深远海环境监测水声通信仿真方法与信道估计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着国家海洋大开发战略的深入实施,国家在深化浅海的基础上,开始挺进深远海的战略部署。水声通信技术将在海洋环境监测和海洋工程中发挥越来越大的作用。由于射频通信、光通信等无线通信方式在水下应用的局限性,水声通信成为目前水下唯一可行的长距离无线通信手段,在海洋工程中水下作业设备通信与定位、海洋环境监测、海洋资源勘探、海洋环境监测、海洋灾难预防、海洋军事国防等方面有着广阔的应用前景。近年来,水声通信的理论和技术研究成为学术研究的热点。在巨大的应用需求的牵引下,水声通信网络、水声传感器网络的研究也陆续展开,在陆地上较为成熟的无线通信方案也被陆续应用于水声通信的研究中。
     但是,由于水声信道是一个比陆上射频信道、卫星信道恶劣得多的无线信道,具有大延迟、强时变、高噪声、强多径、多普勒频偏严重等特点。使得现有的无线通信方案不能直接应用于水声通信系统中。水声信道自身的复杂性是制约水声通信技术发展的关键因素。
     此外,水声通信的试验研究具有高度的复杂性和专业性,其试验存在着布放困难、试验周期长、风险大、不确定因素多等问题。这些问题客观上导致了水声通信研究的周期偏长,效率偏低,也成为制约水声通信发展的关键因素。
     基于以上研究背景,本文在国家高技术研究发展计划课题“基于传感器网络的深远海环境监测平台关键技术研究”和国家自然科学基金课题“水声传感器网络控制系统的模糊控制方法研究”的支持下,开展了水声信道估计算法和水声通信半物理仿真方法的研究工作,主要创新性工作如下:
     1)针对水声信道的特点和不同的应用条件,提出了基于分数阶傅立叶变换的水声信道多参数估计算法,可以同时估计出信道的径数、时延和频偏,具有精度高,计算效率高的优点。
     2)提出并实现了一种水声通信半物理仿真平台HLSP/UWAC设计方案。HLSP/UWAC以SOPC技术、VC++、Matlab为支撑技术,以基于SOPC技术的可配置水声Modem为核心,集成了算法仿真评估、算法实现装载、现场测试采集、水声波形存储四个子系统,具有自动化程度高、易于扩展、基于真实水声信道研究、仿真与实现相辅相成、屏蔽底层复杂硬件设计与通信系统具体实现等特点。在支持CDMA机制的水声直接序列扩频通信系统研究中的应用表明,HLSP/UWAC可有效提高水声通信技术的研究效率。
     3)提出并实现了一种基于SOPC技术的远程在应用中编程(IAP)设计方案。针对水声通信现场级测试试验的更新程序过程中反复拆装水密设备工作效率低、故障率高的问题,以提高工作效率、降低现场测试故障率为目标,根据SOPC系统的工作特点,提出了一种水声通信现场测试试验远程在应用中编程系统的设计方案,并在高速无线通信技术WiFi的支持下进行了设计实现。
With the further implementation of the National Oceanic developing strategy,our country began to advance the strategic plan on the basis of deepening the shallow sea. Underwater acoustic communication will play an increasing role in marine environmental monitoring and engineering technology. Since the limitations of RF communication, optical communication and other underwater wireless communication, acoustic communications becomes the only viable mean of underwater long-range wireless communications. It has broad application prospects in the marine engineering equipment, communications and positioning, marine environmental monitoring, the exploration of marine resources, marine environmental monitoring, marine disaster prevention, marine military and national defense. In recent years, the theory and technology studies about underwater acoustic communication become a hot academic research. Under the huge demand, the research of underwater acoustic network and underwater acoustic sensor has been launched, more mature programs of wireless communications on land were gradually applied to underwater communication research.
     However, the underwater acoustic channel, with a large delay, time-varying intensity, high noise, strong multipath, serious Doppler shift and so on, is worse than land-based radio channel and satellite channel. Makes the existing wireless communication scheme can not be directly applied to underwater acoustic communication system. The complexity of underwater acoustic channel is a key factor for the development of acoustic communication.
     In addition, the study of acoustic communication is highly complex and specialized, it has difficulty in test, long cycle, big risky and uncertain factors that has led to a longer cycle, low efficiency and also a key factor of constraint for the development of underwater acoustic communication.
     Based on the above background, this paper, with the support of the National High Technology Research and Development Program project on " key technologies of the far-reaching sea environmental monitoring platform based on sensor network " and the National Natural Science Foundation of China, " fuzzy control method study on underwater acoustic sensor network control system ", carried out research methods of underwater acoustic channels estimation algorithm and hardware-in-loop simulation of underwater acoustic communication. The main creative work is as follows:
     1) For characteristics of underwater acoustic channel and different application conditions, Ipropose underwater acoustic channels multi-parameter estimation algorithm based on fractional Fourier transform. It can estimate the channel path number, delay and frequency offset with advantages of high accuracy and efficiency.
     2) Propose and implemented a hardware-in-loop simulation platform of underwater acoustic communication HLSP/UWAC design basic on SOPC technology, VC++ and Matlab. HