用户名: 密码: 验证码:
型钢与混凝土粘结—滑移关系及型钢混凝土剪力墙抗震性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
型钢混凝土(SRC)构件是由钢与混凝土两种材料组合起来的构件,这种组合构件不仅能更好的发挥各自的材质优点,避免单一材料的弱点,同时由于构件中型钢、钢筋(箍筋与纵筋)、混凝土三位一体地工作,材料元件之间具有相辅相成的作用:组合截面中的混凝土对型钢和纵向钢筋的整体和局部稳定性提供保证,增强了刚度以使其强度和变形能力充分发挥;型钢及周围的箍筋对截面内混凝土的约束作用,使其处于程度不同的三向受力状态,混凝土极限压缩变形有所增加,这种相辅相成作用的结果是型钢混凝土组合构件的承载力超过了两种材料承载力的简单叠加,同时构件又具有良好的变形能力及延性。正是由于以上优点,近些年来,型钢混凝土结构在我国高层及超高层建筑中得以广泛运用,而且具有很好的发展趋势。然而关于型钢混凝土结构性能研究的试验和理论比较缺乏,制约着这种新型结构形式的推广,本文的研究内容围绕型钢混凝土受力性能展开。
     本文研究了型钢混凝土粘结滑移性能。有关型钢混凝土粘结滑移性能研究还非常少,制约着型钢混凝土构件的推广以及数值仿真分析研究。本文在参考钢筋混凝土粘结滑移研究的基础上,设计了一种新型型钢混凝土粘结滑移试件及相应的加载装置,实现了型钢与混凝土粘结面之间的破坏,避免了混凝土的劈裂破坏和受压破坏,同时还实现了包括单调加载、重复加载、反复加载在内的多种加载形式。本试验共测试了18件型钢混凝土粘结滑移试件,研究了在单调及反复荷载作用下,混凝土强度、粘结长度、箍筋配箍率等因素对粘结性能的影响,设计了3个对比试件,用以考察型钢翼缘内侧、翼缘外侧、腹板与混凝土的粘结性能的区别。
     最后在试验的基础上,提出了单调加载条件下的型钢混凝土粘结滑移模型,此三线形模型较好地反映了试验特征,同时形式也比较简单,有利于运用于实际数值分析;所建立的反复加载条件下型钢与混凝土之间粘结滑移模型包括骨架曲线以及滞回规律两部分内容。运用本文所建立的模型进行数值模拟实际试验构件,数值模拟结果与试验结果比较相符。所建立的模型为对型钢混凝土构件进行精细有限元分析奠定了基础。
     进行了型钢混凝土剪力墙的抗震性能试验。共测试了16片型钢混凝土剪力墙,研究了混凝土强度、高宽比、试件端部箍筋配筋率等参数对型钢混凝土剪力墙抗震性能的影响;同时提出了一种新型构造的剪力墙,在型钢混凝土剪力墙中部配置型钢,考查了这种配置方式对型钢混凝土剪力墙抗震性能的影响。用CANNY软件仿真分析型钢混凝土剪力墙的滞回受力性能,用程序提供的3D纤维墙元分别分析了高宽比为3.75的高墙,和高宽比为1.5的矮墙。同时为CANNY软件在实际工程分析的运用,提供了必要的分析参数,并为软件升级提出了建议。
     运用ANSYS程序对一型钢混凝土剪力墙构件进行了非线性精细有限元分析,在仿真模型中考虑了粘结—滑移关系的影响,在分析构件整体受力的同时,也分析了型钢与混凝土间的节点粘结力的分布情况。分析了不考虑粘结滑移关系的数值分析模型,将两种数值分析结果与试验测试进行了比对,结果表明,考虑了粘结—滑移关系的分析模型的模拟结果更加贴近试验实测。
     在中国混凝土结构设计规范中,轴压比是混凝土结构竖向构件(柱、墙)设计计算中一个很重要的参数。然而对于型钢混凝土剪力墙结构,轴压比及其限值的研究还是一个空白。本文通过试验实测与数值仿真相结合的方法,分析轴压比计算公式及其限值,为进一步推广型钢混凝土剪力墙结构作基础性的研究工作。
     最后本文对要进一步研究的方向进行了展望。
The studies on Steel Reinforced Concrete (hereafter as SRC) structure has widely undertaken in China since the beginning of 1980's. Deriving benefits from combining the structural steel and reinforced concrete, the composite structures possess large load-carrying capacity and stiffness owing to composite action. Further, the surrounding concrete can serve for fire protection. Therefore, SRC structures built with structural steel encased in reinforced concrete are widely used in high-rise buildings and other systems requiring a large lateral-load resistance and considerable strong axial load capacity. Unfortunately, the study on SRC structure is not enough, which restricts significantly the application of this composite structure, so this thesis focuses on the property of SRC structure including bond-slip relationship between steel and concrete, seismic property of SRC walls, numerical simulation of SRC walls.
