硫铁矿烧渣制备软磁用α-Fe_2O_3和磁记录材料γ-Fe_2O_3工艺及基础理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硫铁矿烧渣是用硫铁矿生产硫酸的过程中产生的工业废渣。一般每生产1t硫酸会产生0.8t烧渣,我国每年排放约1200万t硫铁矿烧渣,大量的烧渣排放和堆积,不仅浪费资源,占用土地,还造成了一系列的环境问题。硫铁矿烧渣处理已经成为我国固废处理的重大难题之一,如果能综合利用烧渣中的有效成分,不仅可以使废弃物资源化,提高企业效益,而且能够解决环境问题,因此具有重要的现实意义。本文利用硫铁矿烧渣制备铁氧体用高纯α-Fe203、透明氧化铁黄和磁记录材料γ-Fe203。
     采用硫酸直接酸浸硫铁矿烧渣,铁屑还原酸浸液,利用空气氧化产生的新生相氢氧化铁胶体吸附沉降除硅和氟化铵沉淀除钙得到硫酸亚铁溶液,经碳酸盐转化为碳酸亚铁,煅烧后得到高纯的铁氧体用α-Fe203。在硫酸直接酸浸的过程中,反应温度118℃、硫酸浓度50%、硫酸用量系数1.1、反应时间4h,硫铁矿烧渣中铁的浸出率达到92.0%;用铁屑作还原剂,酸浸液中Fe3+浓度在1.6 mol·L-1左右可以得较快的反应速度和高的还原率;空气氧化絮凝法除硅和氟化铵沉淀除钙的过程中,控制反应温度60℃,氟化铵用量4g,pH值5.0~5.4,通入空气量0.2NM3/h,絮凝剂的用量为20-30ppm,静置陈化6-12h,过滤后获得纯净硫酸亚铁溶液,经浓缩、冷却结晶得到符合GB664-93化学试剂标准的硫酸亚铁;α-Fe203制备工艺为,将净化后的硫酸亚铁溶液调整FeS04浓度为lmol/L,初始pH为2-3,反应温度为室温(<40℃),在中强度的搅拌下,按理论值的1.1倍缓慢加入碳酸铵,反应时间为1小时后,经过滤、洗涤、干燥,在870℃温度下煅烧得到Fe203含量>99.4%,视比重0.95,紫棕红色,钙、硅含量均<0.01%,符合HG/T2574-94标准的铁氧体用α-Fe203。
     采用空气氧化氨水滴加法,表面活性剂改性获得纳米晶形a-FeOOH。实验结果表明,a-FeOOH晶种制备条件为,硫酸亚铁浓度为40%、碱比为0.25、通气量为0.16-0.2m3/h、搅拌速度为500-600r/min及反应温度为30℃。二次氧化制备α-FeOOH的条件为晶种含量1.0%、初始亚铁浓度0.40-0.50mol/L、空气通气量0.6m3/h、搅拌速度800-900r/min及反应温度80℃。将得到的铁黄粒子经分散剂酒石酸及表面活性剂SDBS改性处理后,所得产品的晶型为a-FeOOH,粒子呈针状,长轴为95nm-125nm,短轴为18-25nm;无团聚现象,单分散性好,产品质量符合中华人民共和国化工行业标准HG/T2249-91。
     在碱法制备磁记录材料Y-Fe203的研究中,研究了在强碱条件下空气氧化法制备针形α-FeOOH的反应过程,结果表明反应速率对Fe(Ⅱ)是动力学零级反应,反应表观活化能为6.84kJ/mol,其速率方程为:
     反应机理是属于一固相Fe(OH)2转变为另一固相α-FeOOH的过程。反应条件对生成物的晶体形状有明显的影响,反应时的温度高、空气流量大、搅拌速率高、浓度、碱比适中时,产物结晶粗大完整、长度长,长宽比大。当反应条件在亚铁浓度0.3mol/L、反应温度40℃、空气流量0.2 m3/h、搅拌速率420rpm、碱比0.7时,获得产物粒子的长度为0.322μm、宽度为0.028μm、轴比为11.5的针形α-FeOOH.
     经差热-热重分析得出α-FeOOH转化为α-Fe203的反应活化能为147.65kJ/mol,反应级数是0.81,反应机理为Valens二维扩散;脱水热处理在380℃的温度下,反应60min获得晶形完整的针形α-Fe203。
     在α-Fe2O3氢气还原热处理制备Fe304的过程中,经热力学分析、XRD分析得出α-Fe203转化为Fe304时,存在多个相变,还原温度、氢气流量、还原时间对反应的产物产生明显影响,当在还原温度为360℃、还原时间为60min、氢气流量Q H2为150ml/min左右的条件下,获得了晶形完好的针形Fe3O4。
     在Fe304空气氧化热处理制备γ-Fe203的过程中,经差热-热重分析、XRD分析和工艺试验得出Fe304转化为γ-Fe203时,存在两个相变过程,Fe304先被氧化转变成γ-Fe203,温度升到500℃后,Fe304转变成a-Fe203。当氧化温度在240℃下氧化45min,获得晶形完整的针形γ-Fe2O3。
     溶胶-凝胶法制备γ-Fe2O3的研究表明,在柠檬酸铁溶液的浓度为0.8mo1/L,pH值为7,温度为40℃的反应条件下浓缩五分之四后形成了稳定络合型柠檬酸合铁,经真空减压干燥4h、再常压下,80℃干燥4h、110℃干燥8h后,获得柠檬酸合铁凝胶粉,在450℃下煅烧2.5h得到γ-Fe203。经TG-DTA、XRD、FT-IR表征得出柠檬酸合铁溶胶-凝胶粉转化成γ-Fe2O3的最佳温度是450℃, Scherrer公式计算和TEM表征得出,柠檬酸合铁溶胶-凝胶制备得到的γ-Fe203的粒子大小为32nm。
Pyrite cinder is the industry waste residue which is produced in the process of pyrite sulfuric acid manufacture. Every time along with production of 1 ton sulfuric acid is 0.8 ton of pyrite cinder,12,000,000 ton of pyrite cinder approximately have been discharged every year in China. As waste resources, such plentiful pyrite cinder emissions and stack, not only take land, but also work a series of environment problems. So, disposal of pyrite cinder has already become an important part of solid wastes in China. If we could use comprehensively beneficial ingredients in pyrite cinders, we not only might recycle national resources, enhancing the enterprises' benefits, but also could solve the environment problem, therefore it has vital practical significance. This thesis discusses how to use high-purityα-Fe2O3 for soft magnetic ferrite use, transparent iron oxide yellow, magnetic recording materialsγ-Fe2O3 have been prepared from pyrite cinder.
