异型塑钢纤维大掺量粉煤灰混凝土强度和断裂韧度研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
粉煤灰应用技术的快速发展,对提高粉煤灰的利用率水平起到很大的促进作用。在大掺量粉煤灰混凝土中粉煤灰掺量可以比普通粉煤灰混凝土明显增大,粉煤灰的效用能得到充分的发挥,经济效益显著。目前,大掺量粉煤灰混凝土断裂韧度的研究正逐步深入,但尚未发现关于异型塑钢纤维、灰胶比和水胶比对大掺量粉煤灰混凝土的强度和断裂韧度影响的研究。
     本文应用三元二次正交旋转组合设计安排试验,研究了异型塑钢纤维掺量、灰胶比和水胶比对异型塑钢纤维大掺量粉煤灰混凝土的强度和断裂韧度的影响规律。主要研究成果如下:
     (1)建立了以抗压强度、劈拉强度和断裂韧度为因变量的三元二次回归方程,对影响抗压强度、劈拉强度和断裂韧度的因素进行主效应分析、单因子效应分析及两因子间交互作用分析,得出异型塑钢纤维是提高塑钢纤维大掺量粉煤灰混凝土的抗压强度和断裂韧度的有益因子,灰胶比是提高塑钢纤维大掺量粉煤灰混凝土的抗压强度、劈拉强度和断裂韧度的有益因子,水胶比是影响异型塑钢纤维大掺量粉煤灰混凝土的抗压强度、劈拉强度和断裂韧度的显著因子。
     (2)对试件尺寸为100mm×100mm×400mm异型塑钢纤维大掺量粉煤灰混凝土三点弯曲梁弯曲试验的结果表明:异型塑钢纤维的掺入显著改善了大掺量粉煤灰混凝土的断裂韧度。当异型塑钢纤维体积率为1%时,断裂韧度提高了56%。在大掺量粉煤灰混凝土中,通过掺加异型塑钢纤维可以有效抑制大掺量粉煤灰混凝土早期干缩裂缝以及离析裂缝的产生及发展,极大地减少了收缩裂缝,尤其是有效抑制了连通裂缝的产生,均匀分布的纤维单丝起到了“承托”骨料的作用,降低了大掺量粉煤灰混凝土表面的析水和骨料的离析,从而使混凝土的孔隙率大大降低,提高了大掺量粉煤灰混凝土的强度和断裂韧度。
     (3)粉煤灰掺量的增加能够提高异型塑钢纤维大掺量粉煤灰混凝土的强度和断裂韧度。保持异型塑钢纤维体积为0.5%、水胶比为0.4不变,只有当灰胶比为0.5时,强度和断裂韧度才达到最大值。粉煤灰的三大效应——形态效应、微集料效应、活性效应能够使混凝土的微结构变得均匀、大孔消失、浆体—骨料界面区的孔隙率减小,生成致密网状的C-S-H凝胶填充了孔隙,同时粉煤灰在二次水化反应中要消耗Ca(OH)2,在很大程度上改善了浆体和界面的结构,使大掺量粉煤灰混凝土的密实性大大提高,从而提高了强度和断裂韧度。
     (4)水胶比增大会导致强度和断裂韧度的降低。与水胶比为0.3时相比,当水胶比增大到0.5时,塑钢纤维大掺量粉煤灰混凝土的抗压强度、劈拉强度和断裂韧度分别降低了39%、39%和22%。水胶比的增大意味在塑钢纤维大掺量粉煤灰混凝土中相对用水量的增多,大量游离水存在于大掺量粉煤灰混凝土的各晶格间和粗细毛孔中,在蒸发的条件下件下造成粉煤灰混凝土干缩及裂缝的产生。同时水胶比过大,造成混凝土的粘聚性和保水性不良。在粉煤灰混凝土振捣过程中,水泥浆体与骨料分离,造成流浆、离析现象。这些现象的不良影响是造成粉煤灰混凝土强度和断裂韧度降低重要原因。
The development of fly ash application technology plays a significant role in promoting the utilization of fly ash . The volume of fly ash in concrete with large percent fly ash is higher than the the volume of fly ash in concrete with fly ash . The effectiveness of fly ash can play the role fully. And it's economic benefits is significant. Found by searching, the research about KIC of concrete with large percent fly ash is creasing, but the research of Shaped PP Fiber volume rate how to play the role in concrete with large percent fly ash is not found. At the same time, fly ash/cement ratio and water/cement ratio , how play their roles. We still do not know. Based on previous research , this thesis using the second-degree polynomial regression Analysis and orthogonal rotation design to arrange the experiment research the law of the strengthening and KIC of concrete with large percentage fly ash. Main results as follows:
     (1) The thesis returns separately to the compressive strength, splitting tensile strength and KIC as the dependent variable of the ternary quadratic regression equation, and to the compressive strength, divides pulls the intensity and the KIC carries on the main effect Analysis, the single factorial effect Analysis and during two factors the correlation. The result indicated Shaped PP Fiber can enhance the compressive strength and KIC of concrete with large percent fly ash; fly ash can enhance the compressive strength, splitting tensile strength and KIC of concrete with large percent fly ash; and water/cement ratio is the remarkable factor.
