电磁脉冲通过屏蔽体孔缝的耦合特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电磁脉冲可以通过“前门”耦合和“后门”耦合两种方式进入目标腔体内对电子设备产生影响。“前门”耦合比较容易防护,“后门”耦合对系统的影响几乎不能完全消除,是对系统正常工作的最主要威胁。孔缝耦合是电磁脉冲通过“后门”进入目标系统的主要途径之一,是电磁脉冲应用、电磁防护和电磁兼容研究的关键问题。
     本文采用基于时域有限差分方法的模拟软件CST为工具,通过建立模型,研究了电磁脉冲通过屏蔽体孔缝时的耦合效应。具体情况如下:
     (1)对屏蔽体内耦合场分布情况进行研究,结果表明:孔缝中心轴线上的耦合场强远大于非中心轴线上的耦合场强,且在孔缝非中心轴线上存在谐振信号。
     (2)对单孔时孔缝形状、孔缝面积、孔缝位置、孔缝纵横比等对耦合特性的影响进行了比较分析,结果表明:孔缝面积一定时,孔缝为正方形和圆形时耦合场强相对较小;孔缝的面积越大,耦合进入腔体内的场强也越大;孔缝在入射面中央产生的耦合场强大于孔缝在入射面边沿时的耦合场强;入射波极化方向与孔缝的横边平行时,耦合场强随纵横比的增大而相应增大。
     (3)对多孔时孔缝数量、孔阵间距、孔阵排列方式对耦合特性的影响进行了比较分析,结果表明:孔缝总面积一定的情况下,开孔数量越多,耦合场强越小;孔阵间距越大,耦合场强越小;孔阵错排要优于孔阵顺排。
     (4)对同体积不同形状的屏蔽体开有相同孔缝时的耦合特性进行比较分析,结果表明:正方体、圆柱体腔体内的耦合场强小于长方体。
     (5)综合比较分析了核电磁脉冲(NEMP)、快速上升沿脉冲(FREMP)、超宽带脉冲(UwB)三种典型强电磁脉冲通过较小屏蔽腔体孔缝时的耦合特性。
     本文对电磁脉冲通过屏蔽体孔缝时的耦合特性进行了多方位分析。相关结论对屏蔽体的设计以及电磁防护有一定的参考价值。
Electromagnetic pulse through the "front door" coupling and "back door" coupling into the target chamber, the "front door" coupling is easier to be protected, the "back door" coupling effect on the system can hardly be completely eliminated, and it's the main threat to the system. Aperture coupling is one of the main ways of the electromagnetic pulse into the target system and is the key issues of electromagnetic pulse applications, system's electromagnetic protection and system electromagnetic compatibility.
     By establishing model, this paper uses the simulation software CST which is based on the FDTD method as a tool to study the coupling effect of the electromagnetic pulse through the shield's aperture. The contents is something as follows:
     (1)We analysis the coupled field distribution of the shield, the results showed that:the coupling field on the central axis of the aperture is much stronger than on the non-central axis of the aperture, but there is also resonance signal on the non-central axis of the aperture.
     (2)We comparative analysis the coupling characteristics of the aperture shape, aperture size, aperture location, aperture aspect ratio, the results showed that:when the aperture area is certain, the square and circular aperture's coupling field is smaller; when the aperture's area is greater, the coupling of the field into the chamber is greater; when the aperture in the central of incident plane, the coupling field is lager than the aperture in the edge of incident plane; when the incident polarization direction parallel to the transverse edge of the aperture, the coupling field increases with the aspect ratio increases;
     (3)We comparative analysis the coupling characteristics of aperture number, hole array pitch, aperture array arrangement, the results showed that:when the total area of the aperture is certain, The more holes, the coupling field strength is smaller; the Larger aperture array spacing, the coupling field strength is smaller; Aperture array staggered is better than aperture array aligned.
     (4) We comparative analysis the coupling characteristics of different shapes with the same volume and the same aperture, the results showed that:in the cube and cylinder chamber, the coupling field strength is less than in the rectangular.
     (5)We analysis coupling characteristics of three typical electromagnetic pulses: the nuclear electromagnetic pulse (NEMP), fast rising pulse (FREMP), ultra-wideband pulse (UWB) through the small shield's aperture.
     This paper did multidimensional analysis on coupling characteristics of the electromagnetic pulse through the shield's aperture. The conclusions have some reference value on the shield design and electromagnetic protection.
