波束波导电磁传输和辐射理论建模与高效算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对波束波导(BWG)传输系统的精确建模与高效数值分析是计算电磁学领域的难点。它通常具有电大尺寸、复杂异形传输结构、金属-介质混合结构。这些特征导致数值求解过程中计算量极大、迭代收敛缓慢。本文采用积分方程(IE)与模式匹配(MM)相结合的方法简化模型,并利用预条件技术加速迭代收敛。在处理电大尺寸问题时我们采用多层快速多极子算法(MLFMA)。该算法通过加法定理对自由空间格林函数进行分解,使用聚合、转移、配置的方式,将积分方程方法求解过程中的计算和存储复杂度降至O (N log N)。在一体化建模和计算的框架下,对电大尺寸复杂结构的波束波导的传输问题进行快速精确求解。此外,对在有限口径的喇叭馈源照射下任意数量、形状、位置的反射面的散射也能高效求解。在实际应用中,可利用上述方法高效求解带有介质罩的天线、频率选择表面及大型偏馈反射面天线的辐射和散射特性。
     本文首先介绍了复杂结构辐射、散射与传输特性分析领域中的传统数值方法,包括解析方法,高频方法,微分方程方法,积分方程方法,混合方法。然后深入论述基函数以及矩量法。最后,将传统的积分方程方法与模式匹配方法相结合,建立了波导馈电的腔体问题的等效模型。
     通过研究波导的等效模型,获得了对波导馈电的电大尺寸复杂结构激励、传输与辐射的高效数值求解策略。本文研究了波导馈电的电大尺寸结构(包括金属、金属-介质混合结构的波束波导、多波导端口辐射器)的传输和辐射问题的精确电磁建模与高效计算的数值方法,并选用多层快速多极子算法进行快速求解。
     使用上述方法仅需对待求结构中的金属表面和介质体区域进行离散。而通常的波束波导恰好具有电大尺寸的金属表面和大量的无需剖分的空域,这使得采用积分方程方法与采用微分方程方法相比,极大地降低了未知量,提高了求解效率。使用波导模式匹配方法,考虑各导波模式的反射影响,可得到激励口面处的场匹配状况,并最终获得精确的场解。
     在此基础上,对上述方法进行扩展后可对多波导端口馈电的天线阵列给出精确的场解。当这种天线阵列的阵元数目增多,整体电尺寸变大,且阵列中可能存在不同结构的阵元,其间又存在复杂的电磁耦合。这导致数值仿真需要耗费大量的计算资源,甚至无法计算。本论文提供的等效模型和高效算法则可求解多个馈源、各个馈源可具任意形态和结构、各个辐射结构可具任意的馈电模式、各馈源间可有任意的相对位置的传输与辐射问题。
     为进一步提高对电大尺寸波束波导传输特性的求解效率,采用了相位提取(PE)基函数来描述电流。这样做的根据是波束波导内部金属表面上的感应电流在入射波方向上呈周期性变化。与传统的基函数比较而言,PE基函数可以被定义在更大的贴片上。使用PE基函数直接地减少了待求未知量,极大地增强了求解电大尺寸波束波导问题的能力。
     在迭代求解过程中,成功的将预条件方法应用到本文方法中,得到了显著的效果。此外,本文研究的算法在结合OpenMP并行计算技术之后,计算能力得到了大幅的提升。作者依据本文方法开发完成了相应的数值仿真程序,并得到了数值算例的验证。
The accurate modeling and efficient solving of the beam waveguide(BWG)transmission system is always a challenge in the computational electromagnetics. Thebeam waveguide always has large size compared with the wavelength, complexstructure, and composite metallic-material structure. It cause the huge computation loadand the slow iteration process. In this thesis, the integral equation(IE) method and themode matching(MM) method are combined together to simplify the model, and thepreconditioning technique is used to accelerate the convergence speed. To deal with thestructure of electrically large size, the multilevel fast multipole algorithm(MLFMA) isused. Decomposing the free space Green’s function by the style of aggregation,transformation and disaggregation, MLFMA successfully reduces the computationcomplexity to O (N log N). The transmission problems of beam waveguide withelectronically large size and complex structure can be solved efficiently by using thisintegrated modelling and simulation environment. The characteristics of reflectors withany number, arbitrary shape, and arbitrary position while illuminated by the horn feedcan be solved efficiently. In practical application, the method mentioned above can beused to obtain the radiation and scattering characteristics of the radomes, the frequencyselective surfaces, and the large side-fed reflector antennas efficiently.
     First, the traditional numerical methods of solving the excitation, transmission andradiation problems of the complex structure are introduced. Including the analyticalmethod, the high-frequency method, the differential equation method, the integralequation method and the hybrid method. The basis functions and the method of momentare deeply studyed. Finally, the integral equation method is combined with the modematching method and the equivalent model of the waveguide-fed cavities.
     By studying the equivalent model of the waveguide, we got the efficient numericalmethod of solving the excitation, transmission and radiation problems of theelectrically-large and complex beam waveguide structures. We have discussed theaccurate modeling and effective numerical solving of the transmission and radiation ofthe waveguide-fed electrically-large structure problems(including the conductor or thecomposite metallic-material beam waveguide and the arbitrary multi-port radiation structures). Then the MLFMA is used to improve the efficiency of the solving process.