     Using sulfuric acid to leach pyrite cinder, scrap iron was used to reduce acid leaching solution. A purifying ferrous sulfate solution was obtained after when the new Fe(OH)3 sol was created by passing it through air, furthermore adsorbed the impurities such as colloidal silicic acid and by using NH4F to remove Ca. The ferrous carbonate was obtained when the ferrous sulfate solution was reacted with carbonate. The high-purityα-Fe2O3 for ferrite use is up to the standard of HG/T2574-94 after dried the ferrous carbonate product is calcined at 870℃for 1h. In the process of leaching pyrite cinder with sulfuric acid, reaction temperature has the greatest influence on the rate of iron recovery. Under the controlled conditions that sulfuric acid concentration is 50%, coefficient of the sulfuric acid dosage is 1.1, reaction at 118℃for 4h, the rate of iron recovery is up to 92.0%. In the process of reducing acid leaching solution with scrap iron, there are the faster reactive velocity and the high percent of reduction when Fe3+ is reduced to Fe2+ under the conditions of Fe3+ concentration of 1.6mol/L in acid leaching solution. In the process of removing Si with oxidation-flocculation by passing it through air and removing Ca by sedimentation with NH4F, under the controlled conditions that reaction temperature is 60℃, NH4F dosage is 4g, the ferrous sulfate solution pH adjustment 6.0 by ammonia, air flow rate is 0.2NM3/h, when solution pH is up to 5.0 for atmosphere oxidation, the dosage of flocculant polyacrylamide is 20~30ppm, settled and ageing 6~12h, the purified ferrous sulfate solution is obtained by filtrating. FeSO4-7H2O was crystallized from the ferrous sulfate solution by concentrating and cooling that is up to the chemical reagent standard of GB664-93. In the process of preparativeα-Fe2O3, under the controlled conditions that the concentration of the ferrous sulfate solution is 1.Omol/L, beginning pH of the solution is 2-3, reaction temperature is room temperature (less than 40℃), under moderate strength stirred, slowing addition ammonium carbonate proportioning by academic cost 1.1 double, after reacting 1h, the quality of a-Fe2O3 for soft magnetic ferrite use product is up to the standard of HG/T2574-94 after dried ferrous carbonate product by filtrating and sluicing is calcined at 870℃for 1 h. The content of Fe2O3 in the a-Fe2O3 product attains 99.4%, the apparent gravity is 0.95 g/cm3, the appearance color is purple-brown-red, the content of silicon dioxide and calcium oxide in the a-Fe2O3 product can be reduced to less than 0.01%.
     The nanometer crystalline forms a-FeOOH is obtained by air oxidizing, dropping ammonia and surfactant-modified method. The test results show that the eligible a-FeOOH crystal seed is obtained under the controlled conditions that ferrous sulfate concentration is 40%, alkaline ratio is 0.25, air flow rate 0.16-0.2m3/h, stirred rate 500-600r/min and reaction temperature at 30℃for 5h. In the process of secondary oxidation of a-FeOOH growth, the eligible a-FeOOH crystal is obtained under the controlled conditions that the content a-FeOOH crystal seed is 1.0%, beginning ferrous sulfate concentration is 0.40-0.50mol/L, air flow rate 0.6m3/h, stirred rate 800-900r/min and reaction temperature at 80℃for 50h. Finally, the goethite particle would be modification by dispersant tartaric acid and surfactant SDBS. The quality of a-FeOOH product is up to the standard of HG/T2574-94. The nanoparticles were characterized by X ray diffractometry (XRD), and transmission electron microscopy (TEM). The results showed that the homogenous acicular particles with good gloss and dispersion were a FeOOH. The average major axial diameter of the particles was 95-125 nm, and average minor axial diameter was 18-25 nm.
     Preparation process of magnetic recording materials y-Fe2O3 was investigated in detailed. Reaction process of preparation of the acicular a-FeOOH by air oxidation in the alkali condition was researched. The results show that the reaction order is zero for Fe(II), apparent activation energy is 6.84kJ/mol, and its rate equation is:
     The reaction mechanism is belong to the process of one solid ferrous hydroxide change from another solid goethite. The crystal shape of resultant have evident infection. The effect of process parameters such as reaction temperature, pH value, air rate, stirring rate, ferrous sulfate solution concentration and alkaline ratio on the crassitude and integrity of FeOOH particles was studied. The results showed that the ferrous sulfate solution concentration 0.3mol/L, reaction temperature 40℃, air rate 0.2 m3/h, stirring rate 420rpm, alkaline ratio 0.7 can be obtained acicular a-FeOOH of the average major axial diameter of the particles was 0.322μm, and average minor axial diameter was 0.028μm, and the aspect ratio was 11.5.