引文
[1]H. A. Bathe, "Theory of diffraction by small holes,"Phys Rev.Vol.66:163-182,Oct.1944
    [2]C.J.Bouwkamp, "OnBethe'5theoryofdirffaetionbysmall holes".PhiliPsRes.ReP., vol.5, PP321-332,1950
    [3]James Benford and John Swgle. High power microwaves[M].1992,Artech House,Inc.Norwood
    [4]G. E. Sieger, D. J. Mayhall, and J. H. Yee, "Numerical simulation of the propagation and absorptiondue to air breakdown of long microwave pulse," awrence Livemore Nat.Lab., Livemore, CA, Tech.Rep.UCRL-96552,Oct.1987
    [5]J. H. Yee,D. J. Mayhall, and C. E. Sieger, "Modeling the interaction of intense electromagnetic pulse with gaseous media," IEEE Trans. Electromag Compat, Vol.34, pp. 189-196, Aug.1992
    [6]G. E. ieger, J. H. Yee, and D. J. Mayhall, "Computer simulation of nonlinear coupling of high-power microwaves with slots," IEEE Trans. Plasma Sci.,Vol.17,pp.616-621,Aug.1989
    [7]J. G. Wang, Y. S. Chen, R. Y. Fan, H. Q. Yu, and D. B. Ge, "Numerical studies on nonlinear coupling of high power microwave pulses into a cylindricalcavity," IEEE Trans. Plasma Sci., Vol.24,pp.193-197,Feb.1996
    [8]王建国.高功率微波脉冲孔缝耦合的理论和数值研究[D],西安:西安电子科技大学,1997
    [9]王建国,屈华民,范如玉,陈雨生,张廷斌.高功率微波与带孔洞腔体非线性耦合的理论研究[J],强激光与粒子束,1995,7(1):108-116
    [10]Taflove, K. Umashankar, B. Beker, F. Harfoush, K. S. Yee, "Detailed FDTD analysis of electromagnetic fields penetrating narrow slots and lapped joints in thick conductingscreens," IEEE Trans. Antennas Propagat,36(2),247-257,1998.
    [11]R. J. King, A. P. Ludwigsen, and K. S. Kunz, "Phenomenology of microwave coupling, Ⅱ,Lawrence Livermore National Laboratory,Livermore,CA,Tech.Rep.UCID-20215, Aug.1985.
    [12]王建国,刘国治,周金山.微波孔缝线性耦合函数研究[J],强激光与粒子束,2003,15(11):1093-1099
    [13]王建国,刘国治,陈雨生等.微波脉冲孔缝线性耦合的数值与实验研究[J],微波学报,1995,11(4):244-251
    [14]王建国,屈华民,范如玉等.孔洞厚度对高功率微波脉冲耦合的影响[J],强激光与粒子束,1994,6(2):282-286
    [15]周金山,刘国治,彭鹏,王建国.不同形状孔缝微波耦合的实验研究[J],强激光与粒子束,2004,16(1):88-90
    [16]周金山,刘国治,王建国.矩形孔缝耦合特性实验研究[J],强激光与粒子束,2003,15(12):1228-1232
    [17]范颖鹏,杜正伟,龚克等.不同形状孔阵屏蔽效应的分析[J],强激光与粒子束,2004.16(11):1441-1444
    [18]付继伟,侯朝桢,窦丽华.电磁脉冲斜入射时对孔缝耦合效应的数值分析.强激光与粒子束,2003.3,Vol:15,No.3:249-252
    [19]王建国,俞汉青,刘国治等.微波脉冲与窄孔缝耦合中共振效应和场增强效应的数值研究[J],电子学报,1998,15(2):174-181
    [20]俞汉青,王建国,陈雨生,范如玉.微波脉冲窄缝耦合的数值模拟方法[J],电子学报,1996,24(3):120-123
    [21]孟萃,陈雨生,王建国.瞬态电磁场对多孔洞目标耦合规律的数值研究[J],强激光与粒子束,2000,12(6):732-736
    [22]王建国.高功率微波与目标耦合,高功率微波会议文集,成都1991
    [23]王建国.微波脉冲与圆柱腔体耦合的时域有限差分模拟,高功率微波会议文集,北京1993
    [24]曹金坤,周东方,牛忠霞等.重复频率高功率微波脉冲的大气击穿[J],强激光与粒子束,2006,18(1):115-118
    [25]陈修桥,张建华,胡以华.电磁脉冲与窄缝腔体耦合共振分析[J],强激光与粒子束,2003,15(5):481-484