     (2) The test of three-point bending beam on concrete with large percentage fly ash ,with the size of 100mm×100mm×400mm, indicated that the addition of Shaped PP Fiber is helpful in improving the KIC.When Shaped PP Fiber volume is 1% , the KIC increase 56%. In Shaped PP Fiber mixing to concrete with large percent fly ash, Shaped PP Fiber can suppress effectively concrete with large percent fly ash early time desiccation fissure as well as the segregation crack production and the development greatly; reduces the shrinkage fracture greatly.Especially Shaped PP Fiber has suppressed the connection crack production effectively. Uniform distribution's textile fiber monofilament played“has supported”the aggregate role and reduced concrete with large percent fly ash the surface bleeding and the aggregate segregation greatly. Thus the concretes percentage of voids reduces greatly and enhanced the intensity and the KIC of concrete with large percent fly ash greatly.
     (3) The test indicated that the addition of fly ash is helpful in improving the compressive strength, splitting tensile strength and KIC。When fly ash/cement ratio is 0.5 ,the Shaped PP Fiber volume fraction is 0.5% and water/cement ratio is 0.4,the strethening and KIC is maximizing. The fly ash three big effect - - shape effect, the micro aggregate effect, the active effect can cause the concretes the microstructure become even, pocket vanishing, the hydromass - aggregate frontal zone factor of porosity reduce,produced compact netted the C-S-H gelatin to fill the hole . Simultaneously the fly ash must consume Ca(OH)2 in second hydrated responses, to a great extent improved the hydromass and the contact surface structure, Causes to mix the quantity pulverized coal ash concretes dense enhance greatly ,and enhanced the intensity and the KIC of concrete with large percent fly ash .
     (4) Increasing the water/cement ratio will reduce strengthening and KIC. Camparing to water/cement ratio is 0.3, when water/cement ratio is 0.5, the compressive strength, splitting tensile strength and KIC of concrete with large percent fly ash reduce separately 39%,39% and 22%. Water/cement ratio compared to increases meaning, in concrete with large percent fly ash and Shaped PP Fiber relative water consumption increase, The massive free water exist greatly in between various crystal lattices and the thick thin pore in oncrete with large percent fly ash.under the evaporation condition , creates the concrete with fly ash air shrinkage and the crack production . Simultaneously water/cement ratio compared to oversized, creates the concretes the cohesive properties coherency and the water retention property bad.In the process of vibration, hydromass and aggregate separation , creates the class thick liquid and the segregation phenomenon. Those will reduce the intensity and the KIC of concrete with large percent fly ash .
引文
[1]Chemical abstract ,1988,vol.108,No.8.
