FePt磁性材料的制备及表面修饰研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
FePt磁性材料因具有高矫顽力良好的单轴磁晶各向异性极低的超顺磁临界尺寸良好的化学稳定性和热稳定性,在超高密度垂直磁记录介质生物医学等领域应用前景广阔。本文利用脉冲电沉积法制备了FePt共沉积薄膜Fe/Pt多层膜和FePt纳米粒子;用湿化学法制备了FePt纳米粒子,并用SiO_2对其进行表面修饰。利用XRD、FESEM、TEM、EDS、FT-IR、VSM研究了制备条件对产物组成形貌晶体结构磁性能等方面的影响规律。
     研究结果表明:脉冲电沉积法制备的FePt共沉积薄膜均含有较多的氧;脉冲电压对薄膜组成影响很大,沉积时间与薄膜厚度成正比。调节脉冲电压和沉积时间可获得不同组成厚度的共沉积薄膜; Fe/Pt比例接近1时,共沉积薄膜的含氧量很高且薄膜组成对电压的变化非常敏感ǎ未热处理的FePt薄膜为面心立方(fcc)结构;氢气中550℃热处理30min后,有少量的fcc结构转变成面心四方(fct)结构,显示一定的硬磁性。
     多层膜工艺能有效降低FePt薄膜中的含氧量及由fcc结构向fct结构的相变温度。通过适当调节电沉积参数制备出了组成为Fe_(33)Pt_(37)O_(30)和Fe_(37)Pt_(35)O_(28)的Fe/Pt多层膜。组成为Fe_(33)Pt_(37)O_(30)的多层膜在氢气中600℃热处理30min,氧含量降低了71%,晶体结构由无序的fcc结构转变为有序的fct结构并出现明显(110)织构;多层膜由软磁性转变成硬磁性,矫顽力达到约1420Oe。
     湿化学法制备的FePt纳米粒子组成为Fe52Pt48,粒子呈球形,平均直径2nm左右。Fe_(52)Pt_(48)纳米粒子是无序的fcc结构,室温显示超顺磁性;氩气中700℃热处理30min后转变为有序的L1_0-FePt相,有序度约为0.8。PEM制备的球形FePt纳米粒子为富Pt组成,平均直径2.5nm左右,是无序的fcc结构,也显示超顺磁性;氩气中700℃热处理30min,富Pt的FePt纳米粒子转变为以有序的面心立方L1_2-FePt_3相为主并伴有少量L1_0-FePt相的组成,显示一定的硬磁性。
     反相微乳液法制备SiO_2包覆FePt(FePt@SiO_2)复合纳米粒子过程中,壳层的生长是SiO_2初级粒子在FePt表面的异相成核聚集生长。调整TEOS加入量可获得2~20nm的壳层。SiO_2包覆可改善复合粒子的分散性,对FePt纳米粒子饱和磁化强度影响不大,未热处理的FePt@SiO_2显示超顺磁性。SiO_2包覆能有效抑制热处理过程中粒子的长大团聚及fcc结构向fct结构的相变。热处理后的FePt@SiO_2复合纳米粒子与未包覆的FePt纳米粒子相比,饱和磁化强度剩余磁化强度略有降低,矫顽力基本不变。
Because of its high coercive force, ultra-high single axis magnetic crystalanisotropy, very low super paramagnetic critical size and good chemical and thermalstability, FePt magnetic materials has great potential application for future ultra-highdensity perpendicular magnetic recording media, biomedical domain and so on. In thisthesis the FePt films, Fe/Pt multilayers and FePt nanoparticles(NPs) were depositedby pulse electroplating method (PEM). The FePt NPs also were synthesized by wetchemical method, and the surfaces were modified by SiO_2. The relationships betweenthe preparation conditions of samples and the composition, morphology, crystalstructure, magnetic performance were investigated by XRD, FESEM, TEM, EDS,FT-IR and VSM.
     The results were as follows: All FePt co-deposition films prepared by PEMcontained a lot of oxygen content. Pulse potential had great effects on thecompositions of films. The thickness of thin film was proportional to deposition time.FePt co-deposition films with different compositions and thicknesses could beobtained through changing pulse potential and deposition time. The compositions ofthin films were more sensitive to pulse potential and with higher oxygen containingwhen the ratio of Fe/Pt was closer to1. All FePt co-deposition films as-depositionwere face-centred cubic (fcc) structure. A small amount of fcc structure FePt changedinto face-centred square (fct) structure after the films were heated treatment inhydrogen atmosphere at550℃for30min, and the films became some hard magnetic.