     In the process that the a-FeOOH is changed toα-Fe2O3 by dehydrating heat treatment, TG-DAT test shows that the reaction order is 0.81 forα-FeOOH, apparent activation energy is 147.65kJ/mol, The reaction mechanism is belong to Valens planar diffusing. The crystal type integrity acicularα-Fe2O3 is obtained when the a-FeOOH was heat treatment at 380℃for 60min.
     In the process that theα-Fe2O3 is changed to Fe3O4 by deoxidizing heat treatment with H2, thermodynamics analysis and XRD test shows that the deoxidizing process exists various phase change. The effect of process parameters such as deoxidizing reaction temperature, H2 flow, deoxidizing time on Fe304 particles was studied. The results showed that the deoxidizing reaction temperature 380℃, H2 flow 150ml/min, deoxidizing time 60min can be obtained the crystal type integrity acicular Fe3O4.
     In the process that the Fe3O4 is changed toγ-Fe2O3by oxidizing heat treatment with air, TG-DAT, XRD and technics test shows that the oxidizing process exists two phase change. The effect of process parameters such as oxidizing reaction temperature, oxidizing time onγ-Fe2O3 particles was studied. The crystal type integrity acicular Y-Fe2O3 is obtained when the Fe3O4 was heat treatment at 240℃for 45min.
     In the process of preparativeγ-Fe2O3 by sol-gel, the experimentation results showed that the complexing ferrite citrate sol was synthesized under the controlled conditions that ferrite citrate concentration is 0.8mol/L, the solution pH value was adjusted 7 by ammonia, reaction temperature at 40℃for concentrating 4/5. The Fe(III)-citrate complex gel powde was obtained that the Fe(III)-citrate complex was decompression dried in vacuum for 4h, dried in 80℃for 4h, dried in 110℃for 8h. The dry gel powder were analyzed by TG-DTA、XRD、FT-IR, The results show that theγ-Fe2O3 is obtained when dry gel powder was calcined at 450℃for 2.5h. The structure and crystal phase of the powders were characterized by XRDand TEM. Its primary crystal size calculated accurately by Deby-Scherrer equation was 32nm.
引文
[1]中国1995-1998年硫酸、硫磺、硫铁矿产量[J].化工矿物与加工,1999,(8):35
    [2]薛立基,马乃洋.硫酸渣用于球团生产的试验研究[J].湖南冶金,1992,(1):8-11
    [3]魏样松.硫铁矿烧渣特性及综合利用[J].化工地质,1994,16(3):205-209
    [4]虞钰初.我国硫酸工业环境污染概况及其防治途径的建议[J].硫酸工业,1989,(2):28-35
    [5]杨晋藩.硫铁矿烧渣制砖[J].硫酸工业,1982,(3):27~30
    [6]商志民,宋保山,李留记.硫铁矿烧渣制砖的试验[J].硫酸工业,1989,(4):51-56
    [7]Abdrakhimov A V, Abdrakhimova F S, Abdrakhimov V Z. Technical properties of roof tiles made of ethnogeny material with pyrite cinder[J]. Glass and Ceramics,2006,63 (3):130~ 132
    [8]徐景权.“光和法”试运转概况[J].硫酸工业,1983,(6):48~50
    [9]王兴印,李建州,利用硫酸厂焙烧废渣提取银初步探讨[J].陕西化工,1992,(3):44~47
    [10]房裕生,张华.硫铁矿烧渣湿法脱硫及伴生有价金属的提炼方法[P].C N 1074947,1993-08-04
    [11 ]Reznik 1 D, Sorokin V S. Semi-commercial testing of chloride sublimation of pyrite cinders and gold concentrates[J].Tsvetnye Metally,2004, (2):63~68
    [12]徐晓军,管锡君,羊依金.固体废物污染控制原理与资源化技术[M]北京,冶金工业出版社,2007:298-301
    [13]江崇边.从烧渣中回收金银铁的工业实践[J].硫酸工业,1986,(4):35-37
    [14]徐晓军,管锡君,羊依金.固体废物污染控制原理与资源化技术[M].北京,冶金工业出版社,2007:299
    [15]胡宾生,张景智.铜陵市硫酸渣的综合利用[J].环境工程,1996,14(5):53-57
    [16]董风芝,宋振柏,马振吉等.硫铁矿烧渣回收铁精矿浮选研究[J].金属矿山,2005,(11):68-71
    [17]梁景最,张清岑,李贵奇.用硫酸渣生产铁金属化团块的研究[J].矿产综合利用,1998,(4):22~25
    [18]陈吉春,陈永亮.硫铁矿烧渣还原酸浸制取硫酸亚铁[J].矿产综合利用,2004,(3):42-45
    [19]张泽强.硫铁矿烧渣综合利用试验研究[J].化学工业与工程技术,2002,23(4):4-5
    [20]郑雅杰,龚竹青,易丹青等.以硫酸矿烧渣为原料制备绿矾新技术[J].化学工程,2005,33(4):51~55
    [21]Kapoor, J. N. Mathur, D. P.Studies of the flocculation characteristics of pyrites cinder in dilute sulphuric acid with polyacrylamide[J]. Fertilizer Technology.1981,18(3):184~188
    [22]Wang Dongsheng, Tang Hongxiao. Modified inorganic polymer flocculant-PFS:Its preparation, characterization and coagulation behavior [J].Wat Res,2001,35(14):3418-3428.
