气体钻井环空流场分析及岩屑对管柱的冲蚀特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于能够缩短钻井周期、降低储层伤害、解决井漏问题等优势,气体钻井技术现已得到了迅速发展与应用,成为油气田高效开发的重要手段之一。但是,伴随气体钻井的一个难题是钻柱的失效问题非常严重,其直接影响钻井作业的正常进行并造成巨大的经济损失。引起这一问题的原因主要为钻柱的振动和高速岩屑对钻柱的冲蚀。事实上,在气体钻井过程中,由于气体的密度和粘滞阻力较小,钻柱的纵向振动非常剧烈,同时伴随着复杂的横向振动、扭转振动和涡动,使得钻杆承受复杂的动态应力。此外,钻柱在井眼中的复杂振动形式,造成钻柱在井眼中的形心位置随机变化,使钻柱环空成为一个随机变化的变截面空间,再加上钻柱周围环空气体流速较大,气体雷诺数已达湍流范畴,导致气体钻井时环空气体具有变空间复杂湍流性质,远较固定空间湍流问题复杂。正是这种复杂流态气体携带的岩屑对钻柱造成冲蚀,导致钻柱强度下降,从而加剧了钻柱的疲劳失效。针对这一问题,本文全面地研究了环空气体的流动特征和湍流特性,详细地分析了环空岩屑对钻杆和不同形状的排屑管线的冲蚀作用,深入地探讨了带有旋涡发生器的改进钻杆周围环空气体旋涡的形成及其随时间的演化过程,重点分析旋涡发生器对水平井段环空气体流动特征的影响规律。具体工作包括:
     首先,基于计算流体动力学的控制方程,针对气体钻井中的特殊工况,简化得到了环空气体的运动方程;选取了适用于气体钻井时环空气体流动的湍流模型,并给出了相应的壁面函数;简要地阐述了求解一般气体流动的数值计算方法,给出了气体钻井时环空气体的数值模拟流程。
     其次,在垂直井段和水平井段中,考虑钻杆居中、偏心不旋转和旋转的不同工况,研究分析了气体钻井时环空气体的流动规律,揭示了湍动能、壁面摩擦因子和壁面压力系数等环空气体流动所呈现的湍流特性。在此基础上,结合岩屑的运动方程和钻杆的冲蚀模型,仿真了环空岩屑的运动轨迹并计算了岩屑对钻杆的冲蚀速率,进而得到了岩屑对钻杆的冲蚀规律,分析了钻杆偏心距、机械钻速、岩屑粒度和形状对冲蚀速率峰值的影响规律,而且研究了90°弯角的排屑弯管、三通管中气体的流动规律和岩屑的运移轨迹以及岩屑对排屑管线的冲蚀作用。
     最后,针对气体钻井时水平井段环空可能出现的岩屑床现象,本文提出了一种改进钻杆,即在常规钻杆表面的某个位置添加旋涡发生器,以期对钻杆周围的环空流场进行控制。在改进钻杆居中、偏心旋转的情况下,分析了旋涡发生器周围气体旋涡的形成、演化规律,以及其对环空气体流动特性的影响规律,并得到了一系列有意义的结论。结果表明,旋涡发生器不仅能够提高环空气体的切向速度,并且能够产生将滞留在井眼低边的岩屑带回到环空中心的旋涡结构,从而达到有利于清洗岩屑床的目的。
Gas drilling has been widely utilized and become one of the important means to explore the oil-gas field effectively in terms of its advantages on shortening the drilling period, lowering the damage to reservoir and solving the problem of lost circulation. However, a key issue in gas drilling is the extremely serious failure of drillstring that will directly affect the availability of the drilling operation, associated with the enormous economic losses. This problem is mainly caused by the vibration of drillstring and the erosion with high-speed cuttings. In fact, owing to the weak effects of the gas density and frictional resistance during gas drilling, the drillstring vibrates intensely at the longitude in the wellbore with the complex lateral vibration, the torsion vibration and the whirling, leading to the complicated dynamic stress on the drilling pipe. In addition, due to the comprehensive vibration forms, the location of centroid of drillstring in wellbore changes at random, which makes the annulus random changing space. Considering that the gas velocity becomes greater and the flow is very close to the turbulence, the gas possesses the complex turbulent quantities with changing space, which is more complex than the turbulent problem with fixed boundary. As a result of the erosion on drillstring with the cuttings carried by the high speed gas, the intensity of drillstring is reduced and the fatigue failure is intensified. In this thesis, the flow characteristics and the turbulent behaviors for the annular gas were studied, and the erosion of cuttings on the drilling pipe and the cuttings removal pipe with different shape were analyzed. Then the forming and evaluation of the vortex around the drilling pipe with the vortex generator were explored, and the investigation of its effect on the flow in horizontal hole section was taken.