    In this thesis, a new type bond-slip experiment was designed which can realize real bond failure between steel and concrete. 18 specimens with different parameters were tested under monotonic pullout and cyclic loading. These parameters are concrete strength, steel volume ratio of stirrup, bond length respectively. In addition, in order to analyze bond effect at different positions of structural steel, three partially bond specimens were designed, in these three specimens, flange inside and web plate of steel skeleton were isolated from concrete by wrapping plastic membrane and consistent lubricant on the structural steel.
    According to the experiment results of these specimens, numerical constitution model of bond-slip of steel reinforced concrete under both monotonic loading and cyclic loading were concluded. The numerical simulation derived from these mathematical models coincided with the experiment results well.
    16 specimens of steel reinforced concrete (SRC) walls with different parameters such as height-width ratio, axial compression ratio, concrete strength, and steel volume ratio of stirrups respectively were tested. And then, the effects of these parameters on SRC walls were evaluated. In addition, a new type wall which steel was assembled in the center of SRC wall section was tested. From the experiment results, this scheme can effectively improve seismic behavior of SRC wall.
    Then, the seismic behavior of SRC wall was simulated by numerical analysis program CANNY. Two specimens with different height-width ratio were simulated, and analysis results were compared with experiment results.
    In order to verify the proposed analytical model of bond-slip under monotonic loading, a SRC walls were tested under monotonic loading, and was analyzed by 3D
     nonlinear finite element method. Two different simulation models were used to analyze the SRC wall. In one of the two models, bond-slip property between structural steel and concrete was ignored so that two materials kept perfect-bond. In the other model, bond-slip relationship proposed by this article was considered.
     According to the comparison with experiment, the simulation model considering bond-slip relationship agreed with the measured response better than the model assuming perfect bond. So as a conclusion, simulation model considering bond-slip is more accurate than traditional perfect bond simulation model. It is essential to study the bond-slip relationship for grasping the mechanical property of SRC wall furthermore.
     In Chinese code for design of concrete structures, axial compression ratio is an important parameter, which is used in design of some vertical components such as column and wall. Unfortunately, there is little research about axial compression ratio and its limited value of SRC walls until now. So, researches about axial compression ratio and limited value of SRC wall were taken in this thesis by a method of combining experiment and numerical simulation.
引文
[1] Hajjar J. F.. Composite Steel and Concrete Structural Systems for Scisrnic Engineering [J]. Journal of Constructional Steel Research, 2002, 58: 703-723.
    [2] 中国建设部行业标准:型钢混凝土组合结构技术规程JGJ138-2001,北京:中国建筑工业出版社,2002.
    [3] 中国冶金部行业标准:钢骨混凝土结构设计规程YB9082-97,北京:冶金工业出版社,1998.
    [4] 中国建设部行业标准:高层建筑混凝土结构技术规程JGJ3-2002,北京:中国建筑工业出版社,2002.