    [23]郑晓虹,何晓云,钟超阳等.硫酸铝渣和硫铁矿烧渣制聚硅酸硫酸铁的研究[J].安全与环境学报,2005,5(1):60~63
    [24]罗道成,陈安国.由粉煤灰和硫铁矿烧渣制备聚硅酸铁铝絮凝剂[J].煤化工,2005,(4):27-30
    [25]张萍,蒋馥华.用黄铁矿烧渣制备氧化铁红[J].环境保护,1993,(9):40~41
    [26]刘长让,樊耀亭.氧化铁颜料生产工艺的改进[J].河南化工,1991,(10):20~22
    [27]曾桓兴.中和沉淀法Fe3O4的生成研究[J].无机材料学报,1998,13(4):619~624
    [28]陈吉春,梁海霞.硫铁矿烧渣制取铁红[J].化工环保,2004,24(3):210~213
    [29]徐旺生,古寿祥,宣爱国等.硫铁矿烧渣制备高纯软磁氧化铁工艺研究[J].化工矿物与加工,2001,(9):7~13
    [30]陈白珍,龚竹青,黄坚等.硫铁矿烧渣制备铁黄颜料的工艺研究[J].无机盐工业,2001,33(4):39-41
    [31]王之平.利用硫铁矿烧渣制备透明氧化铁的工艺研究[D].湖南:中南大学,2002
    [32]温普红,宋周周.以硫酸渣为原料制备铁黑工艺研究[J].无机盐工业,1994,(2):31-38
    [33]童云,胡文远.利用硫铁矿烧渣制备高纯氧化铁的研究[J].西南科技大学学报,2005,20(4):13~25
    [34]陈吉春,李旭,张仲伟.利用硫铁矿烧渣制硫酸钾的工艺研究[J].矿产综合利用,2005,(5):42~46
    [35]Carl R F, Dumesic J A. Strong oxide-oxide interaction in silica-supported magnetite catalysts[J] J Phys Chem,1981,85:3175-3180
    [36]Tadao Sugimoto, Egon Matijevic. Formation of uniform spherical magnetite particles by crystallization from ferrous hydroxide gels[J] J Colloid Interface Sci,1980,74:227~243
    [37]Qu S C, Yang H B, Ren D W, et al. Magnetite nanoparticles prepared by precipitation from partially reduced ferric chloride aqueous solutions[J] J Colloid Interface Sci,1999,215:190-192
    [38]Sharrock M P. Particulate magnetic recording media:a review[J]. IEEE Transactions on Magnetics,1989,25(6):4374-4389
    [39]李文融,屠德容.无级(NP)磁粉性能与制备[J].化工新型材料,1994,(8):1-9
    [40]Kang Y S, Risbud S, Rabolt J F, et al. Synthesis and characterization of nanometersize Fe3O4 and γ-Fe2O3 particles[J]. Chem. Mater.,1996,8:2209~2211
    [41]Sharrock M P. Particulate magnetic recording media[J]. IEEETrans.Magn.,1989,25:4347~ 4389
    [42]朱昊果,宋宝珍.高性能纺锤形α-Fe金属磁粉的制备[J].功能材料,1998,29(3):246~248
    [43]樊耀亭,樊玉兰,吕秉玲.透明氧化铁颜料的制备[J].现代化工,1996(6):28~30
    [44]郑典模,孙口圣,蒋柏泉,等.含氯化亚铁母液制氧化铁红的研究[J].南吕大学学报,2001,23(2):78-81
    [45]赵红丽,琚行松,芮玉兰,等.纳米氧化铁的结构性质及用途[J].唐山师范学院学报,2005,27(5):1~4
    [46]杨宗志.效应颜料在涂料中应用的进展[J].现代涂料与涂装,1997(4):28-31.
    [47]张为民,侯英兰.氧化铁在玻璃中的着色[J].玻璃,2000,24(6):22-26.
    [48]孟霞,张旭东,田艳等.纳米材料在涂料中的应用[J].山东化工:,2003,33(3):19-21.
    [49]张立德.纳米材料[M].北京:化学工业出版社,2000:87-138.
    [50]李凤生,宋红吕,刘宏英,等.超细粉体技术[M].北京:国防工业出版社,2000:1~11.
    [51]蔡玉荣,周廉.用作生物材料的纳米陶瓷[J].稀有金属快报,2002(2):1-3.
