大坝—库水系统流固动力耦合作用有限元数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地震激励作用下,坝库系统安全问题关系到人民生命财产、国民经济的发展;而解决这一问题的关键技术之一,就是比较完备的流固动力耦合理论。但坝库相互作用问题是极其复杂的多学科交叉课题,无论在理论分析还是数值计算方面都存在缺陷和不足。所以有必要对这一课题进行深入的研究。
     本文对流固耦合相互作用的机理进行初步研究,推导了流固耦合矩阵并编写相应程序,通过算例分析了坝库系统相互作用。水体虽然在地震初期对坝体的运动有一定阻尼作用,减小了坝体的运动,这对提高坝体的抗震性能是有益的,但它延长了坝体振动时间,并对坝体后期运动有一定作用。
     通过建立三维坝库系统流固耦合模型,对比分析了流固动力耦合模型和附加质量模型在进行坝体动力特性和地震响应计算时的区别。附加质量模型夸大了水体的动力影响,相对于流固耦合模型偏于保守;另外,研究了水体压缩性对坝体动力特性的影响,研究表明:库水可以降低坝体自振频率,并且随着水位的加深降低的幅度更为明显,水体压缩性也可以降低坝体自振频率,其下降值大于不可压缩库水模型。可压缩库水模型和不可压缩库水模型计算的坝体振型有较大区别,在实际应用中不能相互替代。
     作为工程应用,本文以某双曲拱坝工程为例,采用前述流体-固体动力耦合分析方法对其进行动力特性和地震响应分析。结果表明,考虑库水可压缩性后,将十分明显地降低拱坝的应力反应,尤其对抗震安全起控制作用的部位降低更为明显;不可压缩库水模型夸大了拱坝抗震关键部位的应力反应,对于工程设计会导致偏于安全的结果。考虑库水可压缩性后计算量略有增大,但更能真实的反应水体对坝体的影响,因此建议采用可压缩库水模型求解坝库相互作用问题。
The safety of dam-reservoir system is related to the people's life and even the development of the national economy under the earthquake stimulates. And solving this problem one of the key technologies is more complete fluid-structure dynamic coupling theory. But dam-reservoir interaction is a very complex multi-disciplinary subject, both in theoretical analysis and numerical calculations are flawed and inadequate. So, the deep rearch should be made on this subjuct.
     In this paper, deep rearch has been made on the principle of the fluid and solid interaction; deducing solid-fluid interaction matrix and compiling the corresponding procedures which is verified right by the corresponding example. And we find that:the water can minish the movement of the dam, which is benefit for improving the capability of the dam to resist the quake, but it prolong the time of the dam's libration.
     Through the establishment of three-dimensional dam-reservoir interaction system model, a comparative analysis of fluid-dynamic coupling model and the additional mass model has been made on dam dynamic properties and seimic response. It makes out that additional mass model exaggerate the influence of compressible water and is conservative compared to the fluid-solid dynamic coupling model. In additional, researching the influence of the compressibility of the water on the dam dynamic properties, it educes water can reduce the natural frequency of dam and the lower rate is more obvious with the water level deepening. Compressibility of the water can also reduce the natural frequency of dam and the decrease was greater than the value of the incompressible water model. The compressible water model and incompressible water model have greater difference in practical applications and can not substitute for each other.
     As the project application, Based on a hyperbolic arch dam project, using aforementioned fluid-solid dynamic coupling theory analyse the dam's dynamic properties and seimic response. The results show that:considering the compressibility of water, it will obviously reduce the stress response of the dam, especially on the part of the seismic safety control. Incompressible water model exaggerated the seismic stress response of the dam which will lead to security for the design of the arch dam. Considering the compressibility of water, the computation load increase slightly, but real reflect the influence that the water to the dam. Therefore, it suggests that using the compressible water model for solving water dam interaction problem.