     Multilayer technology could effectively reduce the oxygen content of filmsas-deposition and the FePt phase transition temperature from fcc structure to fctstructure. The Fe/Pt multilayers with compositions of both Fe_(33)Pt_(37)O_(30)andFe_(37)Pt_(35)O_(28)were deposited through adjusting electrodeposition parameters. Theoxygen content of Fe/Pt multilayers with compositions of Fe_(37)Pt_(35)O_(28)reduced by71%after600℃treatment in hydrogen for30min, and the crystal structure of FePtchanged from promiscuous fcc structure into ordered fct structure in which the (110)texture appeared; The soft magnetic of the multilayers changed into hard magnetic.The coercive force of the multilayers increased obviously to about1420Oe.
     The FePt nanoparticles with the composition of Fe_(52)Pt_(48)were synthetized by wet chemistry method. The as-synthetized FePt NPs were spherical with promiscuous fccstructure. They showed superparamagetism at room temperature and the coerciveforce of them was approximately zero. After heat treatment in argon at700℃for30min, the FePt NPs changed into ordered L10-FePt and the degree of order was0.8around. Spherical FePt NPs were prepared by PEM. They are rich-Pt and the averagediameter was about2.5nm. The as-prepared NPs were also superparamagetism atroom temperature with promiscuous fcc structure. After heat treatment in argon at700℃for30min, the rich-Pt NPs changed into ordered fcc structure L1_(2-)FePt_3phasewith a small quantity of L10-FePt phase and showed some hard magnetic.
     In the process of FePt@SiO_2composite NPs prepared by reverse microemulsionmethod,the primary particles of SiO_2were heterogeneous nucleated, aggregated andgrown on the surface of FePt NPs. The thickness of SiO_2shell layers could range from2nm to20nm through adjusting the addition amount of tetraethoxysilane. Thedispersion of composite NPs could be improved by SiO_2modification. Theas-synthetized FePt@SiO_2composite NPs showed a good superparamagnetic withlittle change in the saturation magnetization. The growth and aggregation ofFePt@SiO_2composite NPs and the phase transition of FePt from fcc structure to fctstructure in the heat treatment process were effectively restrained by SiO_2modification. After heat treatment, compared with FePt, the saturation magnetizationand remanent magnetization of FePt@SiO_2composite NPs reduced slightly but thecoercive force kept unchanged.
引文
[1]都有为.纳米磁性材料及应用.中国高校科技与产业化,2002:36~39
    [2]都有为.磁性材料新近进展.物理,2006,35(9):730~739
    [3]郑正德,钟金环,郑华均等.FePt纳米材料的性能制备及应用前景,磁性材料和器件,2008,39(5):4~8
    [4]杨治军,于振涛,李争显等.Fe/Pt磁性薄膜的研究进展,稀有金属快报,2007,26(2):7~10
    [5]冯乙巳,蔡伟平,李志刚. L10相FePt纳米颗粒及其纳米结构研究进展.物理,2006,35(10):860~864
    [6] Kneller E. Magnetism and Metallurgy. New York: Academic Press,1969:365~369
    [7] Frenkel J, Dorfman J. Spontaneous and induced magnetization in ferromagneticbodies. Nature,1930,126:274~275
    [8] Kittel C. Theory of the structure of ferromagnetic domains in films and smallparticles. Phys Rev,1946,70(11-12):965~971
    [9] Zeng H, Sun S H. Syntheses, properties, and potential applications ofmulticomponent magnetic nanoparticles. Adv Funct Mater,2008,18(3):391~400
    [10] Shinya M, Toshimasa S, Soichiro S. Superparamagnetic FePt nanoparticles asexcellent MRI contrast agents. J Magn Magn Mater,2008,320(9):L79~L83
    [11] Sun Y K, Duan L, Guo Z R, et al. An improved way to preparesuperparamagnetic magnetite-silica core-shell nanoparticles for possiblebiological application. J Magn Magn Mater,2005,285(1-2):65~70
    [12] Lu Y, Yin Y D, Mayers B T, et al. Modifying the surface properties ofsuperparamagnetic iron oxide nanoparticles through a sol-gel approach. NanoLett,2002,2(3):183~186