    [52]S.Grimm,M. Schultz,S.Barth. Flame pyrolysis-a preparation routefor ultrafine pure y-Fe2O3powders and the control of their particle size and properties[J].J. Mater. Sci. 1997,32:1083-1092
    [53]M.Oda, K.Setoguchi. Prepara-tion and applicaton of ultra fine parti-cles[J]. J.Mater. Sci technol,1997,(13):249~254
    [54]Oda M,Setoguchi K.Preparation and application of ultra fine particles[J].Mater Sci Technol,1997(13):249~254
    [55]Shen L F,Laibinis P E,Hatton T A.Bilayer surfactant stabilized magnetic fluids:synthesis and interactions at interfaces[J].Langmuir,1999,15:447-453
    [56]Chen D H,Jiao XI,Chen D R.Solvothermal synthesis of parti-cles with different morphologies[J].Mater Res Bull,2001,36:1057~1064
    [57]Taeghwan Hyeon, Su Seong Lee. Monodisperse maghemitenanocrystallies without a size-selection process[J].Am Chem Soc,2001,123:12798~12801
    [58]Dong W T,Wu S X,Chen D P,et al.Preaparation of α-Fe2O3 nanoparticles by sol-gel process with inorganic iron salt[J].Chem Let,2000,5:496-497
    [59]Feltin 1 V,Peleni M P.New technique for synthesizing ironferrite magnetic nanosized particles[J].Langmuir,1997,13:3927~3933
    [60]刘洪波.微波诱导等离子体合成纳米氧化铁-碳化铁粉体[J].化学研究与应用,1997,9(5):514-517
    [61]郭广生,任雯,王志华,等.实验参数对激光气相法制备Fe/O粒子性能的影响[J].应用激光,2002,22(5):491-494
    [62]王泽敏,刘勇,曾晓雁.激光烧蚀细丝法制备γ-Fe203纳米粉体及其磁性研究[J].功能材料,2004,35(1):132-134
    [63]Hyo Kyoung, Hee cham rark. Preparation of γ-Fe2O3 ultra-fine powders by laser vapor-phase reac-tion[J]. J.Mater.Sci.Lett.1955,14(9):1335-1337
    [64]邱春喜,姜继森,赵振杰,等.固相法制备α-Fe203纳米粒子[J].无机材料学报,2001,16(5):957-960
    [65]Zhang Q W, Saito F. Effect of Fe2O3 Crystallite Size on its Mechanochemical Reaction with La2O3 to from LaFeO3[J].J Mater Sci,2001(36):2287-2290
    [66]严新.固相法制备氧化铁纳米粒子[J].盐城工学院学报(自然科学版),2002,15(4):24-26
    [67]曹茂盛,曹传宝,徐甲强.纳米材料学(第一版)[M].哈尔滨:哈尔滨工程大学出版社,2002,14~18.
    [68]汪信,陆路德.纳米金属氧化物的制备与应用研究的若干进展[J].无机化学学报,2000,16(2):213-217.
    [69]Sesigur h, Acma E, Addemir O, et al.The Preparation of Magnetic Iron Oxide[J].Mater Res Bull,1996,31(12):1 573-1579
    [70]高志华,李春虎.纳米粒子α-Fe203样品的制备与表征[J].化工冶金,2000,4(21):341-345.
    [71]曹建新,张煜,聂登攀.磁性氧化铁纳米粒子制备技术的最新进展[J].现代机械,2003,(4):80~82
    [72]Sugimoto T,Sakata K.Preparation of monodispense peanuttype a-ferric oxide particles from condensed ferric hydroxide gel[J].J.Colloid Sci.,1993,70(2):167-169
    [73]牛新书,徐荭,徐甲强.溶胶凝胶法纳米α-Fe203材料的合成、结构及气敏性能[J].功能材料,2001,32(6):649-652.
    [74]Sugimoto T, Sakata K. J. Preparation of monodisperse Peanuttype α-Ferric Oxide Particles from Condensed Ferric Hydroxide Gel[J].Golloid Interface Sci,1993,70(2):167-169
    [75]魏雨,郑学忠,赵建录.凝胶-溶胶法制备针状和纺锤状α-Fe203[J].功能材料与器件学报,1997,3(4):267~270
    [76]邵梅珍.纳米氧化铁的制备与展望[J].衡水师专学报,2001,3(4):57-59.
    [77]Baily J K, Brinker C J, Mecartney M L. Growth mechanisms of iron oxide particles of differing morphologies from the forced hydrolysis ferric chloride[J] Journal of Colloid and Interface Science,1993,157:1-5.
    [78]Wagner R M,Sandra H P,Celso V S,et al. Formation of colloidal particles of hydrous iron by forced hydrolysis[J] Journal of Non-crystalline Solids,2000,273:41-47
    [79]魏雨,贺会兰,郑学忠,等.均分散纺锤形α-Fe203的制备研究[J].应用科学学报,1997,15(4):494-498.
    [80]胡鸿飞,李大成,吉红兵.纳米氧化铁的制备方法及进展[J].四川有色金属,2001,(1):15~20.
    [81]李大成,周大利,刘恒,等.超微粉体的制备(二)[J].四川有色金属,1999,(3):11~15.
    [82]马振叶,李凤生,叶明泉等.Fe203/油酸纳米复合粒子的结构及性能表征[J].南京理工大 学学报(自然科学版),2004,28(4):436-440
    [83]Lufimpadio N, Nagy J B, Detrouane E G Auths. In:Mittal K L,Linderman D Edrs. Surfactants Solution(Proc.4thInt Symp,1982)[M]. New York:Plenum Press,1984,3:1483
    [84]Barnickel P.Wokaun A,Sager W,et al. Size tailoring of silver colloids by reduction in W/O microemulsions [J].J Col Interf Sci,1992,148(1):80-90
    [85]陈龙武,甘礼华,岳天仪,等.微乳液反应法制备a-Fe203超细粒子的研究[J].物理化学学报,1994,10(8):750~753.
    [86]徐甲强,侯振雨,田孟魁,荆瑞俊.用胶溶法和微乳液法制备纳米级氧化铁材料[J].郑州轻工业学院学报,1998,13(45):27-30
    [87]中德君,张朝平,罗玉萍等.反相微乳液化学剪裁制备明胶γ-Fe2O3纳米复合微粒[J].应用化学,2002,19(2):121-125
    [88]Cheng H, Ma J, Zhao Z, et al. Advanced Structural Materials[J].Elsevier Sci-Publ, B.V.,1991:509.