    [5] 叶列平,方鄂华.钢骨混凝土构件的受力性能研究综述[J].土木工程学报,2000,33(5):1-11
    [6] ACI 318-89. The Building Requirements of Reinforced Concrete.
    [7] AISC. Load and Resistance Factor Design (LRFD). Chicago, Sept. 1994. American Institute of Steel Constr., Inc.
    [8] EC4. Design of Steel and Concrete Structures, Partl.1, General Rules and Rules for Building. DD ENV 1994-1-1:1996, British Standard Institution, London WIA2BS.
    [9] Stevens R. F. Encased Stanchions[J]. Structural Engineer. The structural Engineer, 1965, 43 (4): 123-134.
    [10] Basu A. K. Computation of Failure Loads of Composite Columns. Proceedings. Institution of Civil Engineers, 1967, 3:74-79.
    [11] ECCS. Composite Structure. London and New York[M], The construction Press, 1981.
    [12] 日本建筑协会.钢骨钢筋混凝土结构计算标准及解说[M].冯乃谦、叶列平等译.北京:能源出版社,1998.
    [13] 苏联国家建设委员会编制.苏联劲性钢筋混凝土结构设计指南(си3-78).柳春圃译.冶金工业部建筑研究总院技术情报室汇编(冶金建筑参考资料8302),1983.
    [14] 赵鸿铁.钢与混凝土组合结构[M].北京:科学出版社,2001.
    [15] 白国良.型钢钢筋混凝土结构基本受力行为与设计方法.申请西安建筑科技大学博士学位论文.(指导老师:王铁梦教授),1997.
    [16] 吕西林.超限高层建筑工程抗震设计指南.上海:同济大学出版社,2005.
    [17] 李检保,赵斌.LG 北京大厦单塔(东塔)结构模型模拟地震振动台试验研究报告.同济大学土木工程与防灾国家重点实验室,A20021130-349,2003.
    [18] 吕西林,邹昀,卢文胜等.上海环球金融中心大厦结构模型振动台抗震试验[J].地震工程与工程振动,2004,23(3):57-63.
    [19] 孙慧中,沈文都,施昌.劲性混凝土结构体系研究(综合报告).中国建筑科学研究院结构所,1990.11.
    [20] 王连广,李立新.国外型钢混凝土(SRC)结构设计规范基础介绍[J].建筑结构,2001,31(2):23-24.
    [21] 赵世春,黄雄军,路湛沁.劲性钢筋混凝土柱基本抗震行为的试验研究[J].建筑结构学报,1996,17(3):43-51.
    [22] 孙国良.钢—混凝土组合结构及其应用[J].郑州工学院学报.1982,(1):16-23.
    [23] 张誉,李向民,李辉等.钢骨高强混凝土梁柱十字节点抗剪性能的研究[J].建筑结构,1997,(7):6-10.
    [24] 坪井善胜,若林突.钢骨混凝土结构的试验研究.日本建筑学会论文报告集第57号.1956(7):549-552.
    [25] Bryson J. O., Mathey R. G. Surface Condition Effect on Bond Strength of Steel Beams in Concrete [J]. Journal of ACI, 1962, 59(3): 397-406.
    [26] Hawkins N. M.. Strength of Concrete Encased Steel Beams [J]. Civil Engineering transaction oft.he Institution of Australia Engineer, 1973, CE15 (1), 39-46.
    [27] Roeder C. W.. Bond Stress in Embedded Steel Shapes in concrete [M]. Composite and Mixed Construction. New York: ASCE, 1984.
    [28] Hamdan M., Hnnaiti Y.. Factors Effecting Bond Strength in Composite Columns. Proceeding of ASCE, Journal of Structural Division, 1992, 120(3): 728-745.
    [29] Charles W. R.., Robert C.. Shear Connector Requirements for Embedded Steel Sectors. Journal of Structural Engineering, ASCE, 1999, 125(2): 142-151.
    [30] 张誉,李向民,李辉,陈宗梁.钢骨高强混凝土结构的粘结性能研究[J].建筑结构.1997,(7):3-5.