     Firstly, based on the control equations of the computational fluid dynamics, the simplified motion equations of the annular gas flow were derived for gas drilling. The turbulent model involved the wall functions was proposed which is suitable to the annular gas flow during gas drilling, and the numerical method was addressed to solve the flow equations, with introducing the procedure of the numerical simulation.
     Secondly, the flow behaviors in the vertical and horizontal hole section, such as the variation of the gas velocity, were investigated through consideration of the drilling pipe in the center, with eccentric non-rotation or rotation, so as to explore the turbulent characteristics of annular gas, for example, the turbulent energy, wall friction factor and the wall pressure coefficient etc. Combined with the motion equations of the cuttings and the erosion model of the drilling pipe, the trajectory of the cutting and the erosion rate of the cutting to drilling pipe were both simulated, with the consequence of achieving its erosion laws. Meanwhile, the effects of the eccentricity, the penetration rate, the grain grade and the cuttings shapes on the erosion rate peak were discussed. Moreover, the flow behaviors, the cutting motion trajectory were analysed qualitatively, and the erosion in the cutting removal elbow with the bend of 90°and the tees were studied.
     Finally, for the sake of the cuttings bed probably appeared in the lateral segments, we first proposed the modification of the drilling pipe with the vortex generator, to control the flow field around the drilling pipe. The numerical simulation was made to analyze the formation and evaluation of the vortex around the vortex generator for the improved drilling pipe with the central and the eccentric rotation case, and the effect of the vortex generators on the behaviors of the annular gas flow was studied. The numerical results show that the vortex generator can not only increase the tangential velocity of the annular gas but also move the cuttings ,accumulated at the low side of the well hole, into the vortex near the center of the annulus, then the cuttings bed could be cleaned effectively.
引文
[1]曾义金,樊洪海译.空气钻井和气体钻井手册[M].北京:中国石化出版社, 2006.
    [2]张克勤,侯树刚.提高川东北及普光气田钻井速度配套技术[J].钻采工艺, 2008, 31(6): 20-23.
    [3]孟英峰,练章华,李永杰等.气体钻水平井的携岩研究及在白浅111H井的应用[J].天然气工业, 2005, 25(8): 50-53.
    [4]赵业荣,孟英峰,雷桐.气体钻井理论与实践[M].北京:石油工业出版社, 2007.
    [5]谈梅兰.三维曲井内钻柱的双重非线性静力有限元法(博士学位论文) [D].南京:南京航空航天大学, 2004.
    [6]李克向,解汝昌.钻井手册(甲方) [M].北京:石油工业出版社, 1990.
    [7]林家浩,倪荣富.空气钻井中井下着火爆炸的原因及预防[J].国外地质勘探技术, 1990, (6): 8-10.
    [8]黄进军,崔茂荣.雾化空气钻井井壁稳定性的实验研究[J].钻井液与完井液, 1995, 12(5): 6-10.
    [9]李永杰.空气雾化钻井井下燃爆分析(硕士学位论文) [D].重庆:重庆大学, 2002.
    [10]万里平,孟英峰,梁发书等.空气钻井中钻具腐蚀影响因素分析[J].天然气工业, 2004, 24(4): 41-44.
    [11]万里平,孟英峰,梁发书等.空气钻井中钻具腐蚀因素的灰关联分析[J].断块油气田, 2004, 11(1): 54-57.
    [12]项德贵,孙梦慈,陈志学.青西油田空气钻井井眼稳定问题的探讨[J].断块油气田, 2005, 12(6): 68-70.
    [13]冯靓,陈一健,张昆等.空气钻井井下燃爆监测系统[J].石油机械, 2007, 35(5): 35-37.
    [14]高如军,何世明,补成中等.气体钻井环空岩屑颗粒碰撞对井壁稳定性的影响[J].钻井液与完井液, 2007, 24(S1): 69-71.
    [15]郭建华,佘朝毅,李黔等.气体钻井井筒冲蚀作用定量分析及控制方法[J].石油学报, 2007, 28(6): 129-132.
    [16]廖忠会,张杰,李群生等.气体钻井断钻铤事故的原因分析及预防[J].钻采工艺, 2007, 30(6): 6-8.
    [17]罗整,徐忠祥.空气钻井井斜控制技术的探讨[J].钻采工艺, 2007, 30(2): 17-19.
    [18]张杰,蒋祖军,廖忠会等.定向井稳斜段气体钻井井斜机理应用研究[J].钻采工艺, 2007, 30(4): 16-19.
    [19]李荣,孟英峰,汪绪刚等.气体钻井中泥页岩地层遇水时的井壁稳定性研究[J].钻采工艺, 2008, 31(3): 5-8,15.