    [13] Stoner E C, Wohlfarth E P. A mechanism of magnetic hysteresis inheterogeneous alloys. Proc Phys Soc,1948,240(846):599~642
    [14]魏福林,白建民,杨正.垂直磁记录介质的新进展.磁性材料及器件,2008,39(3):1~7
    [15]成洪甫,高召顺,王栋樑等.超高密度磁记录介质的研究进展,材料导报,2010,24(7):35~39
    [16]吴晓薇,郭子政,安彩虹.超高密度垂直磁记录材料研究进展,信息记录材料,2008,9(5):56~60
    [17]郭子政.高密度磁记录介质的稳定性问题及研究进展,信息记录材料,2009,10(1):53~56
    [18]贾廷力,凌珊,沈平等.三种超高密度磁记录方式的比较研究.信息记录材料,2007,8(2):53~58
    [19]阴津华,潘礼庆.磁记录硬盘介质研究进展.物理,2008,37(7):522~525
    [20] Weller D, Moser A, Folks L, et al. High Kumaterials approach to100Gbits/in~2.IEEE Trans Magn,2000,36(10):10~14
    [21]董凯锋,程伟明,程晓敏,杨晓非.L10有序FePt磁记录薄膜研究进展,信息记录材料,2007,8(3):52~56
    [22] Sun S H, Recent advances in chemical synthesis, self-assembly, andapplications of FePt nanoparticles. Adv Mater,2006,18(4):393~403
    [23] Yasushi T, Shinya M. Amine-terminated water-dispersible FePt nanoparticles. JMagn Magn Mater,2008,320(19):L121~L124
    [24] Kitamoto Y, He J S. Chemical synthesis of FePt nanoparticles with highalternate current magnetic susceptibility for biomedical applications.Electrochim Acta,2009,54(25):5968~5972
    [25] Xu C J, Sun S H. Monodisperse magnetic nanoparticles for biomedicalapplications. Polym Int,2007,56(7),821~826,
    [26] Massalski T B. Binary Alloy Phase Diagram. The Mater Inform Soci,1990,1755~1760
    [27]程晓敏,杨晓非,董凯峰等.[FePt/Ag]n多层颗粒膜的磁学性能及微观结构.华中科技大学学报,2008,36(9):37~40
    [28] Yao B, Coffey K R. The influence of periodicity on the structures and propertiesof annealed [Fe/Pt]nmultilayer films. J Magn Magn Mater,2008,320(3):559~564.
    [29] Yu A C C, Mizuno M, Sasaki Y, et al. Fabrication of monodispersive FePtnanoparticle films stabilized on rigid substrates. Appl Phys Lett,2003,82(24):4352~4354
    [30] Sasaki Y, Mizuno M, Yu A C C, et al. Chemically synthesized L10-type FePtnanoparticles and nanoparticle arrays via template-assisted self-assembly. IEEETrans Magn,2005,41(2):660~664
    [31] Li B H, Feng C, Han G, et a1.Effect of the underlayer (Ag, Ti or Bi) on themagnetic properties of Fe/Pt multilayer films. Thin Solid Films,2007,515(20):8009~8012.
    [32]王现英,方铭,李青会,沈德芳等.新型磁存储介质L10有序FePt薄膜研究综述,材料导报,2005,19(6):91~94
    [33] Li G Q, Takahoshi H, Ito H, et al. Morphology and domain pattern of Ll0ordered FePt films.J Appl Phy,2003,94(9):5672~5677
    [34]王淑华,查超麟,高静等.c轴垂直取向FePt薄膜的磁和磁光性能研究.物理学报,2007,56(3):1719~1724
    [35]李宝河,黄阀,杨涛等.利用[Fe/Pt]n多层膜降低L10-FePt有序化温度.物理学报,2005,54(4):1836~1840
    [36]汪元亮,顾正飞,成钢等. Pt缓冲层厚度对FePt薄膜合金相转变和磁性能的影响.稀有金属材料与工程,2007,36(12):2019~2093
    [37]冯春,李宝河,滕蛟等. Ag和Ti底层对[Fe/Pt]n多层膜有序化的影响.物理学报,2005,54(10):4898~4920
    [38] Seki T, Shima T, Takanashi K. Fabrication of in-plane magnetized FePtsputtered films with large uniaxial anisotropy. J Magn Magn Mater,2004,272-276(1-2):2182~2183
    [39] Wierman K W, Platt C L, Howard J K. Impact of stoichiometry on L10orderingin FePt and FePtCu thin films. J Magn Magn Mater,2004,278(1-2):214~217
    [40] Martins A, Fantini M C A, Santos A D. The influence of the depositiontemperature and substrate on the properties of FePt thin films. J Magn MagnMater,2003,265(1):13~22
    [41] Ding Y F, Chen J S, Liu E, et al. Effect of carbon additive on microstructureevolution and magnetic properties of epitaxial FePt (001) thin films. Thin SolidFilms,2009,517,(8):2638~2647
    [42] Takahashi Y K, Ohnuma M, Hono K. Effect of Cu on the structure andmagnetic properties of FePt sputtered film. J Magn Magn Mater,2002,246(1–2):259~265
    [43] Shima T, Moriguchi T, Mitani S, et al. Low-temperature fabrication of L10ordered FePt alloy by alternate monatomic layer deposition. J Appl Phy,2002,80(2):288~293