    [2]O.E.Manz. World-wide production of coal ash and utilization in concrete and other products. In :1995 International Ash UtilizationSymposium,Lexington,KY,USA,Oct.23-25,1995:p16.
    [3]钱觉时.粉煤灰特性与粉煤灰混凝土[M].北京:科学出版社,2002.8-223.
    [4]吴中伟.绿色高性能混土与科技创新[J].建筑材料学报,1998,1(1):1-7.
    [5]江见鲸,冯乃谦.混凝土力学[M].中国铁道出版社,1991
    [6]王风翼,骨料对混凝土断裂机理的影响和混凝土复合断裂判据的试验研究[D].大连理工大学博士论文,1990.
    [7]徐世烺,赵国藩.混凝土断裂力学研究[M].大连理工大学出版社,1991
    [8]G.Giaccio, C.Rocco, R.Zerbino, The Fracture Energy of High-Strength Concrete, Materials and structures, Vol.26,1993
    [9]徐世烺等,三点弯曲梁研究混凝土断裂能GF及其试件尺寸影响规律[J].大连理工大学学报,No.1, 1991
    [10]沈旦申.粉煤灰混凝土[M].中国铁道出版社,1989
    [11]甘昌成,吕伟强,李建庭,麦锐.大掺量粉煤灰泵送混凝土的生产与应用[J].混凝土,2004(3).
    [12]黄煜镔,陈剑雄.大掺量粉煤灰掺合料中超细矿渣的作用[J].四川建筑科学研究,2001(12).
    [13]李大为.掺高效减水剂激发剂的大掺量粉煤灰轻交通混凝土路面研究[J].公路交通科技,2003(4).
    [14]黄煜镔,陈剑雄.大掺量粉煤灰掺合料中超细矿渣的作用[J].四川建筑科学研究,2001(12).
    [15]陈瑜,周士琼.大掺量粉煤灰高性能混凝土的应用[J].四川建筑,1999(11).
    [16]覃维祖.大掺量粉煤灰混凝土与高性能混凝土[J].混凝土与水泥制品,1995(4).
    [17]杨太文.大掺量粉煤灰高性能混凝土的研究进展[J].混凝土与水泥制品,2004(9).
    [18]吴正直.粉煤灰房建材料的开发与应用[M].北京:中国建材工业出版社,2003.1.
    [19]黄燕美.大掺量粉煤灰混凝土性能研究[J].山西建筑。2007(1).
    [20]张日华,张战营.大掺量粉煤灰特种水泥的研制[J].粉煤灰,2003,15(6):39241.
    [21]龚益,徐至钧.纤维混凝土与纤维砂浆--施工应用指南[M].北京:中国建材工业出版社.
    [22]王璋水.纤维混凝土研究应用现状与前景[J].中国混凝土技术交流会:12-26.
    [23]邓宗才.高性能合成纤维混凝土[M].北京:科学出版社,2000.
    [24]沈荣熹,崔琪,李清海.新型纤维增强水泥基复合材料[M].北京:中国建材工业出版社,2004.
    [25] Sun Wei, Gao Jianming,Yan Yun.Study of the Fatigue Performance and damage Mechanism of Steel Reinforced Concrete[J].AC1 Materials Journal.1996(6,7).
    [26]黄士元,孙复强,王善拔等.混凝土科学[M].北京:中国建筑工业出版社,1986.
    [27]钟世云,袁华.聚合物在混凝土中的应用[M].北京:化学工业出版社,2003.
    [28]赵国藩,鹏少民,黄承逵.钢纤维混凝土结构[M].北京:中国建筑工业出版社,1999.
    [29]龚益,沈荣熹,李清海.杜拉纤维在土建工程中的应用[M].北京:机械工业出版社,2002.
    [30]徐至钧.纤维混凝土技术及应用[M].北京:中国建筑工业出版社,2003.
    [31] Neville.A.纤维增强水泥与混凝土[M].北京:中国建筑工业出版社,1980.
    [32] Kaplan M F.Crack propagation and the fracture of concrete[J].ACI Journal,1961,58(11):591-610.
