In_2O_3纳米材料的发光特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
In_2O_3是一种重要的n型宽带隙半导体材料,具有较高的可见光透过率和红外反射率,主要应用于光电装置的透明导电薄膜。In_2O_3纳米结构材料以其不同于块体材料的微观形貌、光学电学等性质、以及在纳米光电器件中潜在的应用前景,引起人们极大的兴趣。本文以碳热还原法制备In_2O_3纳米材料,获得不同的颗粒形貌和线状形貌,对样品进行了表征和分析。通过对其紫外可见光吸收谱的测试和分析,研究其吸收特性,并确定In_2O_3颗粒的光学带隙。对颗粒和线形貌产物的室温和低温光致发光谱进行测试,研究其发光特性,并对其发光机理进行了探讨。
     实验制备得到的产物以颗粒形貌为主,这些颗粒的形貌不单一,有完美的正八面体,截角八面体等。颗粒的形貌,粒径大小与温度,保温时间等制备条件有关。随着制备温度的升高,保温时间的延长,颗粒尺寸增大。通过XRD表征,所得颗粒产物为立方晶系In_2O_3,体心立方结构。在制备过程中得到线状形貌产物,直径分布在0.5-1μm范围,长度达几十微米。通过分析其EDS,XPS谱可以认为它是In@In_2O_3/SiO_2芯壳结构,In_2O_3和SiO_2以非化学计量比存在。
     从我们获得的大量样品的紫外可见光吸收谱均主要表现为两类吸收谱,一类是本征吸收谱,在可见光区没有吸收峰,从400 nm开始吸收系数急剧上升,这类吸收谱中出现陡峭的吸收边,吸收边大致位于310-325 nm范围,具有直接带隙半导体结构,用Tauc作图法获得的光学带隙值在3.0-3.48 eV之间。另一类吸收谱在吸收峰出现在400-600 nm之间,不存在陡峭的吸收边。这类吸收谱我们认为是间接带隙吸收。
     由光致发光谱的分析可知,两种形貌均有较强的紫外发射。In_2O_3颗粒材料在360-400 nm之间存在较宽的发光带。线状形貌芯壳结构的带边发光峰主要位于365 nm波长附近,测试得到所有线状形貌的中心发光峰均位于360-370 nm之间,相对颗粒形貌,发光带较窄,这个波长范围的发光峰是近带边发光。555 nm和595 nm处均存在两个微弱的深能级缺陷态发光峰。由低温PL谱分析看到,随着温度的增加,发光强度增加,峰位略有蓝移。
     论文工作对In_2O_3纳米材料可控制备进行了有益的探索,阐述了温度和保温时间对合成材料形貌的影响,得到了有意义的结果。在发光特性方面,通过测试获得In_2O_3颗粒的紫外可见光透射谱,获得其光学带隙值。通过对吸收系数的研究来研究光致发光谱,验证In_2O_3纳米材料的360-400 nm的较宽的发光带是从导带到价带的带-带辐射复合发光以及近带边的缺陷态参与的复合发光,这与目前大多数的In_2O_3纳米材料的与氧空位有关的发光不同。
In_2O_3 is a very important n-type wide band gap semiconductor material. It has been widely used as transparent conductive films in photoelectric devices because of its especial properties, such as high visible light transmittance, high infrared reflectivity. I2nO3 nanostructure material has attracted a lot of attentions due to its unique electricity, optics and chemistry properties, which are different from bulk material. It may have potential applications in photoelectronics. In this paper, In_2O_3 nanostructure has been synthesized by carbon thermal reduction method. The crystal structure and morphology of the as-grown product are characterized by X-ray diffraction and scanning electron microscopy. The UV-Vis absorption spectrum and photoluminescence spectrum are measured and analyzed. The optical energy gap and photoluminescence mechanism are discussed.