    [44] Martins A, Fantini M C A, Souza-Neto N M, et al. Alternate monatomic layersputter deposition of FCT (L10-type) ordered FePt and CoPt films. J MagnMagn Mater,2006,305(1):152~156
    [45] Takahashi Y K, Ohnuma M, Hono K. Effect of Cu on the structure andmagnetic properties of FePt sputtered film. J Magn Magn Mater,2002,246(1-2):259~265
    [46] Chen S K, Yuan F T, Chin T S, et al. Effect of interfacial diffusion onmicrostructure and magnetic properties of Cu/FePt bilayer thin films. J Appl Phy,2005,97(7):073902~073907
    [47] Li B H, Feng C, Yang T, et a.l Approach to enhance the coercivity inperpendicular FePt/Ag nanoparticle film. J Appl Phy,2006,99(1):016102~016104
    [48] Xu X H, Wu H S, Wang F, et al. The effect of Ag and Cu underlayers on the L10ordering FePt thin films. Appl Surf Sci,2004,233(1-4):1~4
    [49] Bai J,Yang Z,Wei F. Nano-composite FePt-A12O3films for high-densitymangtic reeording. J Magn Magn Mater,2003,257(1):132~137
    [50] Peruma A, H S Ko, Shin S C. Perpendicular thin films of carbon-doped FePt forultrahigh-density magnetic recording media. IEEE Trans Magn,2003,39(5):2320~2322
    [51] Chen S C,Kuo P C,Sun A C,etal. Granular FePt-Ag thin films with uniformFePt particle size for high-density magnetic recording, Mater Sci Eng B,2002,88(1);91~97
    [52] You C Y, Takahashi Y K, Hono K. Particulate structure of FePt thin filmsenhanced by Au and Ag alloying. J Appl Phy,2006,100(5):056105~056107
    [53] Kuo, C M, Kuo P C, Hu W C,et al. Effects of W and Ti on the grain size andcoercivity of Fe50Pt50thin films, J Magn Magn Mater,2000,209(1-3):100~102
    [54] Tomoya I, Takeshi K, Satoshi I. Perpendicular anisotropy of MBE-grown FePtgranular films. IEEE Trans Magn,2005,41(10):3217~3220
    [55] Shigeki N, Taro K. Highly (001) oriented FePt ordered alloy thin filmsfabricated from Pt(100)/Fe (100) structure on glass disks without seed layers. JMagn Magn Mater,2005,287(1-3):204~208
    [56] Yan M L,Powers N,Sellmyer D J. Highly oriented nonepitaxially grown L10FePt films, J Appl Phy,2003,93(10):8292~8294
    [57] Yu M, Ohguchi H, Zambano A, et al. Orientation and magnetic properties ofFePt and CoPt films grown on MgO (110) single-crystal substrate byelectron-beam coevaporation, Mater Sci Eng: B,2007,142:139~143
    [58] Hai N H, Dempsey N M, Veron M, et al. An original route for the preparation ofhard FePt, J Magn Magn Mater,2003,257(2-3):139~145
    [59] Sun S H, Murray C B, Weller D, et al. Monodisperse FePt nanoparticles andferromagnetic FePt nanocrystal superlattices. Sci,2000,287(5460):1989~1992
    [60] Mallett J J, Svedberg E B, Sayan S, et al. Compositional Control inElectrodeposition of FePt Films. Electrochem Solid-State Lett,2004,10(7):C121-C124
    [61] Hong D M, Chau N, San P T, et al. The structure and properties of theelectrodeposited hard magnetic FePt films. Proceedings of the EighthGerman-Vietnamese Seminar on Physics and Engineering, Erlangen,2005,3~8
    [62] Leistner K, F hler S, Schl rb H, et al. Preparation and characterization ofelectrodeposited Fe/Pt multilayers. Electrochem Comm,2006,8(6):916~920
    [63] William W Y, Falkner J C, Yavuz C T, et al. Synthesis of monodisperse ironoxide nanocrystals by thermal decomposition of iron carboxylate salts. ChemCommun,2004,(20):2306~2307
    [64] Elkins K E, Vedantam T S, Liu J P, et al. Ultrafine FePt Nanoparticles Preparedby the Chemical Reduction Method. Nano Lett,2003,12(3):1647~1649
    [65] Iwamoto T, Matsumoto K, Matsushita T, et al. Direct synthesis andcharacterizations of fct-structured FePt nanoparticles using poly(N-vinyl-2-pyrrolidone) as a protecting agent. J Colloid Interface Sci,2009,336(2):879~888
    [66] Yan Q Y, Purkayastha A, Kim T, et al. Synthesis and Assembly of MonodisperseHigh-Coercivity Silica Capped FePt Nanomagnets of Tunable Size,Composition, and Thermal Stability from Microemulsions. Adv Mater,2006,18(19):2569-2573
    [67] Hyie K M, Yaacob I I. Preparation of iron–platinum nanoparticles inwater/triton/cyclohexane microemulsions. J Mater Process Technol,2007,191(1-3):48~50
    [68] Lyubina J, Gutfleisch O, Skomski R, et al. Phase transformations andthermodynamic properties of nanocrystalline FePt powders. Scripta Mater,2005,53(4):469~474
    [69]郭祖鹏,师存杰,焉海波.磁性纳米材料在分离和检测中的应用研究进展.磁性材料及器件,2012,43(1):9~19
    [70]孟宪瑛,王广义,吕国悦.超顺磁性纳米粒子在肿瘤诊断与治疗中的应用.吉林大学学报(医学版),2007,33(01):180~182
    [71] Lubbe A S, Alexiou C, Bergemann C. Clinical application of magnetic drugtargeting.J Surg Res,2001,95(2):200~206
    [72]谭泽明.基于超顺磁性四氧化三铁磁性纳米颗粒的恶性胶质瘤靶向联合基因治疗:[博士学位论文],长沙:中南大学,2009
    [73] Jordan A, Scholz R, Wust P, et al. Endocytosis of dextran and silan-coatedmagnetite nanoparticles and the effect of intracellular hyperthermia on humanmammary carcinoma cells in vitro. J Magn Magn Mater,1999,194(1-3):185~196
    [74]曹正国,周四维,孙凯等.超顺磁性葡聚糖氧化铁纳米颗粒的制备及其作为基因载体的可行性研究.癌症,2004,23(10):1105~1109
    [75] Mi X P, Zhang A L, Xu X M. Numerical study of thermally targeted liposomedrug delivery to tumor. J Eng Thermophys,2007,28(5):847~849
    [76] Pankhurst Q A, Connolly J, Jones S K, et al. Applications of magneticnanoparticles in biomedicine. J. Phys. D: Appl Phys,2003,36(13):R167~R181
    [77] Jordan A, Scholz R, Maier H K, et al. Presentation of a new magnetic fieldtherapy system for the treatment of human solid tumors with magnetic fluidhyperthermia. J Magn Magn Mater,2001,225(1-2):118~126
    [78]赵紫来,卞征云,陈朗星等.氧化铁磁性纳米粒子的制备表面修饰及在分离和分析中的应用.化学进展,2006,18(10):1288~1297
    [79] Garrett Q,Chatelier R C,Griesser H J, et al. Effect of charged groups on theadsorption and penetration of proteins onto and into carboxym-ethylated poly(HEMA) hydrogels. Biomater,1998,23(19):2175~2186
    [80]陈庆梅,宗小林.磁性纳米材料及其在癌症诊疗中的应用,微纳电子技术,2009,46(6):340~345
    [81] Moghimi S M, Hunter A C, Murray J C. Long-circulating and target-specificnanoparticles: theory to practice. Pharmacol Rev,2001,53(2):283~318
    [82] Scherer F, Anton M, Schillinger U, et al. Magnetofection: enhancing andtargeting gene delivery by magnetic force in vitro and in vivo. Gene Ther,2002,9(2):102~109
    [83]郭立安,朱宝泉,陈代杰.万古霉素的磁性亲和吸附分离.生物工程学报,2001,17(05):584~586
    [84] Safarik I, Safarikova M. Use of magnetic techniques for the isolution of cells. JChromatogr B,1999,722(1-2):33~53
    [85] Rocha F M, Depindo S C, Zolleration R L, et al. Preparation andcharacterization of affinity magnetoliposomes useful for the detection ofantiphospholipid antibodies. J Magn Magn Mater,2001,225(1-2):101~108
    [86]何晓晓,王柯敏,谭蔚泓等.超顺磁性DNA纳米富集器应用于痕量寡聚核苷酸的富集.高等学校化学学报,2003,24(1):40~42
    [87]卢强华.Fe3O4或γ-Fe_2O_3@Au核-壳结构纳米颗粒的制备,表征,及其在乙型肝炎病毒基因诊断上的应用:[博士学位论文],武汉:华中科技大学,2006
    [88] Radomski A, Jurasz P,Alonsoescolano D, et al. Nanoparticle-induced plateletaggregation and vascularthrombosis. Br J Pharmacol,2005,146(6):882~893
    [89] Yasushi T, Shinya M. Amine-terminated water-dispersible FePt nanoparticles. JMagn Magn Mater,2008,320(19):L121~L124
    [90] Presa P de la, Multigner M, Morales M P,et al. Synthesis and characterization ofFePt/Au core-shell nanoparticles. J Magn Magn Mater,2007,316(2):e753~e755
    [91] Lee D C, Mikulec F V, Pelaez J M, et al. Synthesis and Magnetic Properties ofSilica-Coated FePt Nanocrystals. Phys Chem B,2006,110(23):11160~11166