     Using the integral equation method, we only need to discrete the surface of the ideaconductor and the volume of the dielectric area. The characteristic of the beamwaveguide always contains large space without any PEC or volumn structure. Then thenumber of unknowns is much less and the solving efficiency is much higher comparedby using the differential equation methods. Using the mode matching method, andconsidering the reflecting guide wave modes, we can get the matching situation on theexciting erea and the accurate results.
     The method of dealing with the single waveguide-fed problem is expanded tosimulate the multi-port waveguide-fed antenna array problems. The increasing numberof antenna elements brings the large electrical size. And there are always the elementswith different structure and feeding mode and the complex electromagnetic coupling.The requirement of computing resource is great, which even cannot be supplied. Themodel and efficient algorithm raised in this thesis can deal with the multi-portwaveguide-fed transmission and radiation problems with feeds of arbitrary amount,structure, excitation mode and relative position.
     In order to further improve the efficient of solving the transmission problems of thebeam waveguide with electrically large size structure, we used the phase-extracted(PE)basis functions to describe the surface electric current. The reason is that the phase ofthe electric induced current on the PEC surface of the beam waveguide changeperiodically along the direction of the incident wave. Comparing with the traditionalbasis functions, the PE basis function can be defined on the larger patches. Using thisbasis function, the unknowns is directly reduced and the ability of solving the beamwaveguide with electronically large size is greatly improved.
     In the solving process, the preconditioning technique is used, and the better effectis got. Moreover, the OpenMP parallel technique is adopted and the solving efficiency isgreatly improved. The author has been developed the program codes based on themethods mentioned in this dissertation, which is validated by the numerical experiment.
引文
[1] Robert E. Collin. Field theory of guided waves[M]. New York: IEEE Press,1991.
    [2]李卫海,徐善驾. NRD波导槽缝激励的严格分析[J].红外与毫米波学报,2004,23(5):341-344.
    [3] Bosiljevac M., Polemi A., Maci S., et al. Analytic approach to the analysis of ridge and groovegap waveguides-Comparison of two methods[C]. Proceedings of the5th European Conferenceon Antennas and Propagation (EUCAP), Piscataway,2011:1886-1889.
    [4] O'Keefe Coburn W., Anthony T.K., Zaghloul A.I. Open-ended waveguide radiationcharacteristics–full-wave simulation versus analytical solutions[C]. IEEE Antennas andPropagation Society International Symposium (APSURSI), Toronto,2010,1-4.
    [5]唐宗熙,张彪.填充旋波媒质矩形波导电磁场的解析求解[J].电波科学学报,2005,20(1):69-72.
    [6]张黎阳,汪文秉.月形波导和加片圆波导的解析分析[J].电子与信息学报,1992,14(5):509-516.
    [7] Park K.H., Eom H.J., Yamaguchi Y. An analytic series solution for E-plane T-junction inparallel-plate waveguide[J]. IEEE Transactions on Microwave Theory and Techniques,1994,42(2):356-358.
    [8] M. Tyson. High frequency electromagnetic techniques and advances[M]. Washington:Washington Press,1995.
    [9]阮颖铮.雷达截面与隐身技术[M].北京:国防工业出版社,1998.
    [10] T. H. Lee, R. G. Rojas. High-frequency techniques[M]. Boca Raton, FL: CRS Press,2001.
    [11]汪茂光.几何绕射理论[M].西安:西安电子科技大学出版社,1994.
    [12] Burkholder R J, Lundin T. Forward-backward iterative physical optics algorithm for computingthe RCS of open-ended cavities[J]. IEEE Trans. Antennas Propagat,2005,53(2):793-799.
    [13] Besso.P, Bozzi.M, Formaggi.M, et al. Preliminary beam-waveguide design of the novel ESAdeep-space antenna DSA3[C]. IEEE Antennas and Propagation Society InternationalSymposium, Honolulu,2007,5680–5683.
    [14] H.0. Prinz, A. Arnold, G. Dammertz, et al., Analysis of the Quasi-Optical Output System of aTE22,6118GHz Gyrotron[C].14th Joint Workshop on ECE and ECRH, Santorini, GR,2006,512-516.
    [15]王莉莉.赋形波束波导缝隙阵列天线的仿真设计[D].哈尔滨:哈尔滨工程大学,2010.
    [16]谷胜明,刘昊,张凤林,等. W波段波束波导天线系统的设计[J].遥测遥控.2009,30(5):49-53.
    [17] Degenford J E, Sirkis M D, Steier W H. The Reflecting Beam Waveguide[J]. IEEE Transactionson Microwave Theory and Techniques,1964,12(4):445-453.
    [18] Marcuse D. Design Considerations for Bent-Beam Waveguides[J]. IEEE Transactions onMicrowave Theory and Techniques,1965,13(5):647-651.
    [19] Imbriale W A. Design and applications of beam waveguide systems[C]. IEEE Proceedings.Aerospace Conference,1997,3:121-134.