    [89]Ronald S. Sapieszko, Egon Matijevic.Preparation of well-defined colloidal particles by thermal decomposition of metal chelates. I. Iron oxides[J].Journal of Colloid and Interface Science,1980,74(2):405-422
    [90]沙非,宋宏吕.纳米α-Fe203的制备方法及应用概况[J].江苏化工,2003,31(5):12-15.
    [91]Morales M P,Gonzalez-Carreno T,Serna C J.The formation of a-Fe203monodispersed particles in solution[J].J Mater Res,1992,7(9):2538-2545.
    [92]Sugimoto T,Muramatsu A,Sakata K,et al.Characterization ofhematite particles of different shapes[J].J Colloid Interface Sci,1993,158:420-428.
    [93]Sugimoto T, Sakata K, Muramatsu A. Formation mechanism ofmonodisperse pseudocubic a-Fe2O3 particles from condensed ferrichydroxide gel[J].J Colloid Interface Sci,1993, 159:372-382.
    [94]Y. Li, H. Liao, Y. Qian Hydrothermal Synthesis of Ultrafine a-Fe2O3 and Fe3O4 Powders[J].Materials Research Bulletin,1998,33(6):841-844.
    [95]Diamandescu L, Mihaila-Tarabasanu D, Popescu-Pogrion N, et al. Hydrothermal synthesis and characterization of some polycrystalline-iron oxides[J].Ceramics International,1999, 25(5):689-692
    [96]L. N. Demianets, S. V. Pouchko, R. V. Gaynutdinov.Fe2O3 single crystals:hydrothermal growth, crystal chemistry and growth morphology[J].Journal of Crystal Growth.2003,259(1-2): 165-178
    [97]Xiong Wang, Xiangying Chen, Xuchu Ma.Low-temperature synthesis of a-Fe2O3 nanoparticles with a closed cage structure[J].Chemical Physics Letters,2004,384(4-6):391-393
    [98]S. Giri, S. Samanta, S. Maji, S. Ganguli, A. Bhaumik.Magnetic properties of α-Fe2O3 nanoparticle synthesized by a new hydrothermal method[J].Journal of Magnetism and Magnetic Materials,2005,285(1-2):296-302
    [99]Bo Hou, Youshi Wu, Lili Wu. Hydrothermal synthesis of cubic ferric oxide particles[J].Materials Letters,2006,60(25-26):3188-3191
    [100]Seiichi Takami, Teruyuki Sato, Tahereh Mousavand. Hydrothermal synthesis of surface-modified iron oxide nanoparticles[J].Materials Letters,2007,61(26):4769-4772.
    [101]陈兴,邓兆祥,等.水热法制备超顺磁性铁氧体纳米微粒[J].无机化学学报,2002,(5):460-464.
    [102]吴素芳,戴君裕,王樟茂.制备α-氧化铁过程水解反应研究[J].无机盐工业,1999,31(1):9-11.
    [103]吴东辉,章忠秀,施磊,汀信.pH值对微波水热法制备纳米α-Fe203的控制作用[J].精细化工,2003,20(4):212-220.
    [104]Gedye R N, Smith F E. Westaway K. C. The rapid synthesis of organic compounds in microwave ovens[J]. Can J Chem,1988,66(1):17-26.
    [105]汤勇铮,杨红,张文敏.微波制备均分散氧化铁纳米粒子[J].化学通报,1998,(9):52-54.
    [106]傅中,郝学十,吴正翠,等.相转变-微波法制备均分散α-Fe2O3胶体粒子[J].化学物理学报,1999,12(2):119-223.
    [107]Dong D C,Hong P J,Dai S S.Preparation of uniform α-Fe2O3 particles by microwave-induced hydrolysis of ferric salts[J].Mater Res Bull,1995,30(5):531-535.
    [108]Katsuki H,Komarneni S. Microwave-hydrothermal synthesis of monodispersed nanophase α-Fe2O3[J].J Am Ceram Soc,2001,84(10):2313-2317.
    [109]S. R. Dhage, Y. B. Khollam, H. S. Potdar. Effect of variation of molar ratio (pH) on the crystallization of iron oxide phases in microwave hydrothermal synthesis[J].Materials Letters,2002,57(2):457-462
    [110]韩晓斌,黄丽,回峥.微波水解法制备针形α-Fe203纳米粒子[J].无机材料学报,1999,14(4):669-673.
    [111]Maston D W,Smith R D. Supercritical fluid technologies for ceramic processing application[J]. Jam ceram soc,1987,72(6):871-881.
    [112]曹维良,张敬畅,石锦华,于定新.超微粒子氧化铁的制备研究[J].应用科学学报,2000,18(2):171-174.
    [113]舒保华.型磁粉的性能及其生产[J].粉体冶金工业,1999,9(1):7-14
    [114]张玉华.粉体磁性材料-γ-Fe203[J].天津化工,1990,(4):11-13
    [115]曾桓兴.铁基微粉材料研制的进展[J].化学通报,1992,(10):6-10
    [116]Blesa M C, Moran E, Menendez N, et al. Hydrolysis of sodium orthoferrite [α-NaFeO2] [J]. Mater Res Bull,1993,28(8):837-847
    [117]王弘,刘杏芹,沈瑜生.Fe(C5H5N)4]CI2配合物水解氧化法制备γ-Fe203气敏微粉及其表征[J].云南大学学报(自然科学版),1997,19(1):7-9
    [118]丁子上,翁文剑.溶胶-凝胶技术制备材料的进展[J].硅酸盐学报,1993,21(5):443-450
    [119]郭永,巩雄,杨宏秀.纳米微粒的制备方法及其进展[J].化学通报,1996,(3):1-4
    [120]Ennas G,Musiun A.Characterization of iron oxide nanoparti-cles in an Fe2O3-SiO2 composite prepared by a sol-gel method[J]. Chem Mater,1998,(10):495-502.
