等离子喷涂耐磨涂层技术在大型薄壁零件上的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
陶瓷涂布刮刀是造纸工业中的关键零部件,也是易损耗件,需求量大,技术含量高。目前我国全部依赖进口,价格昂贵。本文针对陶瓷涂布刮刀制备技术中的两大难题:即大型薄壁零件上的耐磨陶瓷涂层制备工艺和刮刀涂层精密磨削工艺开展研究,初步取得的主要研究成果如下:
     首次在国内制备出纳米复合涂层陶瓷涂布刮刀。针对长薄壁零部件易变形难控制的难点,结合大型薄壁零件的结构特点及喷涂要求对工艺进行优化设计:采用二因子试验及方差分析方法研究了喷砂距离、空气压力及两者的交互作用对涂布刮刀喷砂质量的影响,优化了薄壁零件喷砂工艺规范;采用正交试验方法研究了喷涂电流、喷涂电压、喷涂距离和送粉速率这四个关键参数对陶瓷涂层的孔隙率及刮刀平面度的影响规律,优化了大型薄壁零件上耐磨陶瓷涂层的等离子喷涂工艺;设计出刮刀钢带喷涂特种专用夹具,解决了薄壁零件喷涂过程中温升过快,容易变形的技术难题。
     首次设计制造出刮刀涂层磨削专用工装夹具及磨削工艺方法,该工装夹具根据陶瓷涂布刮刀超长超薄难于精密加工的特点,利用小型精密磨床即可实现各个面的磨削,获得所需的几何形状和尺寸精度,并可以实现任意长度刮刀涂层的连续磨削。并探讨了涂层在磨削过程中的材料去除机理及磨削工艺参数的变化对涂层表面光洁度的影响。上述刮刀涂层在自行设计的专用磨削装备上精密磨削后,刮刀的直线度、平行度和表面粗糙度等关键性能指标均达到了行业标准所规定的精度要求,满足了在工业生产中应用的基本要求。
     成功实现了在大型长薄零部件上获得高性能纳米、微米陶瓷复合涂层的技术。选用优化后的等离子喷涂工艺制备纳米及微米AT13(Al2O3-13%TiO2)涂层试样,并采用SEM、EPMA、TEM、XRD等现代分析手段对比研究了涂层组织、结构及成分分布特征;采用试验方法测定了涂层中的残余应力及分布特征、力学性能及耐磨粒磨损性能。分析表明:①等离子喷涂纳米及微米AT13涂层的组织致密,均匀,孔隙率低,结合强度高,两种涂层均能够满足在涂布刮刀上的应用要求。②两种涂层的主要相均为α-Al2O3、Υ-Al2O3及TiO2。纳米AT13涂层中则保留了较多的TiO2相。而微米AT13涂层中元素扩散现象显著,含有较多的Al2TiO5相,在两种涂层的富Al2O3区域均发现了非晶与纳米晶共存的现象。纳米AT13涂层呈现出典型的双态结构和晶粒细化现象。③等离子喷涂纳米及微米AT13涂层均为残余压应力状态,纳米AT13涂层由于部分熔融区增多,孔隙率相对较大,同时,涂层中的纳米晶出现聚集长大现象,改善了涂层中的应力状态,其残余压应力值显著低于微米涂层。④两种涂层的耐磨粒磨损性能优异,微米AT13陶瓷涂层的主要磨损方式为涂层中的微颗粒在磨削应力的作用下沿晶界的剥落和由于涂层中微裂纹的扩展而造成的涂层表面材料的小片状剥落;纳米陶瓷涂层的主要失效方式为微颗粒在磨削应力的作用下的沿晶界剥落。由于纳米陶瓷涂层的晶粒细小,晶界体积大,磨损过程中裂纹扩展路径更长,需要更多的能量,所以,其耐磨性能优于微米陶瓷涂层。
     该研究对于加快我国造纸装备行业关键零部件-陶瓷刮刀的国产化进程,打破国际垄断,实现自主知识产权都具有重要的理论和现实意义。
As one of the key parts which are widely used in paper industry, ceramic coating blades are easy to be worn out and have large markets in our country. Now these kinds of high-tech products all rely on imports with expensive prices. Two major difficult problems in the preparation technology of ceramic coating blade were studied in this paper:One is the wear resistant ceramic coating preparation process on large thin-wall parts. The other is the precision grinding process of ceramic coating on blade. Main initial results are shown as follows:
     Nano ceramic composite coating blades were prepared successfully for the first time in domestic. The preparing process parameters were designed and optimized according to structural featuresBy means of two factors orthogonal test and the variance analysis, the influences of sandblasting distance, air pressure and their interaction on sandblasting quality of coating blade was studied and the sandblasting process factor for thin wall parts were optimized. The influence rule of spraying current, voltage, spraying distance and powder feed rate on porosity of the ceramic coating and flatness of the blade was studied and the plasma spraying parameters of wear resistant ceramic coating on large thin-wall parts was optimized by adopting orthogonal experimentation. Special fixture was designed for plasma spraying on blade steel belt. By the aiding of this apparatus, the difficulties for spraying on thin wall parts such as excessive temperature rise and easy yielding were overcome.