    [20]王文龙,赵勤,李子丰等.普光气田气体钻井钻具失效原因分析及预防措施[J].石油钻采工艺, 2008, 30(5): 38-43.
    [21]姚建林,狄勤丰,胡以宝等.空气钻井斜直井眼中钻柱的动力学特性及失效机理[J].中国石油大学学报(自然科学版), 2008, 32(3): 63-67.
    [22]袁鹏斌,吕拴录,孙丙向等.空气钻井过程中钻杆断裂原因分析[J].石油钻采工艺, 2008, 30(5): 34-37.
    [23]岳远瞩,聂荣国,黎彬.普光气田气体钻井钻具失效情况及其规律研究[J].钻采工艺, 2008, 31(4): 20-22.
    [24]张建国.气体钻井井壁稳定性问题研究[J].化学工程与装备, 2008, (4): 51-54.
    [25]张杰,徐安建,李翠楠等.泥页岩水化对气体钻井井壁稳定性影响规律研究[J].石油钻采工艺, 2008, 30(2): 46-49.
    [26]张进双,钱晓琳,于培志等.气体钻井后井筒预处理井壁稳定技术[J].石油钻采工艺, 2008, 30(5): 48-51.
    [27]张林,余代银,许期聪等.空气钻井井下燃爆事例分析[J].天然气工业, 2008, 28(5): 53-54.
    [28]祝效华,童华,刘广川.气体钻井钻具断裂机理分析[J].石油矿场机械, 2008, 37(1): 5-8.
    [29]邹灵战,邓金根,曾义金等.气体钻井钻前水层预测与井壁稳定性研究[J].石油钻探技术, 2008, 36(3): 46-49.
    [30]陈富全,罗玉祥,李家龙等.龙岗地区气体钻井结束后卡钻原因分析[J].钻井液与完井液, 2009, 26(6): 86-87.
    [31]邓虎,伍贤柱,余锐.气体钻井井斜的原因及防斜技术[J].天然气工业, 2009, 29(1): 58-60.
    [32]王敏生,唐波.井底应力场对气体钻井井斜的影响[J].岩土力学, 2009, 30(8): 2436-2441.
    [33]祝效华,蒋祖军,童华等.气体钻井钻具失效因素与机理分析[J].石油钻探技术, 2009, 37(2): 60-62.
    [34]邹海洋,狄勤丰,姚建林等.气体钻井钻柱失效机理分析[J].石油钻探技术, 2008, 36(3): 55-58.
    [35]钱爱军.探寻气体钻井钻具失效解决之道[N].中国石化报, 2007.
    [36]刘永刚,陈怀高,刘文红等.气体钻井过程中的钻具失效研究[J].石油矿场机械, 2008, 37(2): 49-52.
    [37]王云风.气体钻井钻柱动力学特性及钻柱失效机理研究(硕士论文) [D].北京:中国石油大学, 2009.
    [38]张利军,李维.气体钻井钻具失效原因分析及预防措施[J].石油和化工设备, 2009, 12(8): 49-50.
    [39]狄勤丰,朱卫平,姚建林等.空气钻井钻具组合动力学特征及井斜机理研究[J].石油学报, 2008, 29(6): 917-921.
    [40]韩永刚,刘德伦,李平等.四川地区气体钻井配套录井技术[J].天然气工业, 2007, 27(11): 31-33.
    [41]张克勤,侯树刚.普光气田气体钻井集成配套技术新进展[J].天然气工业, 2010, 30(5): 77-80.
    [42]万里平,孟英峰,蔚悯若等.气基流体欠平衡钻井腐蚀/冲蚀研究现状及进展[J].天然气工业, 2007, 27(6): 64-67.
    [43] Shale L. Development of air drilling motor holds promise for specialized directional drilling applications [R]. SPE 22564, 1991.
    [44] Surewaard J, Kool K M, Woodland D et al. Approach to underbalanced well operations in petroleum development oman [R]. SPE 35069, 1996.
    [45] Cannon G E, Watson R A. Review of air and gas drilling [J]. Journal of Petroleum Technology, 1956, 8(10): 15-19.
    [46] Cooper L W, Hook R A, Payne B R. Air drilling techniques [R]. SPE 6435, 1977.
    [47] Negrao A F, Lage A C, Cunha J C. An overview of air/gas/foam drilling in Brazil [J]. SPE Drilling & Completion, 1999, 14(2): 109-114.
    [48] Williams C L. Air and gas drilling manual(second edition ) [M]. New York: McGraw-Hill Companies, 2001.
    [49]许期聪,刘奇林,侯伟.四川油气田气体钻井技术[J].天然气工业, 2007, 27(3): 60-62.