    [31] 杨勇,赵鸿铁,薛建阳.型钢混凝土粘结滑移性能试验分析[J].西安建筑科技大学学报(自然科学版).2002,34(3):205-209.
    [32] 宋占海.型钢混凝土柱受力性能的试验研究[J].西安建筑科技大学学报,1995,27(1):35-39.
    [33] 陈丽华,李爱群,赵玲.型钢混凝土构件受剪承载力计算公式的比较[J].建筑结构,2005,35(1):32-34.
    [34] 李俊华,薛建阳,赵鸿铁.型钢高强混凝土柱抗震性能的试验研究[J].世界地震工程,2004,20(4):94-99.
    [35] 王连广,张海霞,吴利权.钢骨高强混凝土框架结构非线性地震反应分析[J].沈阳建筑工程学院学报(自然科学版),2003,19(4):247-249.
    [36] Sheriff EI-Tawil., Gregory G. D.. Strength and Ductility of Concrete Encased Composite Columns [J]. Journal of Structural Engineering. 1999(9): 1009-1018.
    [37] Weng C. C., Yen S. I., Jiang M. H.. Experimental Study on Shear Splitting Failure of Full-Scale Composite Concrete Encased Steel Beams [J]. Journal of Structural Engineering, 2002, 128(9): 1186-1194.
    [38] 乔彦明,钱稼茹.钢骨混凝土剪力墙抗剪性能的试验研究[J].建筑结构,1995,(8):3-7.
    [39] 王志浩,钱稼茹.钢骨混凝土剪力墙的抗弯性能[J].建筑结构,1998,(2):13-21.
    [40] 黄雄军,何小银,赵世春.带SRC边框剪力墙抗震性能研究[J].四川建筑科学研究,1995,(1):30-34.
    [41] 黄雄军,罗英,赵世春.劲性砼低剪力墙抗震性能研究[J].地震工程与工程震动,2001,21(3):41~48.
    [42] 黄雄军,赵世春.带劲性钢筋混凝土边框低剪力墙的试验研究[J].西南交通大学学报, 1998,33(5):535-539.
    [43] 黄双华,黄雄军.劲性混凝土带边框低剪力墙极限承载力的计算[J].西南交通大学学报,2001,36(4):360-364.
    [44] 刘航,蓝宗建,庞向和.劲性钢筋混凝土低剪力墙抗震性能试验研究[J].工业建筑,1997,27(5):32-37.
    [45] 王曙光,蓝宗建.劲性钢筋混凝土开洞低剪力墙拟静力试验研究[J].建筑结构学报,2005,26(1):85-90.
    [46] Kayali O., Yeomens S. R.. Bond of Ribbed Galvanized Reinforcing Steel in Concrete. Cement and Concrete Composites, 2000, 22(6):259-467.
    [47] 朱伯龙,董振祥.钢筋混凝土非线性分析.上海:同济大学出版社,1985,11.
    [48] Wakabayashi, M., Nakamura T., Yoshida N. Iwai S.. Dynamic Loading Effects on the Structural Performance of Concrete and Steel Materials and Beams. Pro. of Ⅶ WCEE, Vol 6, 1980. 9: 213-220.
    [49] Banholzer B., Brameshuber W., Jung W.. Analytical Evaluation of Pull-out Tests—The Inverse Problem[J]. Cement & Concrete Composites, 2006 28(7):564-571.
    [50] Kankam C. K. Relationship of Bond Stress, Steel Stress, and Slip in Reinforced Concrete [J]. Journal of Structural Engineering, ASCE, 1997, 123(1): 79~85
    [51] Rossetti V. A., Galeota D., Giammatteo M. M.. Local Bond Stress-Slip Relationships of Glass Fibre Reinforced Plastic Bars Embedded in Concrete [J]. Materials and Structures, 1995, 28: 340~344.