     According to ultra-long and ultra-thin structure features of ceramic coating blade which is difficult for precision finishing, special fixtureand the grinding process were designed firstly in home. By the aid of this fixture, each side of the blade can be grinded with a small precision grinding machine to get the necessary geometry and dimensional precision without the restriction of the coatmg bade length. Material removal mechanism and the effect of grinding parameters on coating surface finish were discussed. The key performance indexes of the coating blade such as straightness, parallelism and surface roughness all reach to the accuracy requirementThe preparation technology of high-performance nano and micron ceramic composite coatings on large, long and thin parts was realized successfully in this subject. Micron and nano-AT13 ceramic coating samples were prepared with optimized plasma spraying parameters. Microstructure, phases and components distribution of the two coatings were analyzed with the aid of modern analytical means such as scanning electron microscope, energy spectrum analysis, transmission electron microscope and X-ray diffraction. Residual stress and its distribution in the coatings, mechanical properties and abrasive wear resistance of the coatings were studied by experimental methods. The results showed:①Both of the nano and micron coatings prepared by plasma spraying process have dense and even microstructure, low porosity and higher bond strength. The two coatings all meet the application requirements of coating blade.②Main phases of the two coatings areα-Al2O3,Υ-Al2O3 and TiO2. More TiO2 phase was detected in nano AT13 coating. However, more Al2O3 phase was found in micron AT13 coating, mainly because the ceramic powders melt more fully and elements diffusion is more remarkable than that in nano AT13 coating. In rich Al2O3 region of the two coatings, amorphous and nanocrystalline structures were found. Nano AT 13 coating presents typical duplex microstructure and grain refinement phenomenon.③Both nano and micron AT13 coatings prepared by plasma spraying process are in residual compressive stress state. Because of the higher porosity and growing up phenomenon of nanocrystalline, the residual compressive stress in nano ceramic coating is released and lowers apparently than that of micron AT13 ceramic coating.④Both of the two coating have excellent abrasive wear resistant properties. Main failure pattern of micro AT13 coating is the tiny grains spalling along crystal boundary and the flake layer fragmenting caused by micro cracks expansion at the action of grinding stress. Main failure pattern of nano AT13 coating is the tiny grains spalling along crystal boundary. Because the grain size of nano AT13 coating is tinier and the grain boundary area is larger, more energy is needed for micro cracks expansion. So the abrasive wear resistance of nano AT 13 coating is superior to that of micron coating,
     has an important theoretical and practical significance onnationalization of the key parts in paper industry-ceramic coating blade, breaking the international monopoly in this field and realizing the independent intellectual property rights.
引文
1.周军峰.刮刀涂布理论[J].西南造纸,2005,34(3):14-15.
    2. Parvez Alam, Martti Toivakka. Deflection and plasticity of soft-tip bevelled blades in paper coating operations[J]. Materials & Design,2009,30(3):871-877.
    3.沙凯栋.880mm刮刀涂布机的试用与改进[J].中华纸业,1998,(3):63.
    4. F. Davard, D. Dupuis. Flow visualisation experiments in a blade coating process[J]. Journal of Non-Newtonian Fluid Mechanics,2000,93(1):17-28.
    5.高军强.陶瓷刮刀在涂布机上的试用[J].中华造纸,1999,(7):63.
    6.孙利军.陶瓷涂布刮刀在造纸工业中的应用[J].上海造纸,2002,33(2):8-9.
    7.孙利军,魏玉君等.刮刀涂布常见纸病与陶瓷刮刀的选择[J].中国造纸,2003,22(8):63-64.
    8.郭亚龙.涂布刮刀使用性能的分析[J].中华纸业,2005,26(4):44-45.
    9.杨才根.国产涂布刮刀试验及应用[J].西南造纸,2001,32(4):19-22.
    10.王昶.陶瓷刮刀在涂布机上的应用效果[J].纸和造纸,2001,3(2):19.
    11. Ilias Iliopoulos, L.E. Scriven. Simultaneous high-and low-angle particle impact during wear of metering blades used in paper coating[J]. Wear,2005,258(11-12):1663-1681.
    12.许信苗.涂布白纸板刮刀涂布的生产实践[J].造纸科学与技术,2003,22(5):62-64.