    [50]赵业荣,丁世宣,袁孟嘉等.陕242井天然气钻井实践[J].石油钻采工艺, 2001, 23(2): 13-15.
    [51]刘德胜,赵曙光.空气钻井在TABNAK气田的合理应用[J].石油钻采工艺, 2003, (1): 18-20.
    [52]王立超,范光永,张秋菊.空气钻井技术在伊朗项目TBK油田的应用[J].西部探矿工程, 2004, 16(11): 83-84.
    [53]陈志学,孙梦慈,于文华等.空气钻井在窿9井的试验与效果[J].钻采工艺, 2005, 28(3): 31-33.
    [54]徐英.空气泡沫钻井技术在核桃1井的应用[J].天然气工业, 2004, 24(10): 62-64.
    [55]徐英,魏武.空气充气钻井技术在矿2井的应用[J].天然气工业, 2003, (z1): 70-72.
    [56]魏武,许期聪,邓虎等.气体钻井技术在七北101井的应用与研究[J].天然气工业, 2005, 25(9): 48-50.
    [57]罗昭素,郭永恒,郎应虎等.空气欠平衡钻井技术在徐深21井的应用[J].石油钻采工艺, 2006, 28(5): 16-18.
    [58]田鲁财,刘永贵,白晓捷等.空气钻井技术在徐深21井的应用[J].石油钻探技术, 2006, 34(4): 27-29.
    [59]陈济峰,燕修良,高航献.川东北地区气体钻井技术实践与认识[J].石油钻探技术, 2009, 37(4): 39-42.
    [60]崔树建,田鲁财,白晓捷.徐深271气体钻井实践与认识[J].西部探矿工程, 2009,21(3): 102-104.
    [61]余锐,许期聪,艾惊涛等.气体钻井技术在龙岗1井的试验与认识[J].钻采工艺, 2009, 32(6): 16-19.
    [62]孙鹏程,坤杜.气体钻井技术在毛坝8井的应用[J].钻采工艺, 2009, 32(6): 116-117.
    [63]王存新,孟英峰,邓虎等.气体钻井注气量计算方法研究进展[J].天然气工业, 2006, 26(12): 97-99.
    [64] Angel R R. Volume requirements for air or gas drilling [R]. SPE 873, 1957.
    [65] Ikoku C U, Azar J J, Williams C R. Practicle apractical approach to volume requirements for air and gas drilling [R]. SPE 9445, 1980.
    [66] Mitchell R F. Simulation of air and mist drilling for geothermal wells [J]. Journal of Petroleum Technology, 1983, 35(11): 2120-2126.
    [67] Puon P S, Ameri S. Simplified approach to air drilling operations [R]. SPE 13380, 1984.
    [68] Wolcott D S, Sharma M P. Analysis of air drilling circulating systems with application to air volume requirement estimation [R]. SPE 15950, 1986.
    [69] Sharma M P. A microcomputer model for cutting transport in air drilling [R]. SPE 16500, 1987.
    [70] Adewumi M A, Tian S. Hydrodynamic modeling of wellbore hydraulics in air drilling [R]. SPE 19333, 1989.
    [71] Adewumi M A, Tian S. Analysis of air drilling hydraulics [R]. SPE 21277, 1990.
    [72] Tian S, Adewumi M A. Development of hydrodynamic-model-based air-drilling design procedures [J]. SPE Drilling Engineering, 1992, 7(4): 241-246.
    [73] Adewumi M, A, Tian S. A new method of estimating mixture density in air drilling [R]. SPE 24960, 1992.
    [74] Guo B, Ghalambor A. Gas volume requirements for underbalanced drilling: deviated holes [M]. Tulsa: PennWell Corporation, 2002.
    [75]胡小房.干空气钻井中环空携岩理论研究[J].石油钻井工程, 1996, 3(2): 1-7.
    [76]崔之健.计算空气钻井参数的新方法[J].江汉石油学院学报, 1996, 18(4): 64-68.
    [77]郭文才,刘绘新.空气钻井计算方法及应用软件[J].钻采工艺, 2001, 24(1): 8-12
    [78]唐贵,孟英峰,王存新等.气体钻井过程中井内不稳定流动与现场试验研究[J].天然气工业, 2005, 25(2): 75-77.
    [79]唐贵,雷桐,舒秋贵等.气体钻井井筒与地层流动耦合分析[J].石油钻采工艺, 2005, 27(4): 15-17.
    [80]孟英峰,练章华,梁红等.气体钻水平井的携岩CFD数值模拟研究[J].天然气工业, 2005, 25(7): 50-52.