    [20] Veruttipong W, Chen J C, Bathker D A. Gaussian beam and physical optics iteration techniquefor wideband beam waveguide feed design[C]. Antennas and Propagation Society InternationalSymposium, London,1991,2:1007-1010.
    [21] W.A. Imbriale, D.J. Hoppe, Computational Techniques for Bean Waveguide Systems[C]. IEEEAntennas and Propagation Society International Symposium, Salt Lake City,2000, Vol.4:1894-1897.
    [22]T. Bondo, S.B. Sorensen, Physical optics analysis of beam waveguides using auxiliary planes[J].IEEE Transactions on Antennas and Propagation,2005,53(3):1062-1068.
    [23]秋实,刘国治,焦永昌,等.三镜波束波导在高功率微波天线中的应用[J].强激光与粒子束,2010,22(1):131-134.
    [24] Tomiyasu K, Conceptual reconfigurable antenna for35GHz high-resolution spacebornesynthetic aperture rada[J]. IEEE Trans Antennas and Propagation,2003,39(3):1069-1073.
    [25] Rao Yu-ping, Lin Jing-yu. Breakdown and Transmission of High Power Microwave Beam[C].7th International Symposium on Antennas, Propagation&EM Theory, Guilin,2006,1-4.
    [26] Frotanpour A, Dadashzadeh G, Shahabadi M, et al. Analysis of Multipactor RF BreakdownThresholds in Elliptical Waveguides[J]. IEEE Transactions on Electron Devices,2011,58(3):876-881.
    [27] Frigui K, Baillargeat D, Verdeyme S, et al. Microwave Breakdown in Waveguide FiltersTheoretical and Experimental Investigations[J]. IEEE Transactions on Microwave Theory andTechniques,2008,56(12), part2:3072-3078.
    [28] A. Taflve. Computational electrodynamics: the finite-difference time-domain method.Norwood[M], MA: Artech House,1995.
    [29] J. M. Jin. The finite element method in electromagnetics[M]. Hoboken: Wiley-IEEE Press,2002.
    [30] W. C. Chew, J. M. Jin, E. Michielssen, et al. Fast and efficient algorithms in computationalelectromagnetics[M]. Boston: Artech House,2001.
    [31] R. F. Harrington. Field computation by moment methods[M]. New York: McMillan,1968.
    [32]A. F. Peterson, S. L. Ray, R. Mittra. Computational methods for electromagnetics[M]. Hoboken:Wiley-IEEE Press,1997.
    [33] J. J. H. Wang. Generalized moment methods in electromagnetics: formulation and computersolution of integral equations[M]. New Jersey: John Wiley&Sons, Inc.,1991.
    [34]李世智.电磁散射与辐射问题的矩量法[M].北京:电子工业出版社,1985.
    [35]盛新庆.计算电磁学要论[M].北京:科学出版社,2004.
    [36] J. Hu, Z. Nie, L. Lei, et al. A modified electric field integral equation for3D electromagneticscattering[C]. Asia-Pacific Microwave Conference, Suzhou,2005,4:1-4
    [37] R. J. Adams, N. J. Champagne Ii. A numerical implementation of a modified form of theelectric field integral equation[J]. IEEE Transactions on Antennas and Propagation,2004,52:2262-2266.
    [38] Z. G. Qian, W. C. Chew. An augmented electric field integral equation for high-speedinterconnect analysis[J]. Microwave and Optical Technology Letters,2008,50:2658-2662.
    [39] R. D. Graglia, D. R. Wilton, A. F. Peterson. Higher order interpolatory vector bases forcomputational electromagnetics[J]. IEEE Transactions on Antennas and Propagation,1997,45(3):329-342.
    [40] E. Jorgensen, J. L. Volakis, P. Meincke, et al. Higher order hierarchical Legendre basisfunctions for electromagnetic modeling[J]. IEEE Transactions on Antennas and Propagation,2004,52(11):2985-2995.
    [41] Z. Nie, S. Yan, S. He, et al. The basis functions involving propagating wave phase dependencyfor solving the scattering from electrically large targets[C]. IEEE International Symposium onAntennas and Propagation and USNC/URSI National Radio Science Meeting, San Diego,2008,1-4.
    [42] A. J. Poggio, E. K. Miller. Integral equation solutions of three-dimensional scatteringproblems[M]. Oxford: Pergamon Press,1973.
    [43] Inasawa Y, Saito M, Naito I, et al. Numerical calculation and experimental validation of RCSanalysis for radome-enclosed scatterer by using PMCHWT-formulation[C]. General Assemblyand Scientific Symposium, Istanbul,2011,1-4.
    [44] Wei-Jiang Zhao, Le-Wei Li, Ke Xiao. Analysis of Electromagnetic Scattering and RadiationFrom Finite Microstrip Structures Using an EFIE-PMCHWT Formulation[J]. IEEETransactions on Antennas and Propagation,2010,58(7):2468-2473.
    [45]傅君眉,冯恩信.高等电磁理论[M].西安:西安交通大学出版社,2000.
    [46]聂在平,方大纲,目标与环境电磁散射特性建模——理论、方法与实现(基础篇)[M].北京:国防工业出版社,2009.
    [47] A. W. Glisson. An integral-equation for electromagnetic scattering from homogeneousdielectric bodies[J]. IEEE Transactions on Antennas and Propagation,1984,32(2):173-175.
