氮化铝纳米线的合成与生长机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮化铝(AlN)作为一种重要的Ⅲ族氮化物,是一种直接带隙半导体材料,其禁带宽度为6.2eV,在蓝、绿光和紫外光高频段的光电子器件领域有着极大的应用潜力,受到了人们极大的关注。其极高的热导率(320W·m-1·K-1)大约是Al203的10倍,非常适合于作为大功率器件、集成电路的散热材料;其低的热膨胀系数(4.3×10-6℃),可以很好的与硅匹配,可以广泛应用于半导体器件的衬底材料;其高的机械强度、很高的熔点,可以作为复合材料的添加剂和增强剂;其极高的电阻率,可以作为高温和大功率电子器件的封装材料。
     一维AlN纳米材料与AlN纳米颗粒相比,具有很大的纵横比、更完美的晶体结构和独特的纳米效应,使其在复合材料和纳米器件中可以获得广泛应用。目前一维AlN纳米材料的制备方法有很多,但是这些方法有的需要昂贵的设备,有的制备条件苛刻(如高温),成本很高,这限制了它的研究和应用。因此,简单、低成本和高质量的制备方法仍是研究的焦点。
     本文以无水氯化铝(AICl3)和叠氮化纳(NaN3)为原料,采用复分解反应法在耐高压反应釜中的硅(Si)衬底上生长出了AlN纳米线。加热温度为450℃,反应时间为24小时。高分辨透射电子显微(HRTEM)测试结果显示,分散开的AlN纳米线呈现长直型外貌,表面光滑,无分枝,粗细均匀,直径在70纳米左右,长度达到微米量级。未分散开的纳米线排列有序,生长方向一致,并且与衬底几乎垂直。选择区域电子衍射(SAED)和X射线衍射(XRD)测试结果显示AlN纳米线为单晶,具有六方对称性的纤锌矿型结构,且生长方向为[0001]方向。
     对此合成方法的化学反应过程进行了分析,确认了AlN纳米线的生长机理为气相生长机理。利用晶体生长理论对AlN纳米线的生长机理进行了定性分析,AlN纳米线生长的前期为气液固生长机理,后期为螺旋位错生长机理。
As one of the important group-Ⅲnitrides, aluminium nitride (AIN) belongs to direct band gap semiconductor and has a 6.2eV band gap, so it has great potential in optoeclectronic devices that operate at the light frequency of green, blue and ultra-violet.In addition, it has many outstanding characteristics, such as high thermal conductivity, small thermal expansion coefficient, high mechanical strength, low dielectric constant, high breakdown voltage and so on. These properties make it an excellent material for packaging and substrates of high temperature or high power electronic devices.
     Due to the big aspect ratio, better crystal structure and nano-effects, one-dimensional AIN nano-materials has great application potential in future nano-devices. Although there are several methods to prepare the one-dimensional AIN nano-materials, these methods require expensive equipment or harsh condition, such as high temperature. This limits its research and application. So it is research hotspot to find a simple and low cost way of preparation for high-quality one-dimensional AIN nano-materials.
     By directly reacting AICl3 with NaN3 in stainless steel autoclave of 25ml capacity at the temperature of 450℃for 24 hours, AIN nanowires have been synthesized on the silicon substrate. The result of HRTEM shows that the separate nanowires have long straight-wire morphology with a diameter some 100 nm and a length up to micrometer. The growth direction of the undivided nanowires is same and vertical to the substrate surface. After ED and XRD test, it is sure that the nanowires are hexagonal structure, and the grow direction is [0001].
     By analyzing the chemical reaction process of the raw materials, it is confirmed that the grow mechanism is the vapor growth mechanism. The growth process of AIN nanowires is analyzed qualitatively based on crystal growth theory, the earlier stage of the growth is through vapor-liquid-solid mechanism and the later stage is by the growing of screw dislocation.