     The morphologies of our product are different particles, such as perfect octahedrons, octahedrons with defects. The morphology and size of particles are affected by the preparation conditions such as temperature and growth time. With the increase of temperature and growth time, particle size increases. XRD characterization shows that the crystal structure of the In_2O_3 particles is body-centered cubic. In_2O_3 nanowires are obtained too. The diameter of the In_2O_3 nanowires distributes in the range of 0.5-1μm and the length in tens of microns. The EDS and XPS analyses confirm that the nanowire product is of In@In_2O_3 / SiO_2 core-shell structure.
     From a large number of samples we have obtained two types of the UV-Vis absorptions spectrum. One of the absorption spectrums shows the feature of direct band-gap semiconductor. In the absorption spectrum there is no absorption peak in the visible light and the absorption obviously increases beginning from 400 nm with a steep absorption edge at 310-325 nm range. By Tauc plot the optical band gap values are obtained between 3.00-3.48 eV. The other absorption spectrum has absorption peak at 400-600 nm with no steep absorption edge. We believe that this type of absorption spectrum is indirect band-gap absorption.
     Photoluminescence spectrum analysis indicates that both the particles and nanowires have ultraviolet emission. The In_2O_3 particles have strong emission band between 360-400 nm. The nanowires have a broad emission peak centered at 365 nm, which is attributed to near band edge emission. There are two weak deep-level defects emission peak centered at 555 nm and 595 nm. Low-temperature PL spectrum analysis indicates that with the increase of temperature the peaks shift to high energy (blue shift) with the emission intensity increases.
     This paper has explored the controllable preparation of In_2O_3 nano-materials and some useful results are obtained. The optical band gap value of In_2O_3 particles is measured from the UV-Vis transmission spectrum and the photoluminescence spectrum is studied by fluorescence spectrometry. It is found that the broad 360-400 nm photoluminescence emission band is caused by the radiation emitting near the conduction band and valence band. This is different from the deep-level defects-related emission of In_2O_3 nanomaterials, which is usually attributed to the oxygen vacancy.
引文
[1]张立德.牟季美.纳米材料和纳米结构.北京:科学出版社, 2001. 6-11
    [2] Hamberg I. Granqvistc G. Evaporated Sn-doped In2O3 films: Basic optical properties and applications to energy-efficient windows. Appl. Phys., 1986, 60(11): 123-159
    [3] Li C. Zhang D H. Han S. Liu X L. Tang T. Zhou C W. Diameter-controlled growth of single-crystalline In2O3 nanowires and their electronic properties. Adv. Mater., 2003, 15(2): 143-146
    [4] Liu F. Bao M Q. Wang K L. Li C. Lei B. Zhou C W. One-dimensional transport of In2O3 nanowires. Appl. Phys. Lett., 2005, 83(213101): 1-3
    [5]董红星.杨合情.余杰.张瑞刚.尹文艳.铟颗粒上具有不同直径氧化铟纳米锥的原位合成与光致发光特性.化学学报, 2008, 66(13) : 1604-1601
    [6] Li C. Zhang D H. Liu X L. Han S. Tang T. Han J. Zhou W C. In2O3 nanowire as chemical sensors. Appl. Phys. Lett., 2003, 82(10): 1613-1615
    [7] Zhang D H. Li C. Liu X L. Han S. Tang T. Zhou W C. Doping dependent NH3 sensing of indium oxide nanowires. Appl. Phys. Lett., 2003, 83(9): 1845-1847
    [8] Ohhata Y. Shinoki F. Yoshida S. Optical properties of r.f. reactive sputtered tin-doped In2O3 films. Thin Solid Films, 1979, 59: 255-261
    [9] Pan Z W. Dai Z R. Wang Z L. Nanobelts of semiconducting oxides. Science, 2001, 291: 1947-1949
    [10] Liu Y K. Yang W G. Hou D D. Control synthesis of octahedral In2O3 crystals, belts, and nanowires. Supperlattices and Microstructures, 2008, 43: 93-100
    [11] Zheng M J. Zhang L D. Zhang X Y. Zhang J. Li G. Fabrication and optical absorption of ordered Indium oxide nanowire arrays embedded in anodic membranes. Chem. Phys. Lett., 2001, 334: 298-302
    [12] Wan Q. Wei M. Zhi D. Driscoll M J L. Blamire M GJ. Epitaxial growth of vertically aligned and branched single-crystalline Tin-doped indium oxide nanowire arrays. Adv. Mater. 2006, 18: 234-238
    [13] Nguyen P. Ng H T. Kong J. Cassell A M. Quinn R. Li J. Han J. Mcneil M. Meyyappan M. Epitaxial directional growth of indium-doped tin oxide nanowire arrays. Nano Lett, 2003, 3(7): 925- 928
    [14] Murali A. Brave A. Leppert V J. Risbud S H. Synthesis and characterization of indium oxide nanoparticles. Nano Lett, 2001, 1(6): 287-289
    [15] Cheng B. Samulski E T et al. Fabrication and characterization of nanotubular semiconductor oxides In2O3 and Ga2O3. J. Mater. Chem., 2001, 11: 2901-2902
    [16] Kam K C. Deepak F L. Cheetham A K. Rao C N R. In2O3 nanowires, nanobouquets and nanotrees. Chem. Phys. Lett., 2004, 397: 329-334
    [17] Lao J Y. Huang J Y. Wang D Z et al. Self-assembled In2O3 nanocrystal chains and nanowire networks. Adv. Mater., 2004, 16: 65-69.