引文
[1]王勖成.有限单元法[M].北京:清华大学出版社,2003:521-544.[2]Westergaard. Water pressures on dams during earthquakes [J]. Transactions ASCE,1933,98:418-472.[3]刘云贺.流体-固体动力耦合理论及水利工程应用[D].西安:西安交通大学,2001.[4]邢景棠,周盛,崔尔杰.流固耦合力学概述[J].力学进展,1997,27(1):19-38.[5]仵彦卿,张倬元.岩体水力学导论[M].成都:西南交通大学出版社,1995.[6]仵彦卿,张倬元.岩体系统渗流场与应力场耦合的广义双重介质模型的应用研究[J].工程地质学报,1996,4(3):40-46.[7]仵彦卿,柴军瑞.裂隙网络岩体三维渗流场与应力场耦合分析[J].西安理工大学学报,2000,16(1):1-5.[8]仵彦卿,张倬元,王士天等.岩体渗流场与应力场耦合的集中参数型数学模型研究[J].工程地质学报,1994,2(1):9-14.
    [9]柴军瑞,仵彦卿.均质土坝渗流场与应力场耦合分析的数学模型[J].陕西水力发电,1997,13(3):4-7.
    [10]柴军瑞,仵彦卿.碾压混凝土坝渗流场与应力场耦合分析的数学模型[J].水利学报,2000,(09):33-36.
    [11]柴军瑞.大坝及其周围地质体中渗流场与应力场耦合分析研究综述[J].水利水电科技进展,2002,22(2):53-55.
    [12]柴军瑞,仵彦卿.碾压混凝土坝层(缝)面渗流及其对坝体应力的影响[J].水电能源科学,2001,19(1):55-58.
    [13]王媛,速宝玉,徐志英.等效连续裂隙岩体渗流与应力全耦合分析[J].河海大学学报,1998,26(2):26-30.
    [14]陈平,张有天.裂隙岩体渗流场与应力场耦合分析[J].岩石力学与工程学报,1994,13(4):299-308.
    [15]王媛,许志英,速宝玉.复杂裂隙岩体渗流与应力弹塑性全耦合分析[J].岩石力学与工程学报,2000,19(2):177-181.
    [16]柳厚祥,李宁等.考虑应力场与渗流场耦合的尾矿坝非稳定渗流分析[J].岩石力学与工程学报,2004,23(17):2870-2875.
    [17]陈厚群,侯顺载,杨大伟.地震条件下拱坝库水相互作用的试验研究[J].水利学报,1989,(7):29-39.
    [18]王进廷.高混凝土坝-可压缩库水-淤砂-地基系统地震反应分析研究[D].北京:中国水利水电科学研究院,2001.
    [19]赵兰浩,李同春,牛志伟.考虑库水可压缩性的高拱坝动力特性分析[J].水电能源科学,2008,26(3):68-70.
    [20]王忠.坝库互相作用及抗震技术研究[D].成都:四川大学,2001.
    [21]刑京堂.考虑自由面线性波的流固耦合动力分析的两个变分公式[J].航空学报,1988,9(11):568-571.
    [22]赵兰浩.考虑坝体一库水一地基相互作用的有横缝拱坝地震响应分析[D].南京:河海大学,2006.
    [23]王新,潘树军.流固耦合和地基辐射阻尼对乌东德拱坝地震响应的影响[J],水电能源科学,2007,25(2):42-45.
    [24]杜修力,王进廷,张楚汉.淤积泥砂对垂直地运动作用时刚性坝面动压力的影响研究[J].水利学报,2003,(3):66-72.
    [25]陈和群,章青.库水中淤沙对刚性坝的动水压力影响[J].河海大学学报,2000,28(4):72-76.
    [26]傅作新.水-坝相互作用的若干有效解法[J].华水科技情报,1985,2:1-10.
    [27]吴一红,李世琴,谢省宗.拱坝-库水-地基耦合系统坝身泄洪动力分析[J].水利学报,1996,(11):6-12.
    [28]傅作新,王立新,章青.拱坝的动水压力和拱坝库水的相互作用分析[J].第三届全国地震工程会议论文集[C].大连:大连理工大学出版社,1990:1271-1276.
    [29]李德玉,张伯艳,王海波等.重力坝坝体-库水相互作用的振动台试验研究[J].中国水利水电科学研究院学报,2003,1(3):216-220.
    [30]华蕾娜.ALE分步有限元法研究及其在自由表面水波问题中的应用[D].天津:天津大学,2005.