    [121]Chan,AC C,Tronc E,et al. Thermal behavior of spinel ironoxide-silica composites[J]. Nanostruct Mater,1995,(6):715~719.
    [122]Ziolo R F, Giannelis E P. Matrix-mediated synthesis of nanocrystalline γ-Fe2O3 a new optically transparent magnetic material[J].Science,1992,(257):219-223.
    [123]刘静波,王智民,谷林夫.络和物型溶胶-凝胶过程研制纳米晶γ-Fe203磁粉[J].功能材料,1998,29(2):144-147
    [124]Kojima, Kunihiko; Miyazaki, Mitsuharu; Mizukami, Fujio; Maeda, Kazuyuki.Selective formation of spinel iron oxide in thin films by complexing agent-assisted sol-gel processing[J]. Journal of Sol-Gel Science and Technology,1997,8(1-3):77-81
    [125]Dormann J L, Viart N, Rehspringer J L, et al. Magnetic Properties of Fe2O3 Particles Prepared by Sol-Gel Method[J]. Hyperfine Interactions,1998,112:89-92
    [126]Lei Zhang, George C Papaeftlymiou,JakieYYing, et al. Size quantization and interfacial effects on a novel γ-Fe2O3/SiO2 magnetic nanocomposite via sol-gel matrix-mediated synthesis[J]. J Appl Phys.,1997,81(10):6892-6900
    [127]Niznansky D, Viart N, Rehspringer J L, et al. Nanocomposites Fe2O3/SiO2-preparation by sol-gel method and physical properties[J]. J Sol-gel Technol.,1997,8:615-618
    [128]Ohmori Masahiro, Shigehito Deki.Rise in Transition Temperature of γ-Fe2O3 Particles to α-Fe2O3 by SiO2 Coating[J]. Chem Lett.,1994,8:1369-1370
    [129]Ennas G, Musinu A, Piccaluga G, et al. Characterization of iron oxide nanoparticles in an Fe2O3-SiO2 composite prepared by a sol-gel method[J].Chem Mater,1998,10:495-502
    [130]胡文军,陈晓丽.微乳液和有机凝胶的性质及应用[J].材料导报,1997,11(1):53-56
    [131]沈兴海,高宏成.纳米微粒的微乳液制备法[J].化学通报,1995,(11):6-9
    [132]Chhabra,V.; Lal,M.;,Maitra, A. N.. Preparation of ultrafine high density gamma ferric oxide using aerosol OT microemulsions and its characterization[J].Colloid and Polymer Science, 1995,273(10):939-946
    [133]Mira J, Lopez-perez J A, Lopez-Quintela M A, et al. Dynamic magnetic behaviour of interacting γ-Fe2O3 nanoparticles dispersed in epoxy resin[J]. Mater Sci Forum,1997, (235-238):297-302
    [134]施尔畏,夏长泰,王步国等.水热法的应用与发展[J].无机材料学报,1996,11(2):193-206
    [135]Dairong Chen,Ruren Xu. Hydrothermal synthesis and characterization of nanocrystalline y-Fe2O3 particles[J]. Journal of Solid State Chemistry,1998,137(2):185~190
    [136]T Gonzales-Carreno, M.P. Morales, M. Gracia.Preparation of uniform γ-Fe2O3 particles with nanometer size by spray pyrolysis[J].Mater Lett,1993,(18):151
    [137]Cabanas,M.V.;Vallet-Reqi,M.Labeau,M. Spherical iron oxide particles synthesized by an aerosol technique[J]. Journal of Materials Research,1993,8(10):2694-270]
    [138]Morales,M.P.;Pecharroman,C.;Carreno,T.G. Structural characteristics of uniform y-Fe2O3 particles with different axial (length/width) ratios[J]. Journal of Solid State Chemistry,1994,108(1):158-163
    [139]Grimm S, Schultz M, Barth S. Flame pyrolysis-a preparation route forultrafine pure γ-Fe2O3 powders and the control of their particlesize and properties[J].J. Mater.Sci.,1997,32:l 083-1092
    [140]Martinez B, Roig A, Molins E, et al. Magnetic characterization of y-Fe2O3 nanoparticles fabricated by aerosol pyrolysis[J]. J Appl Phys,1998,83(6):3256-3263
    [141]Dierstin A,Natter H,Meyer F, et al. Electrochemical depostion under oxidizing conditions (EDOC):a new synthesis for nanocrystalline metal oxides[J].Electrochem Deposit,2001.44:2 209-2212.
    [142]Pascal C,Pascal J L,Favier F,et al.Electrochemical synthesisfor the control of y-Fe2O3 nanpartile size[J].Chem Mater,1999,1 1:141-147.