    [92] Moser A,Takano K,Margulies D T, et al. Magnetic recording: advancing intothe future. J Phys D: Appl Phys,2002,35(19):R157~R167
    [93]胡学让. L10-FePt的结构和性能研究:[博士学位论文],北京:清华大学,2008
    [94]向晖. FePt基薄膜的结构与磁性:[硕士学位论文],重庆:西南大学,2011
    [95]张俊龙. FePt纳米结构及FePt_无机介质复合体系的制备与表征:[硕士学位论文],南京:南京大学,2011
    [96] Harada K,Honda N,Microstructural study on Co-Cr based Perpendicularmagnetic recording media using electrochemical method. IEIC TechnicalReport,2000,100(337):22~28
    [97] Maeda Y,Takei K,Rogers D J. Compositional microstructures in Co-Cr fimsfor magnetic recording. J Magn Magn Mater,1994,134(2-3):315~322
    [98] Carcia P F. Perpendicular magnetic anisotropy in Pd/Co and Pt/Co thin-filmlayered structures. J Appl Phy,2009,63(10):5066~5073
    [99] Hashimoto S, Ochiai Y, Aso K. Perpendicular magnetic anisotropy andmagnetostriction of sputtered Co/Pd and Co/Pt multilayered films. J Appl Phy,2009,66(10):4909~4916
    [100] Morisako A, Matsumoto, Naoe M. Read write characteristics of hexagonalbarium ferrite sputtered prepared by post deposition annealing. IEEE TransMagn,1998,34(4):1630~1632
    [101] Noma K, Matsushita N, Nakagawa S, et al. Effects ofcomposition control on crystallographic and magnetic characteristics of Baferrite films sputtered with the mixture of Xe, Kr Ar and O_2for recording media.J Appl Phy,1997,81(8):4377~4380
    [102] Gibson G A, Schultz S. Magnetic force microscope study of the micromagneticsof submicrometer magnetic particles. J Appl Phy,1993,73(9):4516~4521
    [103] Amos N, Ikkawi R, Haddon R, et al. Controlling multidomain states to enablesub-l0-nm magnetic force microscopy. Appl Phys Lett,2008,93(20):203116~203118
    [104] Deng Z, Yenilmez E, Leu J, et al. Metal-coated carbon nanotube tips formagnetic force microscopy. Appl Phys Lett,2004,85(25):6263~6265
    [105] Amos N, Lavrenov A, Fernandez R, et al. High-resolution and high-coercivityFePt Ll0magnetic force microscopy nanoprobes to study next-generationmagnetic recording media. J Appl Phy,2009,105(7):07D526(1~3)
    [106]娄敏毅,王德平,黄文旵等.单分散核壳结构SiO_2磁性微球的制备及性能.硅酸盐学报,2006,34(3):277~283
    [107]刘冰,王德平,黄文旵等.核壳结构磁性复合纳米粒的制备及研究进展.材料导报,2007,21(Ⅷ):185~188
    [108]刘冰,王德平,姚爱华等.反相微乳液法制备核壳SiO_2/Fe3O4复合纳米粒子.硅酸盐学报,2008,36(4):569~574
    [109]丁建芳,姜继.核壳结构二氧化硅/磁性纳米粒子的制备及应用.材料导报,2006,20(Ⅶ):201~205
    [110]原霞.铂系双金属(Pt/M, M:Fe,co,Ni)纳米催化材料的化学可控合成及性能表征:[硕士学位论文],济南:山东大学.
    [111] Xu J, Hua K, Sun C, e al. Electrooxidation of methanol on carbon nanotubessupported Pt-Fe alloy electrode. ElectroChem Commun,2006,8(6):982~986.
    [112]王洁莹,陈声培,王鹏等.纳米FePt/GC催化剂的制备及其对乙醇的电氧化性能.化工学报,2010,61(S1):101~105
    [113]屠振密,胡会利,李宁等.电沉积纳米晶合金的最新进展.表面技术,2008,37(1):67~70
    [114]李莉,魏子栋,李兰兰.电沉积纳米材料研究现状.电镀与精饰,2004,26(3):9~14
    [115] Lidia B, Bonora P L, Borello A, et al. Composite electrodeposition to obtainnanostructured. J Electrochem Soci,2001,148(7):C461~C465.
    [116]喻敬贤,陈永言,黄清安.纳米金属多层膜的电化学制备与性能研究现状.材料保护,1997,30(7):1-4.
    [117] Ross C A, Goldman L M, Spaepen F. An electrodeposition technique forproducing multilayers of nickel-phosphorus and other alloys. J ElectrochemSoci,1993,140(1):91~94
    [118]姚素薇,桂枫,张卫国,等.电沉积纳米多层膜研究.天津大学学报,2001,34(2):261~264
    [119] Peter L, Czirakl A, Pogany I,et al. Microstructure and giant magnetoreistance ofelectrodeposited Co-Cu/Cu multilayers. J Electrochem Soci,2001,148(3):C168~C176
    [120] Gomez E, Labarta A, Llorente A, et al. Characterisation of cobalty coppermultilayers obtained by electrodeposition[J]. Surf Coat Technol,2002,153(2):261~266
    [121] Gomez E, Labarta A, Llorente A, et al. Electrochemcial behaviour and physicalproperties of Cu/Co multilayers. Electrochem Acta,2003,48(8):1005~1013.