引文
[1]倪星元,沈军,张志华.纳米材料的理化特性与应用[M].第一版.北京:化学工业出版社,2006.3-5
    [2]周瑞发,韩雅芳,陈祥宝.纳米材料技术[M].第一版.北京:国防工业出版社,2003.1-3
    [3]朱静.纳米材料和器件[M].第一版.北京:清华大学出版社,2003.1-3
    [4]倪星元,沈军,张志华.纳米材料的理化特性与应用[M].第一版.北京:化学工业出版社,2006.45-48
    [5]朱静.纳米材料和器件[M].第一版.北京:清华大学出版社,2003.9-10
    [6]王占国,陈涌海,叶小玲.纳米半导体技术[M].第一版.北京:化学工业出版社,2006.4-8
    [7]施利毅.纳米科技基础[M].第一版.上海:华东理工大学出版社,2005.16
    [8]朱永法.纳米材料的表征与测试技术[M].第一版.北京:化学工业出版社,2006.80-81
    [9]马克·瑞特,丹尼尔·瑞特.纳米技术——对又一大重大概念的简明阐释[M].第1版.席生岐,柴东朗译.西安:西安交通大学出版社,2004.40
    [10]Mussler B H. Advanced materials & powders[J]. Am Ceram Soc Bull,2000,79 (6):45-47
    [11]Dalmau R F. Aluminum nitride bulk crystal growth in a restively heated reactor[D]. Raleigh:North Carolina State University,2005
    [12]李凝芳,周毅.氮化铝(A1N)及其制品的研究动向[J].材料导报,1993,7(5):42-44
    [13]Udagawa E, Makihara H, Kamehara N, Niwa K. Influence of firing-gas pressure on the microstructure and thermal conductivity of AlN ceramics[J]. J. Mater. Sci. Lett,1990,9:116-118
    [14]Shiosaki T, Kawabata A. Piezoelectric thin films for saw applications[J]. Ferroelectrics,1982,42 (1): 219-232
    [15]Taniyasu Y, Kasu M, Makimoto T. An aluminium nitride light-emitting diode with a wavelength of 210 nanometres[J]. Nature,2006,441:325-328
    [16]刘恩科,朱秉升,罗晋生.半导体物理[M].第七版.北京:电子科技出版社,2008.37-40
    [17]Levinshtein M E, Runyantsev S L, Shur M S.先进半导体材料性能与数据手册[M].第一版.杨树人,殷景志译.北京:化学工业出版社,2003.44
    [18]Tansley T L, Egan R J. Point Defect Energies in The Nitrides of Aluminum, Gallium and Indium[J]. Phys.Rev.B,1992,45 (19):10942-10950
    [19]汪建民.陶瓷技术手册[M].台湾:中华民国粉末冶金协会出版,1997.777-787
    [20]Kitagawa H, Shibutani YOgata S. Ab-initio Simulation of Thermal Properties of AlN Ceramics[J]. Modelling Simul. Mater. Sci. Eng.,1995,3,521-531
    [21]金海波,王文忠,邹宗树,马强.A1N粉末制备技术概述[J].鞍钢技术.1999,3,44-47
    [22]Xi Y G. Metal-Organic Vapor-Phase Epitaxy Growth, Fabrication, and Characterization of Ⅲ-Ⅴ Nitride Optoelectronic Devices[D]. New York:Rensselaer Polytechnic Institute,2006.2
    [23]Grabowski S P, Schneider M, Nienhaus H, et. al. Electron affinity of AlxGa1-xN (0001) surfaces[J].
    Appl. Phys. Lett,2001,78:2503-2505
    [24]Taniyasu Y, Kasu M, Makimoto T. Field emission properties of heavily Si-doped AlN in triode-type display structure[J]. Appl. Phys. Lett,2004,84:2115
    [25]Cong H T, Ma H B, Sun X C, et al. Synthesis of aluminum nitride nanowires[J]. Physica B:Condensed Matter,2002,323:354-356
    [26]Xu C K, Xue L, Yin C R, et al. Formation and photoluminescence properties of AlN nanowires[J]. Phys Stat Sol A,2003,198 (2):329-355
    [27]Zhao Q, Zhang H Z, Xu X Y, et al. Optical property of highly ordered AlN nanowire arrays grown on Sapphire substrate[J]. Appl. Phys. Lett,2005,86:19311-193103
    [28]Duan J H, Yang S G, Liu H X, et al. Preparation and characterization of straight and zigzag AlN nanowires[J].J.Phys.Chem.B,2005,109:3701-3703
    [29]Haber J A, Gibbons P C, Buhro W E. Morphological Control of Nanocrystalline Aluminum Nitride: Aluminum Chloride-Assisted Nanowhisker Growth[J]. J. Am. Chem. Soc,1997,119:5455-5456
    [30]Haber J A, Gibbons P C, Buhro W E. Morphologically Selective Synthesis of Nanocrystalline Aluminum Nitride[J]. Chem Mater,1998,10:4062-4071
    [31]Tang C C, Fan S S, Chapelle M L, et al. Silica-assisted catalytic growth of oxide and nitride nanowires[J]. Chemical Physics Letters,2001,333 (12):12-15
    [32]Wu Q, Hu Z, Wang X, et al. Extended vapor-liquid-solid growth and field emission properties of aluminium nitride nanowires[J]. J Mater Chem,2003,13:2024-2027
    [33]Wu Q, Hu Z, Wang Z, et al. Synthesis and Characterization of Faceted Hexagonal Aluminum Nitride Nanotubes[J].J.Am. Chem. Soc,2003,125:10176-10177
    [34]Wu Q, Hu Z, Wang X, et al. Synthesis and Optical Characterization of Aluminum Nitride Nanobelts[J]. J. Phys. Chem. B,2003,107:9726-9729
    [35]Rao C N R, Deepak F L, Gundiah G, et al. Inorganic nanowires[J]. Prog. Solid State Chem,2003, 31:5-147
    [36]Chen X, Ma J, Hu Z, et al. AlN nanotube:round or faceted? [J]. Journal of the American Chemical Society,2005,127 (22):7982-7983
    [37]Tondare V N, Balasubrananian C, Shende S V, et al. Field emission from open ended aluminum nitride nanotubes[J]. Applied Physics Letters,2002,80 (25):4813-4815
    [38]Tang Y B, Cong H T, Zhao Z G, et al. Field emission from AlN nanorod array[J]. Applied Physics Letters,2005,86:153104.