    13. Parvez Alam, Martti Toivakka. Micro-buckling of paper during blade metering[J]. Computers & Chemical Engineering,2008,32(3):600-607.
    14.张栋基,李甘霖.涂布设备的发展趋势[J].纸和造纸,2002,11(6):29-30.
    15. Carlos M. Corvalan, Fernando A. Saita. Blade coating on a compressible substrate[J]. Chemical Engineering Science,1995,50(11):1769-1783.
    16.材料耐磨抗蚀及其表面技术丛书委员会主编.材料的磨料磨损[M].北京:机械工业出版社,1990:31-55.
    17.熊杰.涂布刮刀刮痕的产生以解决措施[J].造纸科学与技术,2004,23(6):80-81.
    18.黄小华,郑炽嵩,胡健等.刮刀涂布刮痕及其消除办法[J].纸和造纸,2004,(1):26-27.
    19.李业超.等离子喷涂制备陶瓷涂布刮刀的研究[D].山东青岛:山东科技大学,2009.
    20.于惠博.新型陶瓷涂布刮刀的研制[D].山东青岛:山东科技大学,2008.
    21.李树杰,嵇耀,扬林梅.刮刀磨损原因及对策[J].纸和造纸,2001,(2):20.
    22.岑珠元.刮刀材质及选用[J].纸和造纸,1998,(5):22-23.
    23.张善禹.刮刀片的材质和技术要求[J].北方造纸,1994,(1):35-36.
    24.冈特·贝尔曼,希尔瓦诺·弗雷蒂.涂布刮刀及其制备方法[P].中国专利:03816998.3,2005-01-17.
    25.希尔瓦诺·弗雷蒂,让·弗朗索瓦·莱西尔.改进的涂布刮刀[P].中国专利:200680024131.7,2008-02-04.
    26. Jaime Perez, Silvano Freti. Doctor blade [P]. US patent:6,431,066 B1, Aug.13,2002.
    27.杨建桥,赵红霞.反应热喷涂Al2O3陶瓷涂层在造纸设备上的应用[J].江南大学学报(自然科学版),2005,4(3):292-294.
    28.魏振毅,叶辉,赵小健.等离子喷涂Al2O3-13wt%TiO2纳米涂层的组织性能[J].材料热处理学报,2009,30(2):146-151.
    29. P.K. Aw, B.H. Tan. Study of microstructure, phase and microhardness distribution of HVOF sprayed multi-modal structured and conventional WC-17Co coatings[J]. Journal of Materials Processing Technology,2006,174(1-3):305-311.
    30. Lech Pawlowski. Finely grained nanometric and submicrometric coatings by thermal spraying:A review[J]. Surface and Coatings Technology,2008,202(18):4318-4328.
    31.张平.热喷涂材料[M].北京:国防工业出版社,2006:39-58.
    32.牛振兴,解念锁.先进热喷涂材料的选择及应用研究[J].2008,(16):435.
    33.高荣发.热喷涂[M].北京:化学工业出版社,1992:57-68.
    34.徐滨士,张伟,梁秀兵.热喷涂材料的应用与发展[J].新材料产业,2002,(7):54-56.
    35.栗卓新,王江萍,蒋建敏.纳米涂层的几种制备方法[J].机械工程材料,2004,28(1):29-32.
    36. O. Tingaud, A. Bacciochini, G. Montavon, etc. Suspension DC plasma spraying of thick finely-structured ceramic coatings:Process manufacturing mechanisms[J]. Surface and Coatings Technology,2009,203(15):2157-2161.
    37.刘胜林,郑雪萍,耿刚强.热喷涂纳米涂层与基体结合强度的研究[J].硬质合金2009,26(4):228-231.
    38.吴子健,张虎寅,吕艳红.热喷涂纳米涂层制备方法及材料的研究现状和展望[J].材料保护,2005,38(10):44-46.
    39.王海军,韩志海,王建等.超音速等离子喷涂WC-Co涂层性能研究[J].装甲兵工程 学院学报,2006,20(1):85-89.
    40.王大巍,陈华辉,赵会友WC-Co涂层的组织结构及滑动磨损性能[J].铸造,2000,49(S1):627-629.
    41. C. Godoy, M. M. Lima, M. M. R. Castro, etc. Structural changes in high-velocity oxy-fuel thermally sprayed WC-Co coatings for improved corrosion resistance [J]. Surface and Coatings Technology,2004,188-189:1-6.
    42.王文权.等离子喷涂纳米陶瓷热障涂层组织与性能研究[D].吉林长春:吉林大学,2005.