    [122] Xu X H, Wu H S, Wang F, et al. The effect of Ag and Cu underlayer on the L10ordering FePt thin films. Appl Surf Sci,2004,233(1-4):1~4.
    [123] Bian B, Laughlin D E, Sato K, et al. Fabrication and nanostructure of orientedFePt particles. J Appl Phy,2000,87(9),6962~6964
    [124] Perumal A, Ko H S, Shin S C. Perpendicular thin films of carbon-doped FePtfor ultrahigh-density magnetic recording media. IEEE Trans Magn,2003,39(5):2320~2322
    [125] Bian B, Laughin D E. Fabrication and nanostructure of oriented FePt particles, JAppl Phy,2000,87(9):6962-6964
    [126] Zhao Z L, Ding J, Chen J S, et al. The effects of pinning layer on the magneticproperties of FePt perpendicular media. J Magn Magn Mater,2004,272(3):2186~2188
    [127] Leistner K, Krause A, Fahler S, et al. Electrode processes during Fe-Ptelectrodeposition studied by electrochemical quartz crystal microbalance.Electrochim Acta,2006,52(1):170~176
    [128] Chu S Z, Inoue S, Wada K, et al. Fabrication and structural characteristics ofnanocrystalline Fe-Pt thin filmsand Fe-Pt nanowire arrays embeddedin aluminafilms on ITO/Glass. J Phys Chem B,2004,108(18):5582~5587
    [129] Takuya N, Masaki O, Nam H S, et al. Pulsed electrodepositon ofnanocrystalline Co-Ni-Fe soft magnetic films. J Electrochem Soci,2001,148(9):C627~C631
    [130]吴自勤,王兵.薄膜生长,北京:科学出版社,2001,1~419
    [131]李培森.物性测量原理与测试分析方法,兰州:兰州大学出版社,1994,
    [132]郭琳.FeSO_4-FeCl_2体系中电解制取铁箔.广东教育学院学报.1999(19),3:85~87
    [133] Dobos D. Electrochemical Data: A handbook For Electrochemists in Industryand Universities. New York: Elservier Scientific,1975,260~262
    [134] Leistner K, Oswald S, Thomas J, et al. Potential dependence of composition andstructure of electrodeposited Fe-Pt films. Electrochim Acta,2006,52(1):194~199
    [135] Rhen F M F, Hinds G, O’Reilly C, et al. Electrodeposited FePt Films. IEEETrans magn,2003,39(5):2699~2701
    [136] Thongmee S, Ding J, Lin J Y, et al. FePt films fabricated by electrodeposition. JAppl Phy,2007,101(9):09K519~09K519-3
    [137] Leistner K, Schl rb H, Thomas J, et al. Remanence enhancement in nanoscaledelectrodeposited FePt films. Appl Phy Lett,2008,92(5):052502~052504
    [138] Leistner K, Backen E, Schupp B, et al. Phase formation, microstructure, andhard magnetic properties of electrodeposited FePt films. J Appl Phy,2004,95(11):7267~7269
    [139] Leistner K, Schaaf P, Voss A, et al. Interfacial Fe(III)-hydroxide formationduring Fe-Pt alloy deposition. Electrochim Acta,2008,53(23):6973~6977
    [140] Leistner K, Thomas J, Baunack S, et al. Infuence of oxygen and copper inelectrodeposited FePt flms. J Magn Magn Mater,2005,290~291(2):1270~1273
    [141] Endo Y, Kikuch N, Kitakami O, et al. Low temperature L10formation of Fe/Ptmultilayers. J Mag Soci Japan.,2001,25(4-2):835~838
    [142] Endo Y, Kikuch N, Kitakami O, et al. Lowering of ordering temperature for fctFe-Pt in Fe/Pt multilayers. J Appl Phys,2001,89(11):7065~7067
    [143]石雷,刘维民.电化学沉积法制备纳米金属多层膜的研究进展.润滑与密封,2003,5:78~80
    [144]张英杰,苏玉华,范云鹰.电沉积金属多层膜的研究现状.材料保护,2007,40(8):53~58
    [145]李莉,魏子栋,李兰兰.电沉积纳米材料研究现状.电镀与精饰,2004,26(3):9~14
    [146] Roy S. Electrodeposition of composition ally modulated alloys by aelectrodeposition displacement reaction method. Surf Coat Technol,1998,105(3):202~205