    [18] Murali A. Brave A. Leppert V J. Risbud S H. Synthesis and Characterization of Indium Oxide Nanoparticles. Nano Lett, 2001, 1(6): 287-289
    [19] Seo W S. Jo H H. Lee K. Park J T. Preparation and optical properties of highly crystalline colloidal and size-controlled indium oxide nanoparticles. Adv. Mater., 2003, 15(10): 795-797
    [20] Liu Q S. Lu W G. Ma A H. Tang J K. Lin J. Fang Y J. Study of quasi-monodisperse In2O3 nanocrystals synthesis and optical determination. J .Am. Chem. Soc., 2005, 127 (15): 5276-5277
    [21] Chen C L. Chen D R. Jiao X L. Chen S H. In2O3 nanocrystals with a tunable size in the range of 4?10 nm one-step synthesis, characterization and optical properties. [J]. J PhysChem C, 2007, 111: 18039-18043
    [22]黄在银.柴春芳.谭学才.吴健.袁爱群.周泽广.刘绍刚. In2O3八面体的碳还法制备及其发光性能研究.无机化学学报, 2007, 23(3): 499-503
    [23]董红星.杨合情.杨瑞丽.陈迪春.不同形貌氧化铟八面体的可控合成与发光性质.科学通报, 2007, 52(14): 1630-1634
    [24] Ko T S, Chu C P, Chen J R ,Lu T C ,Kuo H C.Tunable light emissions from thermally evaporated In2O3 nanostructures grown at different growth temperatures. J Crys Gro. 2008, 310: 2264-2267
    [25] Zheng M J, Zhang L D, Li G H, Zhang X Y, Wang X F. Ordered indium-oxide nanowire arrays and their photoluminescence. Appl. Phys. Lett., 2001, 79(6): 839-841
    [26] Liang C H. Meng G W. Lei Y. Phillipp F. Zhang L D. Catalytic growth of semiconducting In2O3 nanofibers. Adv. Mater., 2001, 13(17): 1330-1334
    [27] Yu D B. Yu S H. Zhang S Y. Zuo J. Wang D B. Qian Y T. Metastable Hexagonal In2O3 Nanofibers Templated from InOOH Nanofibers under Ambient Pressure. Adv. Mater., 2003, 13(6): 497-502
    [28] Wu X C. Hong J M. Han Z J. Tao Y R. Fabrication and photoluminescence characteristics of single crystalline In2O3 nanowires. Chem. Phys. Lett., 2003, 373: 28-32
    [29] Cao H Q, Qiu X Q, Liang Y, Zhu Q M. Room-temperature ultraviolet-emitting In2O3 nanowires Appl. Phys. Lett., 2003, 83 (4): 761-763
    [30]谢自力.张荣.高超.刘斌.李亮.修向前.朱顺明.顾书林.韩平.江若琏施毅.郑有. In2O3纳米线制备及其特性.半导体学报, 2006, 27(3): 536-541
    [31]沈小平.赵慧.武世奎.单源化学气相沉积法制备In2O3纳米线.江苏大学学报, 2007, 28(3): 216-219
    [32] Jeong J S. Lee J Y. Lee C J. An S J. Yi G-C. Synthesis and characterization of high-quality In2O3 nanobelts via catalyst-free growth using a simple physical vapor deposition at low temperature. Chem. Phys .Lett., 2004, 384: 246-250.