    [143]Dan Li,Xiaohui Wang,Gang Xiong. A novel technique to prepare ultrafine Fe2O3 via hydrated iron(III) nitrate[J]. J Mater Sci Lett,1997,(16):493-495
    [144]蔺恩惠,李新勇,郭跃华,等.激光气相合成氧化铁超细粉[J].无机材料学报,1996,11(1):157~161
    [145]Gunther L. Magnetic nano-particles for high density recording[J]. Phys World,1990,3:28
    [146]Ziolo R F. Developer composition containing superparamagnetic polymers[P]. US Patent: 4474866,1984
    [147]Nixon L, Noble R D.Preparation and characterization of novel magnetite-coated ion-exchange particles[J]. Chem Mater,1992,4:117-121
    [148]Anton I, I. de Sabata. Application orientated researches on magnetic fluids[J].J Magn Magn Mater,1990,85:219
    [149]Macmichael R D, Shull R D, Swartzendruber L J, et al. Magnetocaloric effect in superparamagnets[J]. J Magn Magn Mater,1992,111:29-33
    [150]曾桓兴,罗红梅,张天舒,等.高稳定性的y-Fe203的合成及其气敏性能研究[J].功能材料1995,26(4):305-308
    [151]Ming Zhou, Hongmei Luo. Effects of Y-doping on the formation, structure and properties of iron oxide[J]. J Alloy compd,1997,255(1-2):239-242.
    [152]Xu J Q. [R]. Report 1995, No.PB 95-244737
    [153]刘冠威,苏世漳,刘虹,等.掺杂对y-Fe203气敏元件灵敏度及其它特性的影响[J].功能材料,1994,25(3):243-250
    [154]吴家琨,孙良彦.γ-Fe203的CO气敏特性的研究[J].传感技术学报,1997,(1):18-21
    [155]Tohru Murase, Naoe Hirai.Recent Development of Iron Oxide for Ferrite and Its Manufacturing Technique from Pickling Waste Liquor of Steel& Sheet[J].Iron Steel,1993,79 (10):1129-1137.
    [156]张桂枝。热石灰法原水除硅预处理[J].水处理技术,1994,20(5):305-306.
    [157]柳凤钢,文欣,王振珠。从电炉炼钢烟尘制取高纯Fe203粉的研究[J].化学研究与应用,2001,13(3):318-320.
    [158]何明兴,何安西,陈秀云等。钢板酸洗废液制备高纯氧化铁的研究[J].钢铁钒钛,2000,21(4):18-22.
    [159]Buecker B. Zero Discharge Programs Require Careful Planning[J].Power Engineering, 1997,(5):49-52.
    [160]石智峰,王容香。钼酸盐除硅技术在超纯氧化钇生产中的应用[J].稀有金属与硬质合金,2002,30(2):23-25.
    [161]李国祥,李仲轩.利用平炉红尘生产磁性材料用Fe203的研究[J].内蒙古石油化工,1999,24(1):7-9.
    [162]陈玉妹,姚分忠。吸附法去除水中胶硅的研究[J].工业水处理,2001,21(6):29-31
    [163]邓淑华,郑文裕.制取高纯氧氯化锆过程中絮凝剂对“二次除硅”的影响研究[J].稀有金属,2000,24(3):191-194.
    [164]潘鹤林,陈平.SiO2分散体及硅溶胶性能研究[J].涂料工业,1997,(1):12-14.
    [165]J A迪安(美)主编,魏俊发,等译.兰氏化学手册.北京:科学出版社,2003
    [166]李春忠,陈军,陈劲松,等.酸法合成针形超微粒α-FeOOH过程研究[J].华东理工大学学报,1995,(6):670-674
    [167]古宏晨,胡黎明,陈军,等.超细α-FeOOH制备过程研究[J].华东工学院学报,1992,18(4):467-469
    [168]Sada E. Reaction kinetics and controls of size and shape of goethite fine particles in the production process by air oxidation of alkaline suspension of ferrous hydroxide[J].Chem Eng Comm,1988,71:73-82
    [169]李春忠,汪中柱.酸法合成针形超微粒α-FeOOH过程研究[J].华东理工大学学报,1996,(1):13-17
    [170]曾桓兴,任福民,张蔗元,等.均匀纺锤形α-FeOOH微晶的生长[J].无机材料学报,1992,7(2):236-241
    [171]吴叔娴,王小妹.硫酸法钛白副产品硫酸亚铁全液相制氧化铁黄的研究[J].现代涂料与涂装,1996,(1):7-10
    [172]施利毅,华彬.透明铁黄的研制[J].功能材料,1998,21(6):136-138
    [173]冯蕴道.氧化铁超细粉相变过程研究[J].硅酸盐学报,1991,22(3):303-313
    [174]曾昭仪.透明氧化铁颜料制造技术[J].涂料工业,1982,(2):28-32
    [175]Misawa T. The mechanism of foration of iron oxide and oxyhydroxides in aqueous solutions at room temperature[J]. Corrosion Science,1974,14:131-149
    [176]Feitknecht, W. Uber die oxydation von festen hydroxyverbindungen des eisens in wassrigen losungen[J].Zeitschrift fur Elektrochemie,1959,63 (1):34-43.
    [177]Yutaka Tamaura, Perlas V Buduan,Takashi Katsura.Studies on the oxidation of iron(II) ion during the formation of Fe3O4 and a-FeO(OH) by air oxidation of Fe[OH]2 suspensions[J].J. Chem. Soc, Dalton Trans.,1981, (9):1807-1811
    [178]Bernal JD, Dasgupta DR, Mackay AL.The oxides and hydroxides of iron and their structural interchanges[J]. Clay Min. Bull,1959,4:15-30
    [179]都有为,李正宇,陆怀先等.FeOOH生成条件的研究(Ⅰ)[J].物理学报,1979,28(5):705-711
    [180]Kissinger H E. Variation of peak temperature with heating rate in differential thermal analysis[J]. J. Res. Nat. Bur. Stand,1956,57:217-221

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700