    43.税毅,张鹏程,肖云峰等.等离子喷涂纳米ZrO2涂层均匀性及熔炼试验研究[J].热加工工艺,2010,39(14):113-115.
    44.陈辉,苟国庆,刘艳等.等离子喷涂WC-17Co纳米涂层形成及强韧化机理[J].西南交通大学学报,2008,43(5):633-637.
    45.H.S英格赫姆,A.P谢伯德.等离子火焰喷渡工艺[M].北京:国防工业出版社,1978:89-93.
    46.B.B.库吉诺夫.等离子涂层[M].北京:科学出版社,1981:2-58.
    47.华绍春,王汉功,汪刘应等.热喷涂技术的研究进展[J].金属热处理,2008,33(5):82-85.
    48.周克崧,刘敏,邓春明等.新型热喷涂及其复合技术的进展[J].中国材料进展,2009,28(9-10):1-7.
    49.杨月英,王建江,宋岩.反应火焰喷涂梯度陶瓷涂层的组织与性能[J].铸造技术,2009,30(2):281-284.
    50. Gurusamy Shanmugavelayutham, Shoji Yano, Akira Kobayashi. Microstructural characterization and properties of ZrO2/Al2O3 thermal barrier coatings by gas tunnel-type plasma spraying[J]. Vacuum,2006,80(11-12):1336-1340.
    51.梁申勇,雷玉成,陈刚.火焰喷涂工艺对Al2O3陶瓷涂层的影响[J].热加工工艺,2006,35(15):59-60.
    52. Jian-Jun Fang, Zhu-Xin Li, Yao-Wu Shi. Microstructure and properties of TiB2-containing coatings prepared by arc spraying[J]. Applied Surface Science,2008, 254(13):3849-3858.
    53.胡军志,陈学荣,马世宁.高速电弧喷涂复合材料涂层工艺优化与性能研究[J].表面技术,2003,32(4):18-20.
    54.李德元,刘勇,董晓强.电弧喷涂涂层温度场及应力应变分析[J].沈阳工业大学学 报,2007,29(3):258-262.
    55.李业超,孙宏飞,于惠博等.等离子喷涂制备钢质涂布刮刀陶瓷涂层[J].材料保护2009,42(9):48-51.
    56.魏振毅,李强,叶辉.等离子喷涂纳米结构Al2O3+13%TiO2涂层的热震失效机理[J].中国表而工程,2009,22(3):38-42.
    57.祝迎春,丁传贤.等离子喷涂氧化钛纳米涂层及其离子注入特性研究[J].硅酸盐学报,1999,27(5):520-525.
    58.胡传忻.热喷涂原理及应用[M].北京:中国科学技术出版社,1994:74-80.
    59.陶翀,王志勤,李云刚.冷轧辊超音速喷涂WC-12Co涂层的组织与性能研究[J].热加工工艺,2010,39(16):117-122.
    60. V. V. Sobolev, J. M. Guilemany, J. A. Calero. Heat transfer during the formation of an HVOF sprayed WC-Co coating on a copper substrate[J]. Journal of Materials Processing Technology,1999,96(1-3):1-8.
    61. Qiaoqin Yang, Tetsuya Senda, Akira Ohmori. Effect of carbide grain size on microstructure and sliding wear behavior of HVOF-sprayed WC-12% Co coatings[J]. Wear,2003,254(1-2):23-34.
    62.徐滨士.表面工程的理论与技术[M].北京:国防工业出版社,1999:278-289.
    63. Hyung-Jun Kim, Chang-Hee Lee, Soon-Young Hwang. Superhard nano WC-12%Co coating by cold spray deposition[J]. Materials Science and Engineering A,2005, 391(1-2):243-248.
    64.卜恒勇,卢晨.冷喷涂技术的研究现状及进展[J].材料工程,2001,(1):94-97.
    65.李耿,周勇,薛飒.冷喷涂技术[J].热处理技术与装备,2009,30(4):11-14.
    66.郑涛,陈辉,代双贺.冷喷涂技术及涂层处理工艺的研究进展[J].金属材料与冶金工程,2009,37(6):56-60.
    67.许艳华,李强.悬浮液等离子喷涂与常规等离子喷涂纳米结构陶瓷涂层的研究[J].中国表面工程,2010,23(1):51-55.
    68. Tingaud O, Bacciochini A, Montavon G, et al. Suspension DC plasma spraying of thick finely-structured ceramic coatings:process manufacturing mechanisms[J]. Surface and Coatings Technology,2009,203(15):2157-2161.
    69. Oliker V E, Terentev A E, Shvedova L K, et al. Use of aqueous suspensions in plasma spraying of alumina coatings[J]. Powder Metallurgy and Metal Ceramics,2009,48(1-2): 115-120.