    [31]蒋莉,沈孟育.求解流体与结构相互作用问题的ALE有限体积方法[J].水动力学研究与进展A辑,2000,15(2):148-154.
    [32]Huerta A, Liu W K.Viscous Flow with Large Free Surface Motion[J]. Computer Methods in Applied Mechanics and Engineering,1988,69:277-324.
    [33]Donea J. A Taylor-Galerkin Method for Convective Transport Problem[J]. International Journal for Numerical Methods in Engineering,1984,20:101-119.
    [34]Hauashi M, Hatanaka K, Kawahara M. Lagrangian finite element method for free surface Navier-Stokes flow using fractional step methods[J]. International Journal for Numerical Methods in Fluids, 1991,13:805-840.
    [35]Chopra A K. Hydrodynamic Pressures On Dams During Earthquakes[J]. Journal of the Engineering Mechanics Division ASCE,1967,93(6):205-223.
    [36]Chopra A K. Earthquake Analysis of Concrete Gravity Dams Including Dam-water-foundation Rock Interaction[J]. Earthquake Engineering and Structural Dynamics,1981,9:363-383.
    [37]Chopra A K. Earthquake Behavior of Reservoir-Dam Systems[J]. Journal of the Engineering Mechanic division ASCE,1968,94:1475-1500.
    [38]郑哲敏,马宗魁.悬臂梁在一侧受有液体时的自由振动[J].力学学报,1959,(32):111-119.
    [39]郑哲敏.平板在流体作用下的振动[J].力学学报,1958,2(1):11-16.
    [40]钱令希,邱大洪.利用电模拟法计算挡水坝在满库时的自振频率[J].土木工程学报,1958,(02).
    [41]傅作新,吴斌元,王芳.水坝库水与地基动力相互作用分析[J].华东水利学院学报,1985,(1):
    1-10.
    [42]章青,傅作新.考虑库底吸收性作用时挡水坝的抗震分析[J].河海大学学报,1988,(6):6-10.
    [43]Javier Aviles, Xiangyue Li. Analytical-numerical solution for hydrodynamic pressures on dams with sloping face considering compressibility and viscosity of water [J]. Computer & Structure,1998,56(4):481-488.
    [44]刘云贺,俞茂宏,王克成.流体-固体瞬态动力耦合有限元分析研究[J].水利学报,2002,(2):85-89.
    [45]刘云贺,俞茂宏,陈厚群.流体固体动力耦合分析的有限元法[J].工程力学,2005,22(6):1-6.
    [46]施景勋,林建华.重力坝与水-地基动力耦合系统地震反应的时域分析[J].工程力学,1994,11(3):99-107.
    [47]徐艳杰,张楚汗,金峰.非线性拱坝-地基动力互相作用的FE-BE-IBE模型[J].清华大学学报,1998,38(11):99-103.
    [48]L S Tjhen, G Y Yu. Application of BEM/FEM coupling procedure to dynamic fluid-structure interaction problems [J]. International Journal of Computational Engineering Science,2002,3(4): 425-433.
    [49]杜修力,王进廷.动水压力及其对坝体地震反应影响的研究进展[J].水利学报,2001,(7):13-21.
    [50]Zienkiewicz O C. The finite element method[M]. New York:McGraw Hill,1977.
    [51]杜庆华,吴有生,冯振兴.流固耦合振动问题的某些工程处理方法[J].固体力学学报,1988,9,(1):49-61.
    [52]A K Vaish, A K Chopra. Earthquake Finite Element Analysis of Structure-Foundation systems [J]. Journal of Engineering Mechanics Division ASCE,1974, (100):1101-1116.
    [53]吴一红,谢省宗.水工结构流固耦合动力特性分析[J].水利学报,1995,(01):27-34.
    [54]冯振兴,李正秀.不定边界问题的边界元和有限元数学模型[J].力学进展,1991,(04):20-25.
    [55]宋崇民,张楚汉.水坝抗震分析的动力边界元方法[J].地震工程与工程振动,1988,(04):27-34.
    [56]黄玉盈,金涛,倪樵等.变水深坝-库系统耦振分析的边界元-有限元混合法[J].固体力学学报,1998,19(3):245-51.