    [33]谢和平.岩石、混凝土损伤力学[M].徐州:中国矿业大学出版社,1990.
    [34]于骁中,居囊.混凝土的强度和破坏[J].水利学报,1983,3(1):22-35.
    [35] Kesler,C.E.D.J.Naus,J.L.Lott.Fracture mechanics-its applicability to concrete.Mechanical Behavior of Materials[J].The Society of Materials Science,Japan,1972,(4):113-124.
    [36]徐世琅,赵国藩.巨型试件断裂韧度和高硅坝裂缝评定的断裂韧度准则[J].土木工程学报, 1991,24(2):1-9.
    [37]郭少华.混凝土破坏理论研究进展[J].力学进展,1993,23(4):520-529.
    [38]高丹盈,刘建秀.钢纤维混凝土基本理论[M].北京:科学技术文献出版社,1994.
    [39]王新友.钢纤维混凝土的断裂模型研究[J].广西水利水电,1992,(3):2-7.
    [40]郭玉翠,范天佑.纤维增强复合材料断裂的宏观结合模型[J].复合材料学报.1999,16(1):137-141.
    [41] M.Wecharatana,S.P.Shah.A model for predicting fracture resistance of fiber reinforced concrete[J]. Cement and Concrete Research,1983,(13):819-829.
    [42]K.Visalvanich,A.E.Naaman.Fracture model for fiber reinforced concrete[J].Journal of the American Concrete Institute,1983,80(2):128-138.
    [43]K.Visalvanich,A.E.Naaman.Fracture methods in cement composite[J].Proceedings.ASCE,1981, (107):1155-1171.
    [44] Hillerborg A.Analysis of crack formation and growth in concrete by means of fracture mechanics and finite elements[J].Cement and Concrete Research,1976,(6):773-782.
    [45] M.Wecharatana,S.P.Shah.Double tension test for studying slow crack growth of Portland cement mortar[J].Cement and Concrete Research,1980,10(5):832-844.
    [46] Norihiko Kurihara,Minoru KUnieda,Toshiro Kamada,etal.Tension softening diagrams and evaluation of properties of steel fiber reinforced concrete[J].Engineering Fracture Mechanicas, 2000,(65):235-245.
    [47] Sameer A.Hamoush,M.Reza Salami,Elias G Abu-Saba.Fracture model to predict intensity in fiber reinforced concrete[J].ACI Material Journal,1991,88(5):504-507.
    [48] Parviz Soroushian,Hafez Elyamamy,Atef Tlili,etal.Mixef-Mode Fracture Properties of Concrete Reinforced with Low Volume Fractions of Steel and Polypropylene fibers[J].Cement and Concrete Composites,1998,(20):67-68.
    [49]王启成,吴科如.不同弹性模量的纤维对高性能混凝土力学性能的影响[J].混凝土与水泥制品, 2002,(3):36-37.
    [50]孙启林,王黎民,赵成泉等.钢纤维混凝土抗裂性能测试[J].山东理工大学学报(自然科学版), 2005, 19(3):21-26.
    [51]李方元,赵人达.高强混凝土和钢纤维高强混凝土断裂性能试验研究[J].混凝土,2002(8):29-32.
    [52]高丹盈,王占桥,朱海堂.钢纤维高强混凝土断裂性能的试验研究[J].郑州大学学报(工学版), 2004,25(1):1-5.
    [53]罗章,李夕兵,凌同华.钢纤维混凝土的增强机理与断裂力学模型研究[J].矿业研究与开发, 2003,23(4):18-22.
    [54]李光伟,杨元慧.聚丙烯纤维混凝土性能的试验研究[J].水利水电科学进展,2001,21(5):14-17.
    [55]姚武,蔡江宁,陈兵等.混杂纤维增韧高性能混凝土的研究[J].三峡大学学报(自然科学版), 2002,24(1):42-44.