    [81]郭建华.气体钻井环空气固两相流动数值模拟研究(硕士学位论文) [D].成都:西南石油大学, 2006.
    [82]唐贵,程宏英,孟英峰.气体钻井过程中的瞬态流动分析[J].钻采工艺, 2006, 29(2): 5-6.
    [83]毕雪亮,陶丽杰,翟洪军等.空气钻井最小流量计算的修正模型[J].断块油气田, 2008, 15(2): 86-87.
    [84]王延民,孟英峰,李皋等.超深井气体钻井环空流动研究[J].钻采工艺, 2008, 31(5): 10-12.
    [85]王岩,韩辉,闫铁等.气体钻井水平井注气量模型修正[J].大庆石油学院学报, 2009, 33(3): 69-71.
    [86] Bitter J G A. A study of erosion phenomena part I [J]. Wear, 1963, 6(1): 5-21.
    [87] Neilson J H, Gilchrist A. Erosion by a stream of solid particles [J]. Wear, 1968, 11(2): 111-122.
    [88]董刚,张九渊.固体粒子冲蚀磨损研究进展[J].材料科学与工程学报, 2003, 21(2): 307-312.
    [89]李诗卓,董祥林.材料的冲蚀磨损与微动磨损[M].北京:机械工业出版社, 1987.
    [90]张晓东,贾国超,吴臣德.空气钻井钻具冲蚀磨损机理的分析[J].西南石油大学学报, 2009, 31(2): 139-142.
    [91] Finnie I. The mechanism of erosion of ductile metals [C]. The 3rd US National Congress of Applied Mechanics, New York, 1958.
    [92] Finnie I. Erosion of surfaces by solid particles [J]. Wear, 1960, 3(2): 87-103.
    [93]马颖,任峻,李元东等.冲蚀磨损研究的进展[J].兰州理工大学学报, 2005, 31(1): 21-25.
    [94] Tilly G P. A two stage mechanism of ductile erosion [J]. Wear, 1973, 23(1): 87-96.
    [95] Pearsall I S. Cavitation [M]. London: Mills and Boon, 1972.
    [96] Jahanmir S, Suh N P. Mechanics of subsurface void nucleation in delamination wear [J]. Wear, 1977, 44(1): 17-38.
    [97] Bellman J R, Levy A. Erosion mechanism in ductile metals [J]. Wear, 1981, 70(1): 1-27.
    [98] Levy A V. The role of plasticity in erosion [J]. Erosion Liquid Solid Impact, 1979, 5(39): 1-10.
    [99] Levy A V, Chik P. The effects of erodent composition and shape on the erosion of steel [J]. Wear, 1983, 89(2): 151-162.
    [100] Burnett A J, De Silva S R, Reed A R. Comparisons between "sand blast" and "centripetal effect accelerator" type erosion testers [J]. Wear, 1995, 186-187(Part 1): 168-178.
    [101] Smeltzer C E, Gulden M E, Compton W A. Mechanisms of metal removal by impacting dust particles [J]. Journal of Basic Engineering, 1970, 92(3): 639-654.
    [102] Tilly G. A two stage mechanism of ductile erosion [J]. Wear, 1973, 23(1): 87-96.
    [103] Laitone J. Aerodynamic effects in the erosion process [J]. Wear, 1979, 56(1): 239-246.
    [104] Oka Y, Okamura K, Yoshida T. Practical estimation of erosion damage caused by solid particle impact. Part 1: Effects of impact parameters on a predictive equation [J]. Wear, 2005, 259(1-6): 95-101.
    [105] Oka Y, Yoshida T. Practical estimation of erosion damage caused by solid particle impact. Part 2: Mechanical properties of materials directly associated with erosion damage [J]. Wear, 2005, 259(1-6): 102-109.
    [106] Sheldon G. Similarities and differences in erosion behaviour of materials [J]. Journal of Basic Engineering, 1970, 92(3): 619-626.
    [107] Finnie I, Wolak J, Kabil Y. Erosion of metals by solid particles [J]. Journal of Materials, 1967, 2(3): 682-700.
    [108] Levy A. The erosion of metal alloys and their scales [C]. Proceeding of the NACE, SanFrancisco, 1982.
    [109] Foley T, Levy A. The erosion of heat-treated steels [J]. Wear, 1983, 91(1): 45-64.
    [110] Salik J, Buckley D, Brainard W A. The effect of mechanical surface and heat treatments on the erosion resistance of 6061 aluminum alloy [J]. Wear, 1981, 65(3): 351-358.
    [111] Cousens A, Hutchings I. Influence of erodent particle shape on the erosion of mild steel [C]. The 6th International Conference on Erosion by Liquid and Solid Impact, England, 1983.