    [33] Lee M S. Choi W C. Kim E K. Kim C K. Min S K. Characterization of the oxidized indium thin films with thermal oxidation. Thin. Solid. Films., 1996, 279: 1-3 .
    [34] Li Y B. Bando Y. Golberg D. Single-crystalline In2O3 nanotubes filled with In. Adv. Mater., 2003, 15(7-8): 581-585
    [35] Shi M. Xu F. Yu K. Zhu Z Q. Fang J H. Controllable synthesis of In2O3 nanocubes, truncated nanocubes, and symmetric multipods, J. Phys. Chem. C., 2007, 111:16267-16271
    [36] Zhu H. Wang X L. Qian L. Yang F. Yang X R. Nanoporous In2O3 nanocrystal clusters: one-step synthesis, thermal stability and optical property. J. Phys. Chem. C., 2008, 112(12): 4486-4491
    [37] Zhang J. Qing X. Jiang F H. Dai Z H.. A route to Ag-catalyzed growth of the semiconducting In2O3 nanowires. Chem. Phys. Lett., 2003, 371: 311-316
    [38] Wang G X. Park J. Wexler D. Park M S. Ahn J-H. Synthesis characterization and optical properties of In2O3 semiconductor nanowires. Inorg. Chem., 2007, 46: 4778-4780
    [39] Datta A. Panda S K. Ganguli D. Mishra P. Chaudhuri S. In2S3 micropompons and their conversion to In2O3 nanobipyramids: simple synthesis approaches and characterization. Crys. Gro. Des., 2007, 7(1): 163-169
    [1] Pan Z W. Dai Z R. Wang Z L. Nanobelts of semiconducting oxides. Science, 2001, 291: 1947-1949
    [2] Kong X Y. Wang Z L. Structures of indium oxide nanobelts Solid State Communications., 2003, 128: 1-4
    [3] Wu P. Li Q. Zhao C X. Zhang D L. Chi L F. Xiao T. Synthesis and photoluminescence property of indium oxide nanowires. Applied Surface Science, 2008, 255: 3201-3204
    [4] Yan Y G. Zhang Y. Zeng H B. Zhang J X. Cao X L. Zhang L D. Tunable synthesis of In2O3 nanowires, nanoarrows and nanorods. Nanotechnology, 2007, 18: 175601
    [5] Nguyen P. Ng H T. Kong J. Cassell A M. Quinn R. Li J. Han J. Mcneil M. Meyyappan M. Epitaxial directional growth of indium-doped tin oxide nanowire arrays. Nano Lett., 2003, 3(7): 925- 928
    [6] Liang C H. Meng G W. Lei Y. Phillipp F. Zhang L D. Catalytic growth of semiconducting In2O3 nanofibers. Adv. Mater., 2001, 13: 1330.
    [7] Li C. Zhang D H. Han S. Liu X L. Tang T. Zhou C W. Diameter-controlled growth of single-crystalline In2O3 nanowires and their electronic properties. Adv. Mater., 2003, 15(2): 143-146
    [8] Yang H F. Shi Q H. Tian B Z. Lu Q Y. Gao F. Xie S H. Fan J. Yu C Z. Tu B. Zhao D Y. One-step nanocasting synthesis of highly ordered single crystalline indium oxide nanowire arrays from mesostructured frameworks. J. Am. Chem. Soc., 2003, 125: 4724-4725
    [9] Liu Q S. Lu W G. Ma A H. Tang J K. Lin J. Fang Y J. Study of quasi-monodisperse In2O3 nanocrystals synthesis and optical determination. J . Am. Chem. Soc., 2005, 127 (15): 5276-5277
    [10] Lao J Y. Huang J Y. Wang D Z. et al. Self-assembled In2O3 nanocrystal chains and nanowire networks. Adv. Mater. 2004, 16: 65-69.