    [147] Ross C A, Goldman L M, Spacepen F. An Electrodeposition technique forproducing multilayers of Nickel-Phosphorus and other alloys. Electrochem Soc,1993,140(1):91~98
    [148]刘庆,陆文雄,印仁和.电化学制备纳米材料的研究现状.材料保护,2004,37(2):33~36
    [149] Kitamoto Y, He J S. Chemical synthesis of FePt nanoparticles with highalternate current magnetic susceptibility for biomedical applications.Electrochim Acta,2009,54(25):14449~14453
    [150] Tian N, Zhou Z Y, Sun S G, et al. Synthesis of tetrahexahedral platinumnanocrystals with high-index facets and high electro-oxidation activity. Sci2007,316(5825):732~735
    [151]潘伟,张晓凯,黄明湖等.聚合物PVP保护的贵金属纳米结构材料电化学合成新方法.电化学,2006,12(4):399~402
    [152]马玉婷.电化学法直接制备金铂合金纳米粒子及其性质:[硕士学位论文],苏州:苏州大学,2009
    [153] Natter H, Schmelzer M, L ffler M S, et al. Hempelmann. grain-growth kineticsof nanocrystalline iron studied in situ by synchrotron real-time x-ray diffraction.J Phys Chem B,2000,104(11):2467~2476
    [154]蔡建旺,赵建高,詹文山等.磁电子学中的若干问题.物理学进展,1997,17(2):119-149
    [155]刘丽丽.FePt纳米颗粒薄膜的制备及退火工艺对其磁性影响的研究:[硕士学位论文],北京:首都师范大学,2008
    [156] Barabash S V, Chepulskii R V, Blum V, et al. First-principles determination oflow-temperature order and ground states of Fe-Ni, Fe-Pd, and Fe-Pt. Phys RevB,2009,80:220201~220201
    [157] Zeng H, Li J, Liu J P, et al. Exchange coupled nanocomposite magnets bynanoparticle self-assembly.Nature,2002,420:395~398
    [158] Rong C B, Nandwana V, Poudral N, et al. Bulk FePt-based nanocompositemagnets with enhanced exchange coupling. J Appl Phys,2007,102(2):023908~023914
    [159] Li J, Wang Z L, Zeng H, et al. Interface structures in FePt/Fe3Pt hard-softexchange-coupled magnetic nanocomposites, Appl Phys Lett,2003,82(21):3734~3739
    [160]熊雷,姜宏伟,王迪珍.Fe3O4磁性纳米粒子表面修饰研究进展.材料导报,2008,22(5):31~34
    [161] Aslam M, Fu L, Li S, et al. Silica encapsulation and magnetic properties of FePtnanoparticles.2005,290,2(15)444~449
    [162] Lee J, Lee Y J, Youn J K, et al. Simple synthesis of functionalizedsuperparamagnetic magnetite/Silica core/shell nanoparticles and theirapplication as magnetically separable high-performance biocatalysts. Small,2008,4(1):143~152
    [163] Yi D K, Tamil S, Lee S S, et al. Silica-Coated nanocomposites of magneticnanoparticles and quantum dots. American Chemical Society,2005,127(14):4990~4993
    [164]柴波,张文军,李德忠.微乳法制备W/O型Fe3O4磁流体及其清除水面浮油模拟研究.环境化学,2005,24(4):419~422
    [165] Tomou A, Panagiotopoulos I, Gournisa D. L10ordering and magneticinteractions in FePt nanoparticles embedded in MgO and SiO_2shell matrices. JAppl Phys,2007,102(2),023910~023914
    [166]崔正刚.微乳化技术与应用,北京:中国轻工出版社,1999
    [167]罗澄源.物理化学实验,北京:高等教育出版社,1989
    [168]潘海敏,杨伯伦,李萌萌等.基于相图法的W/O型微乳液体系稳定性分析.高校化学工程学报,2006,20(5):679~684
    [169]王丽丽,贾光伟,许湧深.反相微乳液法制备纳米SiO_2的研究.无机化学学报,2005,21(10):1505~1509
    [170] Yi D K, Lee S S, Papaefthymiou G C, et al. Nanoparticle architecturestemplated by SiO_2/Fe_2O_3nanocomposites. Chem Mater,2006,18(3):614~619.
    [171]杜雪岩,郭海霞,李翠霞等.制备SiO_2包覆的Fe_3O_4磁性纳米复合粒子.粉末冶金技术,2010,(5):346~349
    [172]陈令允,李凤生,姜炜等.强磁性纳米Fe_3O_4/SiO_2复合粒子的制备及其性能研究.材料科学与工程学报,2005,23(5):556~559
    [173]陈令允,姜炜,李凤生等.液相沉积法制备磁性纳米Fe3O4/SiO_2复合粒子.机械工程材料,2005,29(4):34~37

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700