    [112] Liebhard M, Levy A. The effect of erodent particle characteristics on the erosion of metals [J]. Wear, 1991, 151(2): 381-390.
    [113] Finnie I. Some reflections on the past and future of erosion [J]. Wear, 1995, 186(1): 1-10.
    [114] Levy A V. Solid particle erosion and erosion-corrosion of materials [M]. Park: ASM International, 1995.
    [115] Shipway P H, Hutchings I M. A method for optimizing the particle flux in erosion testing with a gas-blast apparatus [J]. Wear, 1994, 174(1-2): 169-175.
    [116] Chen X. Application of computationl fluid dynamics(CFD) to single-phase and multiphase flow simulation and erosion prediction (Ph.D. Dissertation) [D]. Tulsa: The University of Tulsa, 2004.
    [117] Turenne S, Fiset M, Masounave J. The effect of sand concentration on the erosion of materials by a slurry jet [J]. Wear, 1989, 133(1): 95-106.
    [118] Andrews D R, Horsfield N. Particle collisions in the vicinity of an eroding surface [J]. Journal of Applied Physics, 1983, 16(4): 525-538.
    [119]万里平,孟英峰,梁发书等.欠平衡钻井中钻具的腐蚀与磨蚀[J].西部探矿工程, 2004, 4: 62-65.
    [120] Edwards J, McLaury B, Shirazi S. Modeling solid particle erosion in elbows and plugged tees [J]. Journal of Energy Resources Technology, 2001, 123(4): 277-284.
    [121] Edwards J K, McLaury B S, Shirazi S A. Evaluation of alternative pipe bend fittings in erosive service [C]. Proceedings of ASME Fluids Engineering Summer Meeting, Boston,2000.
    [122] Chen X, McLaury B S, Shirazi S A. Application and experimental validation of a computational fluid dynamics (CFD)-based erosion prediction model in elbows and plugged tees [J]. Computers & Fluids, 2004, 33(10): 1251-1272.
    [123] Zhang Y, Reuterfors E P, McLaury B S et al. Comparison of computed and measured particle velocities and erosion in water and air flows [J]. Wear, 2007, 263(1-6): 330-338.
    [124] Zhang Y, McLaury B S, Shirazi S A. Improvements of particle near-wall velocity and erosion predictions using a commercial CFD code [J]. Journal of Fluids Engineering, 2009, 131(13): 1-9.
    [125]董耀文,陈次昌,黄小兵.气体钻井冲蚀磨损试验中试验砂的配制研究[J].内蒙古石油化工, 2008, (20): 79-80.
    [126]黄小兵,陈次昌,董耀文.气体钻井的岩屑特征及粒度分布测试[J].天然气工业, 2008, 28(11): 83-84.
    [127]黄小兵,熊建新,陈次昌.气体钻井钻具冲蚀磨损试验装置[J].石油机械, 2008, 36(9): 1-3.
    [128]任玉新,陈海昕.计算流体力学基础[M].北京:清华大学出版社, 2006.
    [129] Kundu P K, Cohen I M. Fluid mechanics [M]. Elservier Academic Press, 2004.
    [130] Benzi R, Biferale L, Fisher R et al. Intermittency and universality in fully developed inviscid and weakly compressible turbulent flows [J]. Physical review letters, 2008, 100(23): 1-4(234503).
    [131] Benzi R, Biferale L, Fisher R et al. Inertial range eulerian and lagrangian statistics from numerical simulations of isotropic turbulence [J]. Journal of Fluid Mechanics, 2010, 653: 221-244.
    [132] Tabatabaei M, Ghalambor A, Guo B. The minimum required gas-injection rate for liquid removal in air/gas drilling [R]. SPE 116135, 2008.
    [133] Hongjun Z, Lin Y, Meng Y et al. Influence of relevant parameters on hole cleaning and pipe string erosion in air drilling [R]. SPE 126515, 2010.
    [134]梁在潮.工程湍流[M].武汉:华中理工大学出版社, 1999.
    [135]张兆顺.湍流[M].北京:国防工业出版社, 2002.
    [136]张兆顺,崔桂香,许春晓.湍流理论与模拟[M].北京:清华大学出版社, 2005.
    [137]黄真理,李玉梁,余常昭.紊动射流的分维测量[J].科学通报, 1994, 39(6): 567-570.
    [138]李后强,艾南山.风沙湍流的间隙性,稳定性分布及分形特征[J].中国沙漠, 1993, 13(1): 11-20.
    [139]张济忠.分形[M].北京:清华大学出版社, 1995.
    [140]黄真理.湍流的分形特征[J].力学进展, 2000, 30(4): 581-596.
    [141]林贞彬,鄂学全,李坤等.低Reynold数圆柱尾流中混沌运动研究[J].中国科学: A辑, 1992, 23(3): 277-282.