    [57]沙德松,孙焕纯,邓康.固液耦联振动的非线性分析[J].计算力学学报,1989,(04):32-37.
    [58]李宁,谢礼立,翟长海.基于混合有限元格式的完美匹配层与多次透射公式人工边界比较研究[J].地震学报,2007,29(6):643-653.
    [59]杜修力,陈厚群,侯顺载.拱坝系统三维非线性地震波动分析[J].地震工程与工程振动,1996,16(3):39-47.
    [60]Xiuli Du, Yanhong Zhang, Boyan Zhang. Nonlinear seismic response analysis of arch dam-foundation systems-par I dam-foundation rock interaction[J]. Bulletin of Earthquake Engineering,2007,5(1):105-119.
    [61]李小军,廖振鹏,杜修力.有阻尼体系动力问题的一种显式解法[J].地震工程与工程振动,1992,12(4):74-79.
    [62]Chong-Shien Tsal, George C.Lee, Robert.L.Ketter. A semi-analytical ethod for time domain analyses
    of dam-reservoir interactions[J]. Inter.Jou.Numer.Meth.Engng.,1990,29:913-933.
    [63]江春波,邢秀英,张庆海.用分步有限元法求解三维不可压缩流动[J].清华大学学报(自然科学版),2004,40(8):110-113.
    [64]江春波,徐照明,李秀丽.求解不可压缩流动的分步有限元格式[J].清华大学学报(自然科学版),2002,42(2):278-280.
    [65]王永学.无反射造波数值波浪水槽[J].水动力学研究与进展A辑,1994,(9):206-214.
    [66]岳宝增,刘延柱.带自由液面Navier-Stokes流动问题的ALE分步有限元方法[J].水动力学研究与进展A辑,2003,18(4):463-469.
    [67]陈大宏,李炜.自由表面流动数值模拟方法的探讨[J].水动力学研究与进展A辑,2001,16(2):216-223.
    [68]吴轶,莫海鸿,杨春.U形渡槽水体大幅晃动的ALE有限元模拟[J].华南理工大学学报(自然科学版),2003,31(9):90-93.
    [69]Nomura T. ALE Finite Element Computations of Fluid-Structure Interaction Problems [J]. Computer Methods in Applied Mechanics and Engineering[J].1994, (112):291-308.
    [70]Nomura T, Hughes T J R. Arbitrary Lagrangian-Eulerian Finite Element Method for Interaction of Fluid and A Rigid Body[J]. Computer Methods in Applied Mechanics and Engineering,1992, (95): 115-138.
    [71]岳宝增,刘延柱,王照林.非线性流固耦合问题的ALE分步有限元数值方法[J].力学季刊,2001,22:34-39.
    [72]迟世春,顾淦臣.考虑水体压缩性与不考虑水体压缩性坝水系统基频及振型的比较[J].华北水利水电学院学报,1995,16(1):10-15.
    [73]高瑞强,宫必宁,郭建平.坝-水相互作用中水的压缩性影响研究[J].水利与建筑工程学报,2008,6(1):106-108.
    [74]刘浩吾.混凝土坝动水压力与库水可压缩性效应[J].水利水电科技进展,2002,22(2):10-13.
    [75]杜修力,王进廷.拱坝-可压缩库水-地基地震波动反应分析方法[J].水利学报,2002,(6):83-90.
    [76]石建军,孙冰,周元德等.不同横缝接触与库水模型对拱坝动力反应的影响[J].水力发电学报,2005,24(3):34-38.
    [77]水电部成都勘测设计院.混凝土拱坝设计规范(SL282-2003)[S].北京:中国水利水电出社,2003.
    [78]迟世春,林皋.混凝土面板堆石坝与库水动力相互作用研究[J].大连理工大学学报,1998,38(6):718-723.
    [79]傅作新,章青.水体压缩性对挡水结构自振特性的影响[J].河海大学学报,1994,22(6):1-7.
    [80]张廷芳.计算流体力学[M].大连:大连理工大学出版社,2007.
    [81]ADINAR&D,Inc.Theory and Modeling Guide(VolumeⅢ:ADINA CFD&FSI).2005,10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700