    [48] M. S. Yeung. Single integral equation for electromagnetic scattering by three-dimensionalhomogeneous dielectric objects[J]. IEEE Transactions on Antennas and Propagation,1999,47(10):1615-1622.
    [49] J. H. Richmond. Scattering by a dielectric cylinder of arbitrary cross section shape[J]. IEEETransactions on Antennas and Propagation,1965,13:334.
    [50] J. L. Volakis, B. C. Usner, K. Sertel. Hybrid volume-surface integral equation method for highcontrast composite media and metamaterials[C]. IEEE Antennas and Propagation SocietyInternational Symposium, Albuquerque,2006,87-90.
    [51] J.-M. Jin, J. L. Volakis, V. V. Liepa. Moment method solution of a volume-surface integralequation using isoparametric elements and point matching[J]. IEEE Transactions on MicrowaveTheory and Techniques,1989,37:1641-1645.
    [52] M. I. Sancer, K. Sertel, J. L. Volakis, et al. On volume integral equations[J]. IEEE Transactionson Antennas and Propagation,2006,54:1488-1495.
    [53] B. C. Usner, K. Sertel, M. A. Carr, et al. Generalized volume-surface integral equation formodeling inhomogeneities within high contrast composite structures[J]. IEEE Transactions onAntennas and Propagation,2006,54(1):68-74.
    [54] C. C. Lu. A fast algorithm based on volume integral equation for analysis of arbitrarily shapeddielectric radomes[J]. IEEE Transactions on Antennas and Propagation,2003,51(3):606-612.
    [55] C. C. Lu, W. C. Chew. A coupled surface-volume integral equation approach for the calculationof electromagnetic scattering from composite metallic and material targets[J]. IEEETransactions on Antennas and Propagation,2000,48(12):1866-1868.
    [56] X. Cao, C.-C. Lu. Volume-surface integral equations with hybrid curl-conforming anddivergence-conforming basis functions[C]. IEEE International Symposium on Antennas andPropagation and CNC-USNC/URSI Radio Science Meeting, Toronto,2010:1-4
    [57] H. Y. Chao, W. C. Chew, C. C. Lu. A fast volume-surface integral equation solver for radiationand scattering from wire antennas, IBC surfaces and inhomogeneous dielectric objects[C].IEEE Antennas and Propagation Society International Symposium, San Antonio,2002,2:610-613.
    [58] C.-C. Lu, Y.-O. Pasi, M. Taskinen, et al. Comparison of two volume integral equationformulations for solving electromagnetic scattering by inhomogeneous dielectric objects[C].IEEE International Symposium on Antennas and Propagation and USNC/URSI National RadioScience Meeting, Charleston,2009,1-4
    [59] Z. Y. Zeng, C. C. Lu. Discretization of hybrid VSIE using mixed mesh elements withzeroth-order galerkin basis functions[J]. IEEE Transactions on Antennas and Propagation,2006,54(6):1863-1870.
    [60] V. Rokhlin. Rapid solution of integral-equations of scattering-theory in2dimensions[J]. Journalof Computational Physics,1990,86(2):414-439.
    [61] Jun Hu, Zaiping Nie, Lin Lei, et al. Fast3D EM scattering and radiation solvers based onMLFMA[J]. Journal of Systems Engineering and Electronics,2008,19(2):252-258.
    [62] Ergul O, Malas T, Unal A, et al. Solutions of large integral-equation problems withpreconditioned MLFMA[C]. European Microwave Conference, Munich,2007:166-169.
    [63] Rullhusen I, Arndt F. MLFMA analysis of finite aperture arrays including reflector[C]. IEEEAntennas and Propagation Society International Symposium, Columbus,2003,4:23-26.
    [64] M. F. Catedra, E. Gago, L. Nuno. A numerical scheme to obtain the RCS of3-dimensionalbodies of resonant size using the conjugate-gradient method and the fast fourier-transform[J].IEEE Transactions on Antennas and Propagation,1989,37(5):528-537.
    [65] E. Bleszynski, M. Bleszynski, T. Jaroszewicz. AIM: Adaptive integral method for solvinglarge-scale electromagnetic scattering and radiation problems[J]. Radio Science,1996,31(5):1225-1251.
    [66] J. M. Song, C. C. Lu, W. C. Chew, et al. Fast Illinois Solver Code (FISC)[J]. IEEE Antennasand Propagation Magazine,1998,40(3):27-34.
    [67] J. M. Song, W. C. Chew. Large scale computations using FISC[C]. IEEE Antennas andPropagation Society International Symposium, Salt Lake City,2000,4:1856-1859.
    [68] T.M.Wang, H.Ling. A Connection Algorithm on the Problem of EM Scattering from ArbitaryCavities[J], Journal of EM waves and Applications,1991,5:301-314.
    [69] T.M. Wang, H. Ling, Electromagnetic Scattering from Three-Dimensional Cavities Via aConnection Scheme[J], IEEE Trans. On Antennas Propagat.,1991,39:1505-1512.
    [70]王浩刚.电大尺寸含腔体复杂目标矢量电磁散射一体化精确建模与高效算法研究[D].成都:电子科技大学,2001.