    70. Hans Ivar Wallsten. Doctor blade[P]. UK Patent:GB2,130,924A, Jun.13,1984.
    71. Hans Ivar Wallsten. Coating moving substrates[P]. UK Patent:GB 2,164,062A, Aug.14, 1985.
    72.杨建桥,赵红霞.反应热喷涂A1203用于涂布刮刀的研究[J].纸和造纸,2005,3(2):49-50.
    73.班朝磊,杨建桥.反应热喷涂法制备陶瓷刮刀[J].中华纸业,2004,(8):45-46.
    74.张建新,阎殿然,何继宁等.喷涂参数对Al2O3-13wt%TiO2纳米涂层组织和性能的影响[J].材料热处理学报,29(2):135-139.
    75.华绍春,王汉功,汪刘应等.微弧等离子喷涂AT13纳米涂层的工艺优化[J].无机材料学报,2008,22(3):560-564.
    76.陈学定,韩文政.表面涂层技术[M].北京:机械工业出版社,1994:211.
    77. Huang Chen, Soo Wohn Lee, Hao Du, etc. Influence of feedstock and spraying parameters on the depositing efficiency and microhardness of plasma-sprayed zirconia coatings[J]. Materials Letters,2004,58(7-8):1241-1245.
    78. Jia Zhang, Huang Chen, Tohru Sekino, etc. Residual stress determination in plasma sprayed Al2O3 coatings [J]. Journal of Ceramic Processing Research,2008,9(3): 317-320.
    79.B.A.巴尔维诺克等离子体涂层性能及其应力状态的控制[M].北京:科学出版社,2000:58-68.
    80.李辉,栗卓新,魏琪.热喷涂中表面预处理的技术现状与发展[J].热喷涂技术,2009,1(2):15-18.
    81.马跃进,郝建军,马爱军等.铸铁零件电弧喷涂前的喷砂预处理工艺研究[J].农业工程学报,2002,18(4):78-81.
    82.王金鑫.浅谈表面预处理对钢结构防护涂层附着力的影响[J].中国涂料,2008,23(5):66-68.
    83. E. Celik, A.S. Demirkiran, E. Avcl. Effect of grit blasting of substrate on the corrosion behaviour of plasma-sprayed Al2O3 coatings[J]. Surface and Coatings Technology,1999, 116-119:1061-1064.
    84. S. Amada, T. Hirose, T. Senda. Quantitative evaluation of residual grits under angled blasting[J]. Surface and Coatings Technology,1999,111(1):1-9.
    85. Brian J. Griffiths, David T. Gawne, Guishu Dong. The erosion of steel surfaces by grit-blasting as a preparation for plasma spraying[J]. Wear,1996,194(1-2):95-102.
    86. W.A. Gonzalez-Hermosilla, D. Chicot, J. Lesage, etc. Effect of substrate roughness on the fatigue behavior of a SAE 1045 steel coated with a WC-10Co-4Cr cermet, deposited by HVOF thermal spray[J]. Materials Science and Engineering:A,2010,527(24-25): 6551-6561.
    87.张定铨.残余应力测定的基本知识-第二讲X射线应力测定的基本原理[J].理化检验-物理分册,2007,43(5):263-265.
    88.吕克茂.残余应力测定的基本知识-第四讲X射线应力测定方法(一)[J].理化检验-物理分册,2007,43(7):349-354.
    89.姬振豫.正交设计的方法与理论[M].香港:世界科技出版社,2001:117-130.
    90.杨晖,王良.等离子喷涂工艺参数对粒子速度和温度的影响[J].热加工工艺,2007,36(11):44-47.
    91. D. Zhang, P.H. Shipway, D.G. McCartney工艺参数变化对冷喷涂铝沉积性能的影响[J].中国表面工程,2008,21(4):1-7.
    92.马汉武,刘曦.喷涂参数对粉末沉积率影响的试验分析[J].江苏理工大学学报,1998,19(3):62-65.
    93.牛丽萍,张廷安,赫冀成.等离子喷涂薄壁工件涂层中温度场解析[J].东北大学学报(自然科学版),2010,31(4):519-522.
    94.陈雄伟,尹登峰,刘敏.大气等离子喷涂工艺参数对Cr2O3涂层磨损性能的影响[J].机械工程材料,2008,32(7):9-12.
    95. Leon L. Shaw, Daniel Goberman, Ruiming Ren. The dependency of microstructure and properties of nanostructured coatings on plasma spray conditions[J]. Surface and Coatings Technology,2000,130:1-8.
    96.栗卓新,方建筠,魏琪.国内外热喷涂涂层形成机理的研究进展[J].中国机械工程,2006,17(11):1198-1201.
    97. Tomas GRINYS, Sigitas TAMULEVICIUS, Marius ZADVYDAS. Control of the Substrate Temperature during Plasma Spray Deposition[J]. MATERIALS SCIENCE, 2004,10(3):221-224.
    98. C. M. Weyant, K. T. Faber. Residual Stress and Microstructural Evolution in Tantalum Oxide Coatings on Silicon Nitride[J]. Journal of the American Ceramic Society,2005, 88(8):2169-2176.
    99.李京龙,李长久.等离子喷涂熔滴的瞬时碰撞压力研究[J].西安交通大学学报,1999,33(12):33-36.
    100.王赫莹,李德元,吴卫枫.等离子喷涂送粉参量对粉末粒子运动行为的影响分析[J].表面技术,2005,34(5):40-42.
    101.罗志平,邵刚勤,潘牧等.等离子喷涂送粉剖析及粉末均化处理[J].表面技术,1997,26(5):24-26.
    102.高允彦.正交及回归试验设计方法[M].北京:冶金工业出版社,1988:17-47.
    103.李焕芳.用Excel求解平面度误差值[J].中国高新技术企业,2010,(18):16-18.
    104.罗瑞强,章桥新.热喷熔滴在表面沉积凝固后的残余应力分析[J].机械强度,2009,31(5):847-850.
    105.G. Moskal. The porosity assessment of thermal barrier coatings obtained by APS method[J]. Journal of Achievements in Materials and Manufacturing Engineering,2007, 20(1-2):384-486.
    106.周庆生,周立.对提高等离子喷枪的热焓和热效率因素的分析[J].机械科学与技术(江苏),1989,(5):36-39.
    107.张显程,巩建鸣,涂善东.等离子喷涂沉积过程与残余应力分析[J].压力容器,2003,20(1):33-36.
    108.Pavel Ctibor, Milan Hrabovsky. Plasma sprayed TiO2:The influence of power of an electric supply on particle parameters in the flight and character of sprayed coating[J]. Journal of the European Ceramic Society,2010,30(15):3131-3136.
    109.李延平,赵万华,卢秉恒.热喷涂涂层和基体中残余应力预报与控制研究[J].工程力学,2005,22(5):236-240.
    110.罗瑞强.热喷涂涂层中应力研究与分析[D].湖北武汉:武汉理工大学,2008.
    111.王戌.纳米掺杂Al2O3+13wt%TiO2等离子喷涂陶瓷涂层及应用研究[D].四川成都:西南石油学院,2003.
    112.李春福,王斌,张颖.纳米掺杂Al2O3基等离子喷涂涂层残余应力分析[J].表面技术,2004,33(1):11-14.
    113.杨焜,高玲,福本昌宏.粒子扁平现象研究现状及发展[J].表面技术,2008,37(2):67-69.
    114.Ozkan Sarikaya. Effect of some parameters on microstructure and hardness of alumina coatings prepared by the air plasma spraying process[J]. Surface & Coatings Technology, 2005,190:388-393.
    115.D. Goberman, Y.H. Sohn, L. Shaw, etc. Microstructure development of Al2O3-13wt%TiO2 plasma sprayed coatings derived from nanocrystalline powders[J]. Acta Materialia,2002,50(5):1141-1152.
    116.Zhijian Yin, Shunyan Tao, Xiaming Zhou. Particle in-flight behavior and its influence on the microstructure and mechanical properties of plasma-sprayed Al2O3 coatings[J]. Journal of the European Ceramic Society,2008,28(6):1143-1148.
    117.A. Ibrahim, Z. Abdel Hamid, A. Abdel Aal. Investigation of nanostructured and conventional alumina-titania coatings prepared by air plasma spray process[J]. Materials Science and Engineering A,2010,527(3):663-668.
    118.D. Zois, A. Lekatoub, M. Vardavoulias. Nanostructured alumina coatings manufactured by air plasma spraying:Correlation of properties with the raw powder microstructure[J]. Journal of Alloys and Compounds,2010,495(2):611-616.
    119.张玉叶,李强,陈进武.等离子喷涂纳米结构AT13基涂层硬度的双态分布[J].山东陶瓷,2008,31(1):11-13.
    120.Y. Zeng, S.W. Lee, C.X. Ding. Plasma spray coatings in different nanosize alumina[J]. Materials Letters,2002,57(2):495-501.
    121.王勇,樊自拴,王国刚.Fe基非晶纳米晶喷涂粉末的制备及性能[J].中国粉体技术,2008,14(2):1-4.
    122.赵新彬,吴嘉伟,倪晓俊.等离子喷涂FeCrMoSnPBSiC非晶合金涂层的结构和性能[J].钢铁研究学报,2009,21(4):52-54.