    [52] Larralde J., Silva-Rodriguez R.. Bond and Slip of FRP Rebars in Concrete [J]. Journal of Materials in Civil Engineering, 1993, 5(1): 30~40.
    [53] Tassios T. P.. Properties of Bond between Concrete and Steel under Load Cycles Idealizing Seismic Actions. Bulletins D' Information No. 131 [M]. CEB, 1979: 37-44.
    [54] Mo Y. L., Chart J.. Bond and Slip of Plain Rebars in Concrete [J]. Journal of Materials in Civil Engineering, 1996, 8(4): 208~211
    [55] Soroushian P., Choi K.B., Park G.H., Aslani F.. Bond of Deformed Bars to Concrete. Effects of Confinement and Strength of Concrete [J]. ACI Materials Journal. 1991,88(3):227-232.
    [56] Harajli M., Harnad B., Karam K.. Bond-Slip Response of Reinforcing Bars Embedded in Plain and Fiber Concrete[J]. Journal of Materials in Civil Engineering.2002,14(6):503-511.
    [57] 李方元,赵人达.C80高强混凝土与变形钢筋的粘结滑移实验[J].同济大学学报(自然科学版.2003,31(6):714-718.
    [58] 金伟良,赵羽习.随不同位置变化的钢筋与混凝土的粘结本构关系[J].浙江大学学报(工学版),2002,36(1):1-6.
    [59] 李杰,高向玲,艾晓秋.纤维增韧混凝土与钢筋的粘结性能研究[J].建筑结构学报,2004,25(2):99-103.
    [60] Congqi F., Karin L., Liuguo C., Chaoying Z.. Corrosion Influence on Bond in Reinforced Concrete[J]. Cement and Concrete Research, 2004,34(11): 2159-2167.
    [61] Tassios T. P., Yannopoulous P. J.. Analytical Studies on Reinforced Concrete Members under Cyclic Loading Based on Bond Stress-Slip Relations [J]. Journal of ACI, 1981,(5): 206-215.
    [62] Hawkins N. M., Lin I.J., Teang F. L.. Local Bond Strength of Concrete for Cyclic Reversed Loadings [M]. Bond in Concrete. 1982: 151-161.
    [63] Alavi F. M., Marzouk H.. Bond Behavior of High Strength Concrete under Reversed Pull-out Cyclic Loading [J]. Canadian Journal of Civil Engineering. 2002, 29(2):191-200.
    [64] Ezeldin A. S., Balaguru P. N.. Bond Performance of Reinforcing Bars Embedded in Fiber Reinforced Concrete and Subjected to Monotonic and Cyclic Loads [J]. Serv. Durability Constr. Mater. Proc. First Mater. Eng. Congr.. 1990,145-154.
    [65] Hota S., Naaman A. E.. Bond Stress-Slip Response of Reinforcing Bars Embedded in FRC Matrices under Monotonic and Cyclic Loading [J]. ACI Structural Journal. 1997, 94(5): 525-537.
    [66] Lundgren K.. Pull-out tests of Steel-Encased Specimens Subjvcted to Reversed Cyclic Loading [J]. Materials and Structures/Materiaux et Constructions, 2000, 33: 450-456.
    [67] 杨勇.型钢混凝土粘结滑移基本理论及应用研究.西安建筑科技大学博士学位论文(指导老师:赵鸿铁教授),2003.8.
    [68] Wium J. A., Lebet J. P.. Simplified Calculation Method for Force Transfer in Composite Columns. Proceeding of ASCE, 1999, 120(3): 728-745.
    [69] 杨勇,赵鸿铁,薛建阳等.型钢混凝土粘结滑移性能试验分析[J].西安建筑科技大学学报,2002,34(2).
    [70] 蒋大骅,粘结力试件的一种新形式[J].同济大学学报,1984,(2):53-65.
    [71] 董宇光,吕西林等.钢骨与混凝土之间粘结—滑移性能研究进展[J].结构工程师,2005,21(3):82-87.