    [142]谢学纲.局部高剪切区中小尺度扰动的混沌行为[J].北京理工大学学报, 1999, 19(6): 673-677.
    [143]李昕,胡非.大气湍流的混沌吸引子特征[J].气候与环境研究, 2001, 6(1): 58-66.
    [144]郭术义,陈举华. Navier—Stokes方程中的混沌特性[J].青岛大学学报:自然科学版, 2003, 16(4): 85-87.
    [145]樊洪明,何钟怡,王小华.弯曲管段内流动的大涡模拟[J].水动力学研究与进展: A辑, 2001, 16(1): 78-83.
    [146]刘奕,郭印诚.大涡模拟及其在湍流燃烧中的应用[J].力学进展, 2001, 31(2): 215-216.
    [147]苏铭德,康钦军.亚临界雷诺数下圆柱绕流的大涡模拟[J].力学学报, 1999, 31(1): 100-105.
    [148]杨建明.流体机械中高雷诺数流动的大涡模拟[J].工程热物理学报, 1998, 19(2): 184-188.
    [149]杨建明,刘文俊,吴玉林.用大涡模拟方法计算尾水管内非定常周期性湍流[J].水利学报, 2001, 8(8): 79-84.
    [150]李新亮,马延文,傅德薰.可压槽道湍流的直接数值模拟及标度律分析[J].中国科学A辑, 2001, 31(2): 153-164.
    [151]傅德薰,张林波.可压混合层流动转捩到湍流的直接数值模拟[J].中国科学: A辑,2000, 30(2): 161-168.
    [152]李新亮,傅德薰.可压缩均匀各向同性湍流的直接数值模拟[J].中国科学: A辑, 2002, 32(8): 716-724.
    [153]姚军,樊建人.圆柱近尾迹湍流涡结构的直接数值模拟[J].工程热物理学报, 2002, 23(5): 561-564.
    [154] Chieng C C, Launder B E. On the calculation of turbulent heat transport downstream from an abrupt pipe expansion [J]. Numerical Heat Transfer, Part B: Fundamentals, 1980, 3(2): 189-207.
    [155] Wang A B. Str?mungen in rohren mit ringformigen hindernis(Ph.D. Dissertation) [D]. German: Friedrich-Alexander-university, 1991.
    [156] Shih T H, Liou W W, Shabbir A et al. A new k-[epsilon] eddy viscosity model for high reynolds number turbulent flows [J]. Computers & Fluids, 1995, 24(3): 227-238.
    [157] Fluent. Fluent 6.1 user’s guide [M]. Fluent Inc., 2003.
    [158]王福军.计算流体动力学分析—CFD软件原理与应用[M].北京:清华大学出版社, 2004.
    [159]雷雨冰,袁亚雄,赵坚行.壁面函数在复杂流场计算中的应用[J].弹道学报, 2003, 15(2): 1-5.
    [160]李念平,黄敏华.壁面函数对室内空气环境数值预测的影响研究[J].湖南大学学报:自然科学版, 1999, 26(2): 58-61.
    [161]徐海涛,桑芝富.蒸汽喷射式热泵变工况性能分析[J].热能动力工程, 2003, 18(4): 395-398.
    [162]许坤梅,刘小兵.半封闭圆管冲击射流湍流换热数值模拟[J].北京理工大学学报, 2003, 23(5): 540-544.
    [163]骆建军,高波,王英学等.高速列车穿越有竖井隧道流场的数值模拟[J].西南交通大学学报, 2004, 39(4): 442-446.
    [164] Kim S E, Choudhury D. A near-wall treatment using wall functions sensitized to pressure gradient [C]. Proceeding of the ASME/JSME Fluids Engineering and Laser Anemometry Conference and Exhibition, Hilton Head, 1995.
    [165] Launder B E, Spalding D B. The numerical computation of turbulent flows [J]. Computer methods in applied mechanics and engineering, 1974, 3(2): 269-289.
    [166]贾影,贾连光,姚志东.复杂体型大跨度结构表面风荷载的数值模拟[J].沈阳建筑大学学报:自然科学版, 2009, 25(3): 490-494.
    [167]胡建军,徐进良,曹海亮等.超微涡轮动叶栅叶顶间隙对流场影响的数值模拟[J].热能动力工程, 2010, 25(2): 134-140.
    [168]向安定,刘松龄.有射流冲击的短扰流柱排内流场的数值模拟[J].西北工业大学学报, 2003, 21(1): 91-94.
    [169]秦云.结构静力风荷载数值模拟研究(博士学位论文) [D].哈尔滨:哈尔滨工业大学, 2004.