    [56]程秀菊,朱为玄.钢纤维混凝土K IC计算公式初探[J].河海大学学报(自然科学版),2005, 33(4):452-454.
    [57]高丹盈,王占桥,朱海堂.钢纤维高强混凝土断裂性能的试验研究[J].郑州大学学报(工学版), 2004,25(1):1-5.
    [58]罗章,李夕兵,凌同华.钢纤维混凝土的增强机理与断裂力学模型研究[J].矿业研究与开发, 2003,23(4):18-22.
    [59]李光伟,杨元慧.聚丙烯纤维混凝土性能的试验研究[J].水利水电科学进展,2001,21(5):14-17.
    [60]张迈建.碳纤维国产化不尽人意,应加快产业进程[N].产经网-中国纺织报, http://chanye.finance.sina.com.cn/fz/2007-05-08/320384.shtml,2007-5-8.
    [61]中华人民共和国国家标注.粉煤灰混凝土应用技术规范(GBJ146-90)[S].1991:227-228.
    [62]中华人民共和国工业建筑行业标注.钢纤维混凝土(JG/T )3064-1999[S].1999:4-5.
    [63]袁志发、周静芋.试验设计方法[M].高等教育出版社.2000:362-366.
    [64]水工混凝土试验规程中华人民共和国水利电力部SD105-82
    [65]路面材料科学,重庆交通学院,2001
    [66]混凝土,中国建筑工业出版社
    [67]混凝土学,中国建筑工业出版社
    [68]尹双增.断裂判据与在混凝土中的应用[M].北京:北京科学出版社,1996.
    [69] Nallathambi P,Kafihaloo B L.Effcet of specimen and crack sizes.warer/cement ratio and coarse aggregate texture upon fracture toughness of concrete[J].Magazine of Concrete Research, 1984, 36(129):227-236.
    [70]黎保琨,王良元,混凝土断裂特性的试验研究及计算分析[J].水利学报,1998(8):61-68.
    [71]徐世琅,赵国藩.光弹贴片法研究混凝土裂缝扩展过程[J].水力发电学报,1991(3):8-17.
    [72]Hillerborg A.Analysis of crack formation and growth in concrete by means of fracture mechanics and finite elements[J].Cement and Concrete Research,1976,(6):773-782.
    [73]中华人民共和国国家标注.粉煤灰混凝土应用技术规范(GBJ146-90)[S].1991:227-228.
    [74]中华人民共和国工业建筑行业标注.钢纤维混凝土(JG/T 3064-1999[S].1999:4-5.
    [75]袁志发、周静芋.试验设计方法[M].高等教育出版社.2000:362-366.
    [76]蔡敏,蔡四维.混凝土、纤维混凝土的Ⅰ型断裂[J].工程力学,1999,16(4):54-58.
    [77]陈玲秋,袁建明.浅谈聚丙烯纤维的阻裂作用[J].浙江建筑,2006,23(8):81-82.
    [78]姜景,钱玉林.聚丙烯纤维混凝土阻裂机理探讨[J].吉林水利,2004,(3):20-23.
    [79]邓宗才,孔成栋,黄博升.碳纤维混凝土的压缩韧度指数[J].混凝土与水泥制品
    [80]Chunxiang Qian,PietStroeven.Fracture Properties of concrete Reinforced with Steel–polypropylene Hybrid Fibers[J].Cement and Concrete Composites,2000(22):343-351.
    [81]马玉平,张志权,王渭涛.掺加U型膨胀剂、粉煤灰的高性能混凝土试验研究[J].长安大学学报(建筑与环境科学版),3003,20(3):13-17.
    [82]潘宏彬.粉煤灰掺量对混凝土强度的影响[J].实验技术与实验机,2006,(3):42-46.
    [83]黄鹏飞.自密实高性能混凝土配合比试验研究:[D].福州:福州大学土建学院,2001.
    [84]黄与舟.高掺量粉煤灰混凝土细观结构及耐磨性能的研究:[D].福州:福州大学土建学院,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700