    [71] H.O. Prinz, M. Thunmm. Simulations of Quasi-Optical Output Systems for High PowerGyrotrons based on the Electric Field Integral Equation[C]. Microwave Symposium,IEEE/MTT-S International, Honolulu,2007,1149-1151.
    [72] J.M. Neilson, R. Bunger. Surface Integral Equation Analysis of Quasi-Optical Launchers[J].IEEE Transactions on Plasma Science,2002,30(3):794-799.
    [73] Ben A. Munk.频率选择表面理论与设计[M].北京:科学出版社,2009.
    [74]牛新建,李宏福,喻胜,等.8mm高功率过模弯曲圆波导TE10-TM11模式变换[J].物理学报,2002,51(10):2291-2295.
    [75]杨仕文.高功率微波高频系统的研究[D].成都:电子科技大学,1997.
    [76] Li H F, Thumm M. Mode conversion due to curvature in corrugated wageguides[J].Int.J.Electronics,1991,71(2):333-347.
    [77] Li H F, Thumm M. Mode coupling in corrugated wageguides with varying wall impedance anddiameter change[J], Int. J.Electronics,1991,71(5):827-844.
    [78]李宏福.弯曲圆波导中模式耦合的研究[J],电子科技大学学报,1991,20(5):491-496.
    [79] Li H F. Study on mode coupling coefficients in curved corrugated circular waveguides[J].Chinese Journal of Infrared and Millimeter Waves,1991,11(6):543-549.
    [80] J. M. Rius, M. Ferrando, L. Jofre. High-frequency RCS of complex radar targets in real-time[J].IEEE Transactions on Antennas and Propagation,1993,41(9):1308-1319.
    [81] R. Luneberg. Mathematical theory of optics. Providence[M], RI: Brown University Press,1944.
    [82] J. Keller. Geometrical-theory of diffraction[M]. New York: McGraw-Hill,1958.
    [83] H. Ling, R. C. Chou, S. W. Lee. Shooting and bouncing rays-calculating the RCS of anarbitrarily shaped cavity[J]. IEEE Transactions on Antennas and Propagation,1989,37(2):194-205.
    [84] E.F.克拉特.雷达散射截面-预估,测量和简缩[M].(阮颖铮,陈海).北京:电子工业出版社,1988年11月第一版.
    [85] P. Y. Ufimtsev. Method of edge waves in the physical theory of diffraction[M]. Moscow: SovietRadio,1962.
    [86] A. R. Mitchell, D. F. Griffiths. The finite difference method in partial differential equations[M].Hoboken: Wiley-Interscience,1980.
    [87] J. F. Lee, R. Lee, A. Cangellaris. Time-domain finite-element methods[J]. IEEE Transactions onAntennas and Propagation,1997,45(3):430-442.
    [88] B. Engquist, A. Majda. Absorbing boundary-conditions for numerical-simulation of waves[J].Mathematics of Computation,1977,31(139):629-651.
    [89] A. Bayliss, C. I. Goldstein, E. Turkel. On accuracy conditions for the numerical computation ofwaves[J]. Journal of Computational Physics,1985,59(3):396-404.
    [90] R. Lee, A. C. Cangellaris. A study of discretization error in the finite-element approximation ofwave solutions[J]. IEEE Transactions on Antennas and Propagation,1992,40(5):542-549.
    [91] K. S. Yee. Numerical solution of initial boundary value problems involving Maxwell'sequations in isotropic media[J]. IEEE Transactions on Antennas and Propagation,1966,14(3):302-307.
    [92] E. L. Lindman. Free-space boundary-conditions for time-dependent wave-equation[J]. Journalof Computational Physics,1975,18(1):66-78.
    [93] G. Mur. Absorbing Boundary-conditions for the finite-difference approximation of thetime-domain electromagnetic-field equations[J]. IEEE Transactions on ElectromagneticCompatibility,1981,23(4):377-382.
    [94] Z. P. Liao, H. L. Wong, B. Yang, et al. A transmitting boundary for transient wave analyses[J].Scientia Sinica Series a-Mathematical Physical Astronomical&Technical Sciences,1984,27(10):1063-1076.
    [95] C. M. Rappaport, L. J. Bahrmasel. An absorbing boundary-condition based on anechoicabsorber for EM scattering computation[J]. Journal of Electromagnetic Waves and Applications,1992,6(12):1621-1633.
    [96] J. P. Berenger. A perfectly matched layer for the absorption of electromagnetic-waves[J].Journal of Computational Physics,1994,114(2):185-200.
    [97] A. Taflove, M. E. Brodwin. Numerical-solution of steady-state electromagnetic scatteringproblems using time-dependent maxwells equations[J]. IEEE Transactions on MicrowaveTheory and Techniques,1975,23(8):623-630.
    [98] W. C. Chew. Waves and fields in inhomogeneous media[M]. Hoboken: Wiley-IEEE Press,1999.
    [99] W. C. Chew, M. S. Tong, B. Hu. Integral equation methods for electromagnetic and elasticwaves[M]. California: Morgan and Claypool Publishers,2007.