    [72] 张誉,李向民,李辉,陈宗梁.钢骨高强混凝土结构的粘结性能研究[J].建筑结构.1997,(7):3-5.
    [73] 郑山锁,杨勇,俞宏茂.型钢混凝土粘结滑移性能研究[J].土木工程学报,2002,35(4):47-51.
    [74] 肖季秋.劲性钢筋混凝土粘结性能的试验研究[J].四川建筑科学研究,1992,(4):2-6.
    [75] 刘灿,何益斌.劲性混凝土粘结性能的试验研究[J].2002,29(3):168-173.
    [76] 杨勇,赵鸿铁,薛建阳,郑山锁.型钢混凝土粘结—滑移本构关系理论分析[J].工业建筑.2002,32(6):60-63.
    [77] 曹万林。杨兴民,黄选明,吕西林.带钢筋及钢骨暗支撑剪力墙抗震性能试验研究[J].世界地震工程,2005,21(1):1-6.
    [78] 武敏刚,吕西林.钢骨联肢剪力墙抗震性能试验研究.结构工程师,2004,20(5):52-56.
    [79] 《建筑抗震试验方法规程》(JGJ101-96),中华人民共和国国家标准.
    [80] Meflah S. A., Tounsi A., Megueni A. and Adda Bedia E. A.. Lateral Stiffness and Vibration Characteristics of RC Shear Walls Bonded with Thin Composite Plates [J]. Composite Structures, 73(5): 110-119.
    [81] 中华人民共和国国家标准:《建筑抗震设计规范》(GB50011-2001),北京:中国建筑工业出版社,2001.
    [82] 李杰,李国强.地震工程学导论[M].北京:地震出版社,1992
    [83] 郭子雄,杨勇.恢复力模型研究现状及存在问题[J].世界地震工程,2004,20(4):47~51
    [84] 陈云涛.钢筋混凝土结构恢复力特性的分析研究和数字化.[硕士学位论文].上海:同济大学,2002
    [85] 朱伯龙.结构抗震试验[M].北京:地震出版社,1989
    [86] 朱伯龙,张琨联.矩形及环形截面压弯构件恢复力特性的研究[J].同济大学学报,1981, (2):1~10
    [87] 郭子雄,童岳生,钱国芳.RC低矮抗震墙的变形性能及恢复力模型研究[J].西安建筑科技大学学报,1998,Vol.30(1):25~28
    [88] 郭子雄,吕西林.高轴压比框架柱恢复力模型试验研究[J].土木工程学报,2004,Vol.37(5):32~38
    [89] 周颖,吕西林.空腹式劲性钢筋混凝土柱的恢复力模型研究[J].结构工程师,2004,Vol.20(6):59~65
    [90] R.帕克,T.波利.钢筋混凝土结构[M].秦文钺等译,重庆大学出版社,1986
    [91] Canny99 Users's Manual,Canny Consultants Pte Ltd, 1996;
    [92] Canny99 Technical Manual,Canny Consultants Pte Ltd, 1996;
    [93] Canny99 Samples Of Canny Input Data,Canny Consultants Pte Ltd, 1996;
    [94] 李康宁,结构三维弹塑性分析方法及其在建筑物震害中的应用,建筑结构,2001,(3):53-61;
    [95] 苏小卒.预应力混凝土框架抗震性能研究[M].上海科技技术出版社,1998,10.