    123.姜超平.等离子喷涂对涂层非晶含量的影响[J].热加工工艺,2009,38(2):87-89.
    124.樊自拴,孙冬柏,俞宏英.等离子喷涂制备铁基非晶-纳米复合涂层[J].北京科技大学学报,2005,27(5):582-585.
    125.M. H. Staia, T. Valente, C. Bartuli, etc. Part Ⅱ:tribological performance of Cr3C2-25% NiCr reactive plasma sprayed coatings deposited at different pressures[J], Surface and Coatings Technology,2001,146-147:563-570.
    126.M. H. Staia, T. Valente, C. Bartuli, etc. Part Ⅰ:tribological performance of Cr3C2-25% NiCr reactive plasma sprayed coatings deposited at different pressures[J]. Surface and Coatings Technology,2001,146-147:533-562.
    127.Y.Wang,W. Tian, Y. Yang. Investigation of stress field and failure mode of plasma sprayed Al2O3-13%TiO2 coatings under thermal shock[J]. Materials Science and Engineering A,2009,516(1-2):103-110.
    128.Chang-Jiu Li, Wen-Ya Lia, Yu-Yue Wang. A theoretical model for prediction of deposition efficiency in cold spraying[J]. Thin Solid Films,2005,489 (1/2) 79-85.
    129.段忠清,张宝霞,王泽华.等离子喷涂NiCrAl涂层残余应力模拟分析[J].装备制造 技术,2009,(5):18-21.
    130.段忠清,张宝霞,王泽华.等离子喷涂NiCrAl涂层性能与厚度关系研究[J].材料热处理技术,2009,38(8):104-105.
    131.马维,潘文霞,张文宏.热喷涂涂层中残余应力分析和检测研究进展[J].力学进展,2002,32(1):41-53.
    132.王丹,徐滨士,董世运.涂层残余应力实用检测技术的研究进展[J].金属热处理,2006,31(5):48-52.
    133.于利根,黄伯云.择优取向对薄膜X射线应力测试的影响[J].粉末冶金材料科学与工程,1998,3(1):9-12.
    134.于惠博,孙宏飞,武彬.降低热喷涂涂层孔隙率的方法[J].工具技术,2007,41(2):74-77.
    135.陈琳.降低热喷涂涂层孔隙率的工艺技术[J].上海金属,2004,26(4):41-43.
    136.Pavel Ctibor, Petr Bohac. Structure and mechanical properties of plasma sprayed coatings of titania and alumina[J]. Journal of the European Ceramic Society,2006, 26(16):3509-3514.
    137.Wei Tian, You Wang, Yong Yang. Toughening and strengthening mechanism of plasma sprayed nanostructured Al2O3-13wt.%TiO2 coatings[J]. Surface & Coatings Technology, 2009,204(5):642-649.
    138.马章林,刘泽吴.TiO2含量对Al2O3陶瓷涂层性能的影响[J].材料开发与应用,1997,12(6):43-45.
    139.Senol Yilmaz. An evaluation of plasma-sprayed coatings based on Al2O3 and Al2O3-13wt%TiO2 with bond coat on pure titanium substrate[J]. Ceramics International, 2009,35(5):2017-2022.
    140.S-enol Yilmaz, Mediha Ipek. The effect of bond coat on mechanical properties of plasma-sprayed Al2O3 and Al2O3-13wt%TiO2 coatings on AISI 316L stainless steel[J]. Vacuum,2005,77(3):315-321.
    141.李剑锋,黄静琪,季珩.等离子喷涂Cr2O3涂层显微硬度的工艺优化[J].硅酸盐学报,2001,29(1):49-53.
    142.赵文明,王俊,翟长生等.纳米复合涂层ZrO2/0.05w(Al2O3)力学性能的Weibull分布特性[J].中国表面工程,2005,18(4):13-17.
    143.朱晖朝,邓春明,周克崧.不同氧化铝粉末等离子喷涂氧化铝涂层的性能[J].材料研究与应用,2009,3(3):153-157.
    144.Yang Gao, Xiaolei Xu, Zhijun. High hardness alumina coatings prepared by low power plasma spraying[J]. Surface and Coatings Technology,2002,154(2-3):189-193.
    145.K. Ramachandran, V. Selvarajan, P.V. Ananthapadmanabhan. Microstructure, adhesion, microhardness, abrasive wear resistance and electrical resistivity of the plasma sprayed alumina and alumina-titania coatings[J]. Thin Solid Films,1998,315(1-2):144-152.