    [100] R. F. Harrington. Time-harmonic electromagnetic fields[M]. New York: McGraw-Hill BookCompany,1961.
    [101] C. Muller. Foundations of the mathematical theory of electromagnetic waves[M]. New York:Spinger,1968.
    [102] J. A. Stratton. Electromagnetic theory[M]. New York: McGraw-Hill,1941.
    [103] L. Tsang, J.A. Kong, K.H. Ding. Scattering of electromagnetic waves: theories andapplications[M]. New Jersey: Wiley-Interscience,2000.
    [104]楼仁海,符果行,袁敬闳.电磁理论[M].成都:电子科技大学出版社,1996.
    [105] C. T. Tai. Dyadic green functions in electromagnetic theory[M]. Hoboken: IEEE Press,1994.
    [106] P. Yla-Oijala, M. Taskinen, J. Sarvas. Surface integral equation method for general compositemetallic and dielectric structures with junctions[J]. Progress in ElectromagneticsResearch-PIER,2005,52:81-108.
    [107]阙肖峰.导体介质组合目标电磁问题的精确建模和快速算法研究[D].成都:电子科技大学,2008.
    [108] E. H. Newman, P. Alexandropoulos, E. K. Walton. Polygonal plate modeling of realisticstructures[J]. IEEE Transactions on Antennas and Propagation,1984,32(7):742-747.
    [109] J. M. Song, W. C. Chew. Moment method solution using parametric geometry[C]. IEEEAntennas and Propagation Society International Symposium, Seattle,1994:2242-2245.
    [110] S. M. Rao, D. R. Wilton, A. W. Glisson. Electromagnetic scattering by surfaces of arbitraryshape[J]. IEEE Transactions on Antennas and Propagation,1982,30(3):409-418.
    [111] D. H. Schaubert, D. R. Wilton, A. W. Glisson. A tetrahedral modeling method forelectromagnetic scattering by arbitrarily shaped inhomogeneous dielectric bodies[J]. IEEETransactions on Antennas and Propagation,1984,32(1):77-85.
    [112] J. M. Jin, J. Liu, Z. Lou, et al. A fully high-order finite-element simulation of scattering bydeep cavities[J]. IEEE Transactions on Antennas and Propagation,2003,51:2420-2429.
    [113] J. Hu, Z. P. Nie, X. D. Gong. Solving electromagnetic scattering and radiation by FMM withcurvilinear RWG basis[J]. Chinese Journal of Electronics,2003,12(3):457-460.
    [114] J. P. Webb. Hierarchal vector basis functions of arbitrary order for triangular and tetrahedralfinite elements[J]. IEEE Transactions on Antennas and Propagation,1999,47(8):1244-1253.
    [115] S. Wang, Y. Su, X. Guan. Applying fast multipole method to higher-order hierarchicalLegendre basis functions in electromagnetic scattering[J]. IET Microwaves Antennas&Propagation,2008,2(1):6-9.
    [116] E. Jorgensen, O. S. Kim, P. Meincke, et al. Higher order hierarchical discretization scheme forsurface integral equations for layered media[J]. IEEE Transactions on Geoscience and RemoteSensing,2004,42(4):764-772.
    [117] K. C. Donepudi, K. Gang, J. M. Song, et al. Higher-order MoM implementation to solveintegral equations[C]. IEEE Antennas and Propagation Society International Symposium,Orlando,1999,3,1716-1719.
    [118] D. L. Wilkes, C. C. Cha. Method of moments solution with parametric curved triangularpatches. IEEE Antennas and Propagation Society Symposium, London,1991,3,1512-1515.
    [119] M. Abramowitz, I. A. Stegun. Handbook of mathematical functions[M]. New York: Dover,1970.
    [120]陈维恒.微分几何初步[M].北京:北京大学出版,1990.
    [121] D. R. Wilton, S. M. Rao, A. W. Glisson, et al. Potential integrals for uniform and linear sourcedistributions on polygonal and polyhedral domains[J]. IEEE Transactions on Antennas andPropagation,1984,32(3):276-281.
    [122] L. Randez. Optimizing the numerical-integration of initial-value problems in shootingmethods for linear boundary-value-problems[J]. SIAM Journal on Scientific Computing,1993,14(4):860-871.
    [123] M. G. Duffy. Quadrature over a pyramid or cube of integrands with a singularity at a vertex[J].SIAM Journal on Numerical Analysis,1982,19(6):1260-1262.
    [124]王浩刚,聂在平.三维矢量散射积分方程中奇异性分析[J].电子学报,1999,27(12):68-71.
    [125]姚海英,聂在平.三维矢量散射分析中奇异积分的准确积分方法[J].电子与信息学报,2000,22(3):471-477.
    [126] W. H. Press, S. Teukolsky, W. Vetterling, et al. Numerical recipes: the art of scientificcomputing[M]. Cambridge: Cambridge University Press,2007.
    [127] Y. Saad. Iterative methods for sparse linear systems[M]. Boston: PWS Publishing Company,1996.
    [128]马振华等.现代应用数学手册[M].北京:清华大学出版社,2005.
    [129] J. Lee, J. Zhang, C. C. Lu. Sparse inverse preconditioning of multilevel fast multipolealgorithm for hybrid integral equations in electromagnetics[J]. IEEE Transactions on Antennasand Propagation,2004,52(9):2277-2287.