    [11] Zhuang Z B. Peng Q. Liu J F. et al.Size-Controllable Growth of Single Crystal In(OH)3 and In2O3 Nanocubes. Inorg. Chem. 2007, 46:5179-5187
    [12] Cheng B. Samulski E T. et al. Fabrication and characterization of nanotubular semiconductor oxides In2O3 and Ga2O3. J. Mater. Chem. 2001, 11: 2901-2902.
    [13] Li Y B. Bando Y. Golberg D. Single-crystalline In2O3 nanotubes filled with In. Adv.Mater., 2003, 15(7-8): 581-585
    [14]董红星.杨合情.杨瑞丽.陈迪春.不同形貌氧化铟八面体的可控合成与发光性质.科学通报, 2007, 52(14): 1630-1634
    [15] Jia H B. Zhang Y. Chen X H. Shu J. Luo X H. Zhang Z S. Yu D P. Efficient field emission from single crystalline indium oxide pyramids. Appl. Phys. Lett., 2003, 82: 4146
    [16] Hao Y F. Meng G W. Ye C H. Zhang L D. Controlled Synthesis of In2O3 octahedrons and nanowires. Crys. Gro. Des., 2005, 5: 1617
    [17] Wu X C. Hong J M. Han Z J. Tao Y R. Fabrication and photoluminescence characteristic of single crystalline In2O3 nanowires. Chem. Phys. Lett., 2003, 373: 28-32
    [18] Johnson M C. Aloni S. McCready D E. Courchesne E D B. Controlled vapor-liquid-solid growth of indium, gallium, and tin oxide nanowires via chemical vapor transport. Crystal Growth Design, 2006, 6(8): 1936-1941
    [19] Jeong J S. Lee J Y. Lee C J. An S J. Yi G-C. Synthesis and characterization of high-quality In2O3 nanobelts via catalyst-free growth using a simple physical vapor deposition at low temperature. Chem. Phys .Lett., 2004, 384: 246-250.
    [20] Guha P. Kar S. Chaudhuri S. Direct synthesis of single crystalline In2O3 nanopyramids and nanocolumns and their photoluminescence properties. Appl. Phys. Lett., 2004, 85: 3851-3853
    [21] Zheng M J. Zhang L D. Zhang X Y. Zhang J. Li G. Fabrication and optical absorption of ordered Indium oxide nanowire arrays embedded in anodic membranes. Chem. Phys. Lett., 2001, 334: 298-302
    [22]李强. In2O3纳米材料的制备和表征及发光特性的研究.汕头大学.硕士论文. 2008. 11-13
    [23]许振嘉.半导体的检测与分析.第二版.北京:科学出版社, 2007. 361-392
    [24] Zhang Y. Suenaga K. Colliex C. Silicon carbide and silicon oxide sheathed with boron nitride and carbon. Science, 1998, 281: 973
    [1] Zheng M J. Zhang L D. Li G H. Zhang X Y. Zang J. Li G H. Fabrication and optical absorption of ordered indium oxide nanowire arrays embedded in anodic alumina membranes. Chem. Phys. Lett., 2001, 334: 298-302
    [2] Zheng M J. Zhang L D. Li G H. Zhang X Y. Wang X F. Ordered indium-oxide nanowire arrays and their photoluminescence. Appl. Phys. Lett., 2001, 79(6): 839-841
    [3] Yu D. Yu S H. Zhang S. Zuo J. Wang D. Qian Y. Metastable hexagonal In2O3 nanofibers templated from InOOH nanofibers under ambient pressure. Adv. Funct. Mater., 2003, 13: 497-501
    [4] Liu Q S. Lu W G.. Ma A H. Tang J K. Lin J. Fang Y J. Study of quasi-monodisperse In2O3 nanocrystals synthesis and optical determination . J. Am. Chem. Soc., 2005, 127(15): 5276-5277