    146.D. Zois, A. Lekatou, M. Vardavoulias, etc. A Comparative Microstructural Investigation of Nanostructured and Conventional Al2O3 Coatings Deposited by Plasma Spraying[J]. Journal of Thermal Spray Technology,2008,17(5-6):887-893.
    147.W. Tian, Y. Wang, Y. Yang. Three body abrasive wear characteristics of plasma sprayed conventional and nanostructured Al2O3-13%TiO2 coatings[J], Tribology International, 2010,43(5-6):876-881.
    148.You Wang, Stephen Jiang, Meidong Wang. Abrasive wear characteristics of plasma sprayed nanostructured aluminartitania coatings[J]. Wear,2000,237(2):176-185
    149.郭绍义,毛志远,郦剑.AT30金属陶瓷的相变增韧及其对磨粒磨损性能研究[J].浙江大学学报(自然科学版),1995,29(4):448-457.
    150.Sofiane Guessasma, Mokhtar Bounazef, Philippe Nardin. Wear behavior of alumina-titania coatings:analysis of process and parameters[J]. Ceramics International, 2006,32(1):13-19.
    151.I.M. Kusoglu, E. Celik, H. Cetinel. Wear behavior of flame-sprayed Al2O3-TiO2 coatings on plain carbon steel substrates[J], Surface & Coatings Technology,2005,200(1-4): 1173-1177.
    152.Helene Ageorges, Pavel Ctibor. Comparison of the structure and wear resistance of Al2O3-13wt%TiO2 coatings made by GSP and WSP plasma process with two different powders[J]. Surface & Coatings Technology,2008,202(18):4362-4368.
    153.Eun Pil Song, Jeehoon Ahn, Sunghak Lee, etc. Microstructure and wear resistance of nanostructured Al2O3-8wt%TiO2 coatings plasma-sprayed with nanopowders[J]. Surface & Coatings Technology,2006,201(3-4):1309-1315.
    154.W. Tian, Y.Wang, Y. Yang. Fretting wear behavior of conventional and nanostructured Al2O3-13wt%TiO2 coatings fabricated by plasma spray[J]. Wear,2008,265(11-12): 1700-1707.
    155.Heli Koivuluoto, Petri Vuoristo. Effect of Ceramic Particles on Properties of Cold-Sprayed Ni-20Cr+Al2O3 Coatings[J]. Journal of Thermal Spray Technology,2009, 18(4):555-562.
    156.Eun Pil Song, Jeehoon Ahn, Sunghak Lee. Effects of critical plasma spray parameter and spray distance on wear resistance of Al2O3-8 wt%TiO2 coatings plasma-sprayed with nanopowders[J]. Surface & Coatings Technology,2008,202(15):3625-3632.
    157.V. Fervel, B. Normand, H. Liao. Friction and wear mechanisms of thermally sprayed ceramic and cermet coatings[J]. Surface and Coatings Technology,1999,111(2-3): 255-262.
    158.Xianbing Liu, Bi Zhang, Zhaohui Deng. Grinding of nanostructured ceramic coatings: surface observations and material removal mechanisms[J]. International Journal of Machine Tools & Manufacture,2002,42(15):1665-1676.
    159.E. Brinksmeier, Y. Mutlugiines, F. Klocke. Ultra-precision grinding[J]. CIRP Annals-Manufacturing Technology,2010,59(2):652-671.
    160.邓朝晖,张璧,孙宗禹.纳米结构Al2O3/13TiO2涂层精密磨削的材料去除机理的研究[J].中国机械工程,2005,16(9):835-839.
    161.刘伟香,周忠于.纳米结构陶瓷涂层的磨削机理[J].机械制造,2007,4(1):42-44.
    162.MENG Jian, XIE Wan-gang, ZHANG Bi. An Experimental Investigation on Forces and Surface Finish in Cylindrical Grinding of Nanostructured Ceram ic Coatings[J]纳米技术与精密工程,2004,2(4):266-273.
    163.陈宏杰.公差与测量技术基础[M].北京:科学技术文献出版社,1991:151-162.
    164.沈学勤.公差配合与技术测量[M].北京:高等教育出版社,1998:98-104.
    165.邓朝晖,张璧,孙宗禹.纳米结构陶瓷涂层精密磨削表面/亚表面的形貌[J].硅酸盐学报,2005,33(3):396-401.
    166.邓朝晖,刘建,曹德芳.纳米结构陶瓷涂层精密磨削的材料去除机理及磨削加工技术[J].金刚石与磨料磨具工程,2003,(6):5-11.
    167.Xinhua Lin, Yi Zeng, Soo Who Lee. Characterization of alumina-3wt% titania coating prepared by plasma spraying of nanostructured powders[J]. Journal of the European Ceramic Society,2004,24(4):627-634.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700