    [96] 韦锋,杨红,白绍良.钢筋混凝土剪力墙多竖杆模型的应用和讨论[J].重庆大学学报(自然科学版),2005,Vol.28(1):126~130
    [97] 孙景江,江近仁.框架—剪力墙型结构的非线性随机地震反应和可靠性分析[J].地震工程与工程振动,1992,Vol.12(2):59~68
    [98] 孙景江.钢筋混凝土剪力墙非线性分析模型综述分析[J].世界地震工程,1992,(1):43~46
    [99] 李国强,周向明,丁翔.钢筋混凝土剪力墙非线性动力分析模型[J].世界地震工程,2000,16(2):13~18
    [100] 蒋通,宋亚新,楼梦麟.高层框.剪结构空间协同弹塑性地震反应分析[J].地震工程与工程振动,1998,Vol.18(2):70~78
    [101] 蒋欢军,吕西林.用一种墙体单元模型分析剪力墙结构[J].地震工程与工程振动,1998,Vol.18(3):40~48
    [102] 蒋欢军,吕西林.一种宏观剪力墙单元模型应用研究[J].地震工程与工程振动,2003,Vol.23(1):38~43
    [103] 李兵,李宏男.钢筋混凝土剪力墙弹塑性分析方法[J].地震工程与工程振动,2004,Vol.24(1):76~81
    [104] 沈蒲生,王海波.剪力墙结构的非线性地震反应分析[J].土木工程学报,2003,Vol.36(5):11~16
    [105] 陈伯望,王海波,沈蒲生.剪力墙多垂直杆单元模型的改进及应用[J].工程力学,2005,Vol.22(3):183~189
    [106] 汪梦甫,周锡元.钢筋混凝土剪力墙多垂直杆非线性单元模型的改进及其应用[J].建筑结构学报,2002,Vol.23(1):38~42,57
    [107] 陈勤,钱稼茹,李耕勤.剪力墙受力性能的宏模型静力弹塑性分析[J].土木工程学报,2003,Vol.37(3):35~43
    [108] 陈云涛,吕西林.剪力墙非线性分析中多垂直杆元模型的分析与改进[J].结构工程师,2001,(1):19~24
    [109] Lu, Xilin and Chen, Yuntao. Modeling of coupled shear wails and its experimental verification[Y]. J. Struct. Engrg. ASCE, 2005, Vol. 131(1): 75~84
    [110] 张令心,杨桦,江近人.剪力墙的剪切滞变模型[J].世界地震工程,1999,15(2):9~16
    [111] Ozcebe G., Saaccioglu M.. Hysteretic Shear Model for RC Members [J]. Structure Engineering ASCE, 1989, 15(1): 118-129.
    [112] Hwang H., Jaw L, Shau H. J. Seismic Performance Assessment of Code-Designed Structures, NCEER-88-0007.
    [113] Otand S., Kaycyasawa T. et al.. Analysis of the Full Scale storey reinforced Concrete test Structure. Wight J. K.. Earthquake Effect on Reinforced Concrete Structure U. S.-Japan Research. ACI sp-84.
    [114] Ghobarah A., Youssef M.. Modeling of Reinforced Concrete structural Walls [J]. Engineering Structures, 1999, 21(10): 912-923
    [115] 陈丽华,李爱群,杜德润.型钢混凝土柱的界限破坏和轴压比限值[J].工程抗震,2004,4:32~34
    [116] 程文瀼,陈忠范,江东等.钢骨混凝土柱轴压比限值的试验研究[J].建筑结构学报,1999,(2)
    [117] 陈瑞生,袁超,单玉川等.钢骨混凝土柱轴压比限值的研究[J].浙江工业大学学报,2004,32(1):16~19.
    [118] Enrico Spacone and Sherif EI-Tawil. Nonlinear Analysis of Steel-Concrete Composite Structures: State of the Art. J. Struct. Engrg. ASCE, 2004, Vol. 130(2): 159~168
    [119] Leonardo M., Kutay Orakal and John W. Wallace. Flexural and Shear Responses in Slender RC Shear Walls. Proc. of 13th WCEE, 2004, Paper No. 1067.
    [120] Girard C., Bastien J.. Finite-Element Bond-Slip Model for Concrete Columns under Cyclic Loads. Journal of Structural Engineering, ASCE, 2002, 128(12): 1502-1510
    [121] Chen W. F.. Plasticity in Reinforced Concrete [M]. New York: McGraw-Hill.1982.