    [5] Lee C H. Minsik K. Taekhoon K. Ansoon K. Jungsun P. Ambient pressure syntheses of size-sontrolled corundum-type In2O3 nanocubes. J. Am. Chem. Soc., 2006, 128: 9326-9327
    [6] Chen C L. Chen D R. Jiao X L. Chen S H. In2O3 nanocrystals with a tunable size in the range of 4?10 nm one-step synthesis, characterization, and optical properties. J. Phys. Chem. C, 2007, 111: 18039-18043
    [7]张立德.谢思深.纳米材料和纳米结构.北京:化学工业出版社, 2004, 216-219
    [8]沈学础.半导体光谱和光学性质.第二版.北京:科学出版社, 2002, 48-67
    [9]陈治明.王建农.半导体器件的材料物理学基础.第一版.北京:科学出版社, 1999, 325-332
    [10] Lee C H. Minsik K. Taekhoon K. Ansoon K. Jungsun P. Ambient pressure syntheses of size-controlled corundum-type In2O3 Nanocubes . J. Am. Chem. Soc., 2006, 128: 9326-9327
    [11] Chen C L. Chen D R. Jiao X L. Chen S H. In2O3 nanocrystals with a tunable size in the range of 4?10 nm one-step synthesis, characterization, and optical properties. J. Phys. Chem. C, 2007, 111: 18039-18043
    [12] Hamberg I. Granqvist C G. Theoretical model for the optical properties of In2O3: Sn films in the 0.3–50μm range. Sol. Energy. Mater., 1986, 14: 241-256
    [13] Wen S J. Campet G. Portier J. Couturier G.. Goodenough J B. Correlations between theelectronic properties of doped indium oxide ceramics and the nature of the doping element. Mater. Sci. Eng. B, 1992, 14: 115-119
    [15] Hamberg I. Granqvist C G. Evaporated Sn-doped In2O3 films: basic optical properties and applications to energy-efficient windows. J. Appl. Phys. ,1986, 60: R123
    [16] Kayanuma Y. Quantum-size effects of interacting electrons and holes in semiconductor microcrystals with spherical shape. Phys. Rev. B, 1988, 38: 9797
    [1]彭英才. Zhao X W.傅广生. Si基纳米发光材料的研究进展.科学通报. 2002. 47(10): 721-730
    [2] Bagnall D M. Chen Y F. Shen M Y. Zhu Z. Goto T. Yao T. Room temperature excitonic stimulated emission from zinc oxide epilayers grown by plasma-assisted MBE. J Cryst Growth, 1998, 605: 184-185
    [3] Bagnall D M. Chen Y F. Zhu Z. Yao T. Koyama S. Shen M Y. Goto T. High temperature excitonic stimulated emission from ZnO epitaxial layers. Appl. Phys. Lett., 1998, 73: 1038-1040
    [4] Lee C H. Minsik K. Taekhoon K. Ansoon K. Jungsun P. Ambient pressure syntheses of size-controlled corundum-type In2O3 nanocubes. J. Am. Chem. Soc., 2006, 128: 9326-9327
    [5] Cao H Q. Qiu X Q. Liang Y. Zhu Q M. Room-temperature ultraviolet-emitting In2O3 nanowires. Appl. Phys. Lett., 2003, 83(4): 761-763
    [6]丁国庆. InP系列多薄层异质结构材料光致发光谱温度特性的实验研究半导体学报1997, 18(8): 592-597
    [7] Varshni Y P. Temperature dependence of the energy gap in semiconductors. Physica, 1967, 34: 149-154.
    [8]刘恩科.朱秉升.罗晋生.半导体物理学.第6版.北京:电子工业出版社, 2003. 44
    [9]沈学础.半导体光谱和光学性质.第二版.北京:科学出版社,2002. 48-67
    [10] Gaponenko N V. Mudryi A V. Sergeev O V et al. Erbium luminescence in sol-gel derived oxide glass films. Spectrochimica Acta Part A, 1998, 54: 2 177-2 182

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700