    [26]付继伟,侯朝桢,窦丽华.电磁脉冲斜入射时对孔缝耦合效应的数值分析
    [27]赖祖武.高功率微波及核电磁脉冲的防护问题,微波学报,1995
    [28]刘顺坤,傅君眉,陈雨生.快上升前沿电磁脉冲与目标腔体的孔腔共振效应研究
    [29]邱扬,王世萍.小孔矩形腔体屏蔽特性的研究,通信学报
    [30]D. J. Riley and C. D. Turner. "The inclusion of wall loss in finite-difference time-domain thin-slot algorithms," IEEE Trans. on Electromagnetic Compatibility.,Vol.33.Issue:4, PP.304-311.Nov.1991
    [31]Dan Yang, Cheng Liao, "Numerical solution on coupling of UWB pulse into a rectangularcavity through slots," IEEE 2003
    [32]Dan Yang, Jang Fang, Cheng Liao, "The penetrating of repetitive UWB pulse into a rectangular cavity through slots,"CEEM'2003 Hangzhou
    [33]K. S. Yee "Numerical solution of initial boundary value problems involving Maxwell equations in isotropic media," IEEE Tran., Antennas Propagat., May 1966,AP-14(3):302-307
    [34]伍裕江,聂在平,宗显政.接收天线等效电路的严格推导.电子科技大学学报.2008,7,37(4).508-510
    [35]王天顺.核电磁脉冲干扰及防护技术.飞机设计.2000,12,第4期.33-39
    [36]卢新科.电磁脉冲的耦合及防护.西安电子科技大学硕士学位论文,2009
    [37]刘圣民.电磁场的数值方法[M],武汉:华中理工大学出版社,1991
    [38]河野照哉,宅间董.电场数值计算法[M],北京:高等教育出版社,1985
    [39]王蔷,李国定,龚克.电磁场理论基础[M],北京:清华大学出版社,2001
    [40]马西奎.电磁场理论及应用[M],西安:西安交通大学出版社,2000
    [41]Bhag Singh Curu, Huseyin R. Hziroglu. Eleetromagnetie Field Theory Fundamentals[M], Bejing:ChinaMachinePress,2000
    [42]M.P.RObinson, J. D. Turner, D. W. P. Thomas. Shielding effectiveness of a rectangular enclosure with a reetangular aperture[J]. ELECTRONICS LETTERS,15th Aug.1996, Vol.32, No.17:1559-1560
    [43]Martin Paul Robinson, Trevor M. Benson, Christos ChristoPoulos. Analytical Formulation for the Shielding Effeetiveness of Enelosures with Apertures[J].IEEE Trans. Eleetromagn. ComPat., AUG.1998, VOL.40, NO.3:240-248
    [44]邓小斌,侯朝祯.有孔矩形腔屏蔽效能的传输线法分析[J].强激光与粒子束,2004,16(3):341-344
    [45]陈小微,宋占海,余雷.带孔金属腔屏蔽性能的传输线法研究.温州师范学院学报(自然科学版),2006,27(2):29-33
    [46]马双武.时域有限差分法及其对含孔缝的屏蔽体的建模与分析研究[D].北京:北京邮电大学
    [47]吕飞燕,沙斐.用FDTD法分析开孔金属板的屏蔽效能[J].北方交通大学学报,2003,27(3):87-90
    [48]高本庆.时域有限差分法[M],北京:国防工业出版社,1995
    [49]葛德彪,闰玉波.电磁波时域有限差分方法[M],西安:西安电子科技大学出版社,2002
    [50]王长清,祝西里.电磁场计算中的时域有限差分法[M],北京:北京大学出版社,1994
    [51]K. S. Yee. Numerieal solution of initial boundary value problems involving Maxwell equations in isotropic media[J]. IEEE Tran. Antennas Propagat., May.1966, AP-14(3):302-307
    [52]顾茂章,张克潜等.微波技术[M],北京:清华大学出版社,1989
    [53]Gandhi O P. Microwave Engineering and Applications [M], New York:Pergamon,1981
    [54]管致中,夏恭烙.信号与线性系统[M],北京:高等教育出版社,1990
    [55]朱占平.微波与内置物质块带缝腔体耦合的研究[M],国防科学技术大学,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700