    [170]李人宪.有限体积法基础[M].北京:国防工业出版社, 2005.
    [171]周凌九.水轮机转轮流场计算及性能测试(博士学位论文) [D].北京:中国农业大学, 1999.
    [172] Patankar S V, Spalding D B. A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows [J]. International Journal of Heat and Mass Transfer, 1972, 15(10): 1787-1806.
    [173] Jang D S, Jetli R, Acharya S. Comparison of the PISO, SIMPLER, and SIMPLEC algorithms for the treatment of the pressure–velocity coupling in steady flow problems [J]. Numerical Heat Transfer, Part B: Fundamentals, 1986, 10(3): 209-228.
    [174]吴俊峰,陈启明,朱晓农等.基于CFD的离心通风机结构优化方法与试验对比[J].风机技术, 2009, (5): 14-18.
    [175] Leclercq D J J, Jacob M C, Louisot A et al. Forward-backward facing step pair-Aerodynamic flow, wall pressure and acoustic characterisation [C]. AIAA/CEAS Aeroacoustics Conference and Exhibit, Netherland, 2001.
    [176] Moss W D, Baker S. Re-circulating flows associated with two-dimensional steps [J]. Aeronautical Quarterly, 1980, 31: 151-172.
    [177] Le H, Moin P, Kim J. Direct numerical simulation of turbulent flow over a backward-facing step [J]. Journal of Fluid Mechanics, 1997, 330(1): 349-374.
    [178] Lee I, Sung H J. Characteristics of wall pressure fluctuations in separated and reattaching flows over a backward-facing step: Part I. Time-mean statistics and cross-spectral analyses [J]. Experiments in fluids, 2001, 30(3): 262-272.
    [179] Chun S, Liu Y Z, Sung H J. Wall pressure fluctuations of a turbulent separated and reattaching flow affected by an unsteady wake [J]. Experiments in fluids, 2004, 37(4): 531-546.
    [180] Chun S, Lee I, Sung H J. Effect of spanwise-varying local forcing on turbulent separated flow over a backward-facing step [J]. Experiments in fluids, 1999, 26(5): 437-440.
    [181] Lee I, Sung H. Multiple-arrayed pressure measurement for investigation of the unsteady flow structure of a reattaching shear layer [J]. Journal of Fluid Mechanics, 2002, 463: 377-402.
    [182] Heenan A F, Morrison J F. Passive control of backstep flow [J]. Experimental Thermal and Fluid Science, 1998, 16(1): 122-132.
    [183] Stieglmeier M, Tropea C, Weiser N et al. Experimental investigation of the flow through axisymmetric expansions [J]. Journal of Fluids Engineering, 1989, 111(4): 464-471.
    [184] Morsi S A, Alexander A J. An investigation of particle trajectories in two-phase flow systems [J]. Journal of Fluid Mechanics, 1972, 55(2): 193-208.
    [185] Haider A, Levenspiel O. Drag coefficient and terminal velocity of spherical and nonspherical particles [J]. Powder Technology, 1989, 58(1): 63-70.
    [186] Wakeman T, Tabakoff W. Measured particle rebound characteristics useful for erosion prediction [J]. ASME, 1982: 82-GT-170.
    [187] Forder A, Thew M, Harrison D. A numerical investigation of solid particle erosion experienced within oilfield control valves [J]. Wear, 1998, 216(2): 184-193.
    [188] Grant G, Tabakofft W. Erosion prediction in turbomachinery resulting from environmental solid particles [J]. Journal of Aircraft, 1975, 12(5): 471-478.
    [189]李爱军.浅析空气(雾化)钻井井眼净化[J].石油钻井工程, 1994, 1(4): 24-28.
    [190]郭建华,李黔,王锦等.气体钻井岩屑运移机理研究[J].天然气工业, 2006, 26(6): 66-67.
    [191] Ballout Y, Mathis J A, Talia J E. Solid particle erosion mechanism in glass [J]. Wear, 1996, 196(1-2): 263-269.
    [192] Kliafas Y, Holt M. LDV measurements of a turbulent air-solid two-phase flow in a 90°bend [J]. Experiments in fluids, 1987, 5(2): 73-85.
    [193]孙雪岚.局部起旋器的流场特性研究(硕士学位论文) [D].太原:太原理工大学, 2003.
    [194]强浩明.局部起旋器出口断面流场特性及其能耗的试验研究(硕士学位论文) [D].太原:太原理工大学, 2006.
    [195]薛百文,杨世春,杨胜强.螺旋流的形成方式及各种起旋装置的对比分析[J].机械工程与自动化, 2005, 128(1): 98-100.
    [196]江帆,黄鹏. Fluent高级应用与实例分析[M].北京:清华大学出版社, 2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700