, Y. Xue, S. Zhao, D. Xu, L. Dong, S. Yao, Novel core-shell structure polyacrylamide-coated magnetic nanoparticles synthesized via photochemical polymerization, Surf. Coat. Technol., 2006, 201, 250-254.
    [160] 崔亚丽,惠文利,汪慧蓉,王利军,陈超,Fe_3O_4/Au复合微粒制备条件及性质研究,中国科学B辑,2003,33,482-488.
    [161] 施卫贤,杨俊,磁性Fe_3O_4微粒表面有机改性,物理化学学报,2001,17,507-510.
    [162] J.-W. Kim, J.-W. Shim, J.-H. Bae, S.-H. Han, H.-K. Kim, I.-S. Chang, H.-H. Kang, K.-D. Suh, Titanium dioxide/poly(methyl methacrylate) composite microspheres prepared by in situ suspension polymerization and their ability to protect against UV rays, Colloid. Polym. Sci., 2002, 280, 584-588.
    [163] J.-W. Shim, J.-W. Kim, S.-H. Han, I.-S. Chang, H.-K. Kim, H.-H. Kang, O.-S. Lee, K.-D. Suh, Zinc oxide/polymethylmethacrylate composite microspheres by in situ suspension polymerization and their morphological study, Colloids Surf. A, 2002, 207, 105-111.
    [164] M. Alonso, M. Satoh, K. Miyanami, K. Higashi and T. Ito, Regular electroconductive networks made from metal-coated plastic powders: Effect of the concentration of metal on the conductivity, Powder Technol., 1990, 63, 35-43.
    [165] M. Okubo, H. Ahmad, T. Suzuki, Synthesis of temperature-sensitive micro-sized monodispersed composite polymer particles and its application as a carrier for biomolecules, Colloid. Polym. Sci., 1998, 276, 470-475.
    [166] 邱广明,章贤明,孙宗华,磁性聚苯乙烯微球的合成和特性,高分子材料科学与工程,1993,2,38-42.
    [167] 李孝红,丁小斌,孙宗华,含羟基磁性高分子微球的合成及表征,功能高分子学报,1995,18,73-78.
    [168] W. Sheng, S. Kim, J. Lee, S.-W. Kim, K. Jensen, M. G. Bawendi, In-situ encapsulation of quantum dots into polymer microspheres, Langmuir, 2006, 22, 3782-3790.
    [169] S. Tsuji, H. Kawaguchi, Self-assembly of poly(N-isopropylacrylamide)-carrying microspheres into two-dimensional colloidal arrays, Langmuir, 2005, 21, 2434-2437.
    [170] J. H. Wosnick, J. H. Liao, T. M. Swager, Layer-by-layer poly(phenylene ethynylene) films on silica microspheres for enhanced sensory amplification, Macromolecules, 2005, 38, 9287-9290.
    [171] 郭彬,刘辉,郝志显,甘礼华,徐子颉,陈龙武,原位合成的活性脲醛树脂作为模板剂制备二氧化硅介孔材料,化学学报,2006,64,756-760.
    [172] 郭瑞,余家国,赵丽,赵修建,单分散脲醛SiO2复合微球的制备及其形成机理研究,化学学报,2004,62,493-497.
    [173] S. Ye, Q.-Y. Ran, W.-Z. Wu, X.-W. Mao, H_2O_2 catalytic cure of urea formaldehyde resins with different structures, Thermochim. Acta., 1995, 253, 307-316.
    [174] F. Haase, J. Sauer, Interaction of methanol with broensted acid sites of zeolite catalysts: an ab initio study, J. Am. Chem. Soc., 1995, 117, 3780-3789.
    [175] E. Minopoulou, E. Dessipri, G. D. Chryssikos, V. Gionis, A. Paipetis, C. Panayiotou, Use of NIR for structural characterization of urea-formaldehyde resins, Int. J. Adhes. Adhes., 2003, 23, 473-484.
    [176] 赵东林,周万成,纳米雷达波吸收剂的研究进展,材料工程,1998,53,3-5.
    [177] 张卫东,吴伶芝,冯小云,刘剑锋,孟秀兰,纳米雷达隐身材料研究进展,宇航材料工艺,2001,31,1-3.
    [178] 王文中,李良荣,刘兴龙,纳米材料的性能、制备和开发应用,材料导报,1994,6,8-10.
    [179] G. Cheng, D. He, G. Shu, Underwater sound absorption property of porous aluminum, Colloids Surf., A, 2001, 179, 191-194.
    [180] M. Zaharescu, M. Crisan, A. Jitianu, SiO_2 iron oxide composites obtained by sol-gel method, J. Sol-Gel Sci. Technol., 2000, 19, 631-635.
    [181] G. Wang, Y. Fang, Z. Shang, Y. Zhang, D. Hu, Application of ultrasonic attenuation measurements in the studies of macromolecular conformational behaviors, Chin. J. Chem., 2004, 22, 28-32.
    [182] 王公正,房喻,尚志远,胡道道,超声衰减检测法研究大分子构象变化,化学学报,2001,59,665-669.
    [183] 莫润阳,用声波速度确定骨组织弹性参量,应用声学,2005,24,38-43.
    [184] 陈平,刘胜平,环氧树脂及其应用,北京,化学工业出版社,2004.
    [185] 崔亚丽,张连营,苏婧,张彩峰,李琦,崔婷,金伯泉,陈超,组装型金磁微粒的制备及其在免疫学检测中的应用,中国科学B辑,2006,36,159-165.
    [186] D. Muscal, A L. Drew, Modeling the infilitration dinetics of molten aluminum into porous titanium carbide, Metall Trans., 1994, 25A, 2357-2370.
    [187] 魏勤,张迎元,尤建飞,碳化硅颗粒增强铝基复合材料的SiC体积比测定,兵器材料科学与工程,2004,27,15-18.
    [188] 李光浩,现代民用飞机复合、材料的无损检测,无损检测,2001,23,213-215.
    [189] 李家伟,无损检测手册,北京,机械工程出版社,2002.
    [190] 尚志远,检测声学原理及应用,西安,西北大学出版社,1996.
    [191] A. Tanaka, K. Kago, Y. Uchida, H. Nagra, K. Nitta. Study of gelation kinetics and gel structure for transdeclain solutions of isotatic polystyrene using ultrasonic measurements, Polymer, 2001, 42, 137-142.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700