    [122] ANSYS中国公司.ANSYS基本过程手册.2000
    [123] ANSYS中国公司.ANSYS非线性分析指南.2000
    [124] ANSYS中国公司.ANSYS高级技术分析指南.2000
    [125] Sousa J. B. M., Caldas R. B.. Numerical Analysis of Composite Steel-Concrete Columns of Arbitrary Cross Section. Journal of Structural Engineering, ASCE, 2005, 131(11): 1721~1730.
    [126] Lu X. Z., Jiang J. J., Teng J. G, Ye L. P.. Finite Element Simulation of Debonding in FRP-to-Concrete Bonded Joints. Construction and Building Materials, 2005, 20(6): 412-424.
    [127] Ozbolt J., Eligehausen G, Pcriskic G, Mayer U.. 3D FE Analysis of Anchor Bolts with Large Embedment Depth. Engineering Fracture Mechanics, Available online 7 March 2006.
    [128] 陆新征,江见鲸.用ANSYS Solid65单元分析混凝土组合构件复杂应力.建筑结构,2003.33(6):22-24.
    [129] Darwin D., Pecknold D. A.. Nonlinear Biaxial Stress-Strain Law for Concrete. Journal of Engineering Mechanic Div, ASCE 1977, 103(2): 229-241.
    [130] Kwak H. G., Kim S. P.. Bond-Slip Behavior under Monotonic Uniaxial Loads [J]. Engineering Structures, 2001, 23:298-309.
    [131] M. Keuser, G. Mehlhom. Finite Element Models for Bond Problems [J]. Journal of Structure Engineering ASCE, 1987, 113(10):2160-2173.
    [132] Scott B., Park R., Priestlcy M.. Stress-Strain Behavior of Concrete Confined by overlapping Hoops at Low and High Strain Rates [J]. Journal of ACI, 1982, 79(1):13-27.
    [133] 王彦宏.型钢混凝土偏压柱粘结滑移性能及应用研究.西安建筑科技大学博士学位论文(指导老师:赵鸿铁教授)2004.6
    [134] 中华人民共和国国家标准:《混凝土结构设计规范》(GB50010-2002),北京:中国建筑工业出版社,2002.
    [135] Kawk H. G, Kim D. Y.. Material Nonlinear Analysis of RC Shear Walls Subject to Monotonic Loadings [J]. Engineering Structures, 2004, 26(11): 1517-1533
    [136] Kawk H. G, Filippou F. C.. Nonlinear FE analysis of R/C Structures under Monotonic Loads. Computers&Structures, 1997, 65(1): 1-16
    [137] Wallace J. W.. Akira Wada, Hybrid wall system: US-JAPAN research, 12WCEE, 2000, Paper No. 2619
    [138] Mau, S. T. and T. T. C. Hsu, Shear Behavior of Reinforced Concrete Framed Wall Panels with Vertical Load, ACI Structural Journal, 1987; 84(2): 228-234.
    [139] Sheikh, S. A., Uzumeri S. M., Analytical Model for Concrete Confinement in Tied Columns [J], Journal of the Structural Division, ASCE, 1982; 108(12): 2703-2722.
    [140] Yamada, M., Kawamura H., Katagihara K.. Reinforced Concrete Shear Walls without Openings, Test and Analysis, ACI SP-42, Shear in Reinforced Concrete, Vols. 1 & 2, American Concrete Institute, 1974: 539-558.
    [141] Pctrangcli M, Pinto PE, Ciampi V.. Fiber Element for Cyclic Bending and Shear of RC Structures[J]. I: Theory, Engineering Mechanics, ASCE, 1999, 125(9): 994-1001.
    [142] 刘爱民,周德源.Experimental Study on Seismic Behavior of Semi-rigid Connection between Steel Beam and Concrete Wall[J].地震工程与工程振动(英文版),2005:4(1):129-137.
    [143] 李学平.矩形钢管混凝土柱基本力学性能研究.同济大学博士学位论文(指导老师:吕西林教授)2004.7
    [144] 过镇海.钢筋混凝土原理[M].北京:清华大学出版社,1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700