    [130] J. M. Jin, Sean S. Ni, Shung-Wu Lee. Hybridization of SBR and FEM for Scattering by LargeBodies with Cracks and Cavities[J]. IEEE Trans. On Antennas Progat.,1995,43(10):1130-1139.
    [131] W.C.Chew, Nie Zaiping, Q.H.Liu. An efficient solution of electrical well logging tool in acomplex environment[J]. IEEE Trans. Geosci&Remote Sensing,1991,29(2):308-313.
    [132]聂在平,W.C.Chew, Q.H.Liu.电磁波对轴对称二维层状介质的散射[J].地球物理学报,1992,35(4):479-489.
    [133] Kaczmarski, K.J., Laxpati, S.R. Design and development of a square coaxial waveguide-fedhorn antenna with equal E-and H-plane beamwidth[C]. IEEE Antennas and PropagationSociety International Symposium, Honolulu,2007:5672-5675.
    [134] Junfeng Xu, Zhi Ning Chen, Xianming Qing, et al. Bandwidth Enhancement for a60GHzSubstrate Integrated Waveguide Fed Cavity Array Antenna on LTCC[J]. IEEE Transactions onAntennas and Propagation,2011,59(3):826-832.
    [135]袁成卫,刘庆想,钟辉煌.新型高功率微波模式转换天线研究[J].电波科学学报,2005,20(6):716-724.
    [136] Hu Wei, Song Yuecong. Study on High Power Circular Waveguide TE0n-TE11ModeConversion[C]. The8th International Conference on Electronic Measurement andInstruments(ICEMI), Xi'an,2007,2:78-81.
    [137] Gu Ling, Niu Xin-Jian, Yu Xin-Hua. High power bend mode converter in overmodedwaveguide for gyroklystron[C].20108th International Vacuum Electron Sources Conferenceand Nanocarbon (IVESC), Nanjing,2010,394-395.
    [138] Lockard M. D., Butler C. M. Effects of cavities on monopole antenna current distribution anddecoupling from mounting structure[J]. IEEE Transactions on Antennas and Propagation,2006,54(8):2234-2243.
    [139] Rainer Bunger. Moment-Method analysis of arbitrary3-D metallic N-port waveguidestructures[J]. IEEE Transactions on Microwave Theory and Techniques,2000,48(4):531-537.
    [140] Kun-Yi Guo, Xin-Qing Sheng. How to Predict Scattering and Range Profiles using ComplexTargets with Cavities[J]. IEEE Transactions on Aerospace and Electronic Systems,2011,47(1):155-165.
    [141]聂在平,王浩刚.含腔电大尺寸导体目标电磁散射的一体化数值模拟[J].物理学报,2003,52(12):3035-3042.
    [142] W. C. Chew, Z. P. Nie. Analysis of a probe-fed microstrip disk antenna[J]. IEE Proceedings-H,1991,138(2):185-191.
    [143]青滔,聂在平,宗显政.波束波导电磁传输问题的积分方程数值解[J].信息与电子工程,2011,9(5):573-577.
    [144]胡俊.复杂目标矢量电磁散射的高效方法-快速多极子方法及其应用[D].成都:电子科技大学,2000.
    [145] J. M. Song, W. C. Chew. Fast multipole method solution using parametric geometry[J].Microwave and Optical Technology Letters,1994,7(16):760-765.
    [146] S. Koc, J. M. Song, W. C. Chew. Error analysis for the multilevel fast multipole algorithm[C].IEEE Antennas and Propagation Society International Symposium, Atlanta,1998,3:1758-1761.
    [147]青滔,聂在平,麻连凤,等.求解波束波导中激励-传输-辐射问题的积分方程方法[J].强激光与粒子束,2011,23(11):3007-3011.
    [148] J. M. Song, C. C. Lu, W. C. Chew. Multilevel fast multipole algorithm for electromagneticscattering by large complex objects[J]. IEEE Trans. Antennas Propagat.,1997,45(10):1488-1498.
    [149] Y. J. Xie, J. He, A. Sullivan, et al. A simple preconceptioner for electric-field integralequations[J]. Microwave and Optical Technology Letters,2001,30(1):51-54.
    [150] Z. Y. Niu, J. P. Xu. Near-field sparse inverse preconceptioning of multilevel fast multipolealgorithm for electric field integral equations[C]. Asia-Pacific Conference Proceedings,Suzhou,2005,3:1879-1883.
    [151] P. L. Rui, R. S. Chen. An efficient sparse approximate inverse preconceptioning for FMMimplementation[J]. Microwave and Optical Technology Letters,2006,49(7):1749-1750.
    [152] E. Chow. A priori sparsity patterns for parallel sparse approximate inverse preconceptioners[J].SIAM J.. Sci. Stat. Comput.,2000,21(5):1804-1822.
    [153] M. Grote, T. Huckle. Parallel preconceptioning with sparse approximate inverse[J]. SiAM J.Sci. Stat. Comput.,1997,18(3):838-853.