    [39]Shen L H, Li X F, Zhang J, et al. Synthesis of single-crystalline wurtzite aluminum nitride nanowires by direct arc discharge[J]. Appl. Phys. A,2006,84:73-75
    [40]李志杰,张学星.氮化铝纳米线的合成与表征[J].沈阳工业大学学报,2006,3:353-356
    [41]Chen H, Lu X K, Zhou S Q, et al. Fabrication and characteristics of AlN nanowires[J]. Modern Physics Letters B,2001,15 (30):1455-1458
    [42]Lei M, Song B, Guo X, et al. Large-scale AlN nanowires Synthesized by direct sublimation method[J]. J. Eur. Ceram. Soc,2008,29 (1):195-200
    [43]Liu C, Hu Z, Wu Q, et al. Synthesis and field emission properties of aluminum nitride nanocones[J]. Applied Surface Science,2005,251:220-224
    [44]Liu C, Hu Z, Wu Q, et al. Vapor-solid growth and characterization of aluminum nitride nanocones[J]. Journal of the American Chemical Society,2005,127:1318-1322.
    [45]Su J, Cui G, Gherasimova M, et al. Catalytic growth of group Ⅲ-nitride nanowires and nanostructures by metalorganic chemical vapor deposition[J]. Applied Physics Letters,2005,86:013105
    [46]Cimalla V, Foerster C H, Cengher D, et al. Growth of AlN nanowires by metal organic chemical vapour deposition[J]. Phys Stat Sol B,2006,243 (7):1476-1480
    [47]Zhang Y J, Liu J, He R R, et al. Synthesis of aluminum nitride nanowires from carbon nanotubes[J]. Chemistry of Materials,2001,13:3899-3905.
    [48]Yin L W, Bando Y, Zhu Y C, et al. Single-crystalline AlN nanotubes with carbon-layer coatings on the outer and inner surfaces via a multiwalled carbon nanotube template-induced route[J]. Advanced Materials, 2005,17 (2):213-217.
    [49]Wu Q, Hu Z, Wang X Z, et al. A simple route to aligned AlN nanowires[J]. Diam Relat Mater,2004, 13:38-41
    [50]Boris V. L'vov. Mechanism of thermal decomposition of metal azides[J]. Thermochimica acta,1997, 291:117-185
    [51]李武.无机晶须[M].第一版.北京:化学工业出版社,2005.2-15
    [52]Wagner R S, Ellis W C. Vapor-liquid-solid mechanism of single crystal growth[J]. Appl. Phys. Lett, 1964,4:89-90
    [53]Kodambaka S, Tersoff J, Reuter M C, Ross F M. Germanium Nanowire Growth Below the Eutectic Temperature[J]. Science,2007,316:729-732
    [54]Volker Schmidt, Ulrich Gosele. How Nanowires Grow[J]. Science,2007,316:698-699
    [55]Wang N, Cai Y, Zhang R Q. Growth of nanowires[J]. Materials Science and Engineering R,2008, 60:1-51
    [56]姚连增.晶体生长基础[M].第一版.合肥:中国科学技术大学出版社,1995.367
    [57]仲维卓,华素坤.晶体生长形态学[M].第一版.北京:科学出版社,1999.208

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700