    [154] Gupta R.C., Singh S.P. Mutual Coupling Between Box-Horn Elements of a Phased ArrayTerminated in Three-layered Bio-Media[J]. IEEE Transactions on Antennas and Propagation,2007,55(8):2219-2227.
    [155] Rong-Xing Zhang, Ze-Ming Xie, Qing-Xin Chu. A New Horn Array Feed for ParabolicCylindrical Reflector Antenna[C]. Asia Pacific Microwave Conference, Bangkok,2007,1-4.
    [156] Jung Y.B., Eom S.Y. Dual-Band Horn Array Design Using a Helical Exciter for MobileSatellite Communication Terminals[J]. IEEE Transactions on Antennas and Propagation,2012,60(3):1336-1342.
    [157] Tsai F.C.E., Bialkowski M.E. Compensating for non-uniform phase distribution in a spatialpower combiner formed by hard horns and trays of uniplanar quasi-Yagi antennas[C]. IEEEAntennas and Propagation Society International Symposium, Monterey,2004,4:4136-4139.
    [158]张嘉焱,舒挺,袁成卫.高功率微波空间功率合成的初步研究[J].强激光与粒子束,2007,19(6):915-918.
    [159]严君美.平面空间功率合成技术研究[D].广州:华南理工大学,2010.
    [160] Tao Qing, Zaiping Nie, Xianzheng Zong. Numerical Solution of the Antenna Array ofWaveguide-fed Horns[C].2011China-Korea-Japan Electronics and CommunicationsConference, Chengdu,2011:1-4.
    [161] Z. Altman, R. Mittra. Combining an extrapolation technique with the method of moments forsolving large scattering problems involving bodies of revolution[J]. IEEE Transactions onAntennas and Propagation,1996,44(4):548-553.
    [162] Z. Altman, R. Mittra. A technique for extrapolating numerically rigorous solutions ofelectromagnetic scattering problems to higher frequencies and their scaling properties[J].IEEE Transactions on Antennas and Propagation,1999,47(4):744-751.
    [163] D. H. Kwon, R. J. Burkholder, P. H. Pathak. Efficient method of moments formulation forlarge PEC scattering problems using asymptotic phasefront extraction(APE)[J]. IEEETransactions on Antennas and Propagation,2001,49(4):583-591.
    [164] K. R. Aberegg, A. F. Peterson. Application of the integral equation-asymptotic phase methodto2-dimensional scattering[J]. IEEE Transactions on Antennas and Propagation,1995,43(5):534-537.
    [165] M. E. Kowalski, B. Singh, L. C. Kempel, et al. Application of the integral equation-asymptoticphase (IE-AP) method to three-dimensional scattering[J]. Journal of Electromagnetic Wavesand Applications,2001,15(7):885-900.
    [166] J. M. Taboada, F. Obelleiro, J. L. Rodriguez, et al. Incorporation of linear-phase progression inRWG basis functions[J]. Microwave and Optical Technology Letters,2005,44(2):106-112.
    [167] T. Abboud, J. C. Nedelec, B. Zhou. Improvement of the integral equation method for highfrequency problems[C].3rd International Conference on Mathematical and Numerical Aspectsof Wave Propagation, Mandelieu-la-Napoule,1995:178-187.
    [168] K. R. Aberegg. Electromagnetic scattering using the integral equation-asymptotic phasemethod[D]. Atlanta: Georgia Institute of Technology,1995.
    [169] X. Shen, A. W. Davis, K. R. Aberegg, et al. Highly parallel implementation of the3D integralequation asymptotic phase method for electromagnetic scattering[J]. Applied ComputationalElectromagnetics Society Journal,1998,13:107-115.
    [170] E. Darrigrand. Coupling of fast multipole method and microlocal discretization for the3-DHelmholtz equation[J]. Journal of Computational Physics,2002,181(1):126-154.
    [171] Z. Nie, S. Yan, S. He, et al. On the basis functions with traveling wave phase factor forefficient analysis of scattering from electrically large targets[J]. Progress in ElectromagneticsResearch-PIER,2008,85:83-114.
    [172] S. Yan, S. He, Z. Nie and J. Hu. Simulation wide band radar response from PEC targets usingphase extraction basis function[J], Progress In Electromagnetics Research, PIER2009,13:409-431.
    [173] Yi Ren, Zaiping Nie, Yanwen Zhao. Sparsification of the impedance matrix in solution of theintegral equation by using the maximally orthogonalized basis function[J]. IEEE Trans. Geosci.Remote,2008,46(7):1975-1981.
    [174] S. He, S. Yan, Z. Nie. Scattering analysis of dielectric-coated metallic targets based onphase-extracted basis functions[C]. IEEE International Symposium on Antennas andPropagation and USNC/URSI National Radio Science Meeting, San Diego,2008,1-4
    [175] X. Zong, Z. Nie, S. Yan, et al. Applications of the PE-basis function in hybrid MOM-POmethods[C]. IEEE International Symposium on Antennas and Propagation and USNC/URSINational Radio Science Meeting,2008,1-4
    [176]何十全.非均匀复杂结构目标电磁特性理论建模与高效算法研究[D].成都:电子科技大学,2011.
    [177]仁思.基于积分方程方法的新型基函数的研究[D].成都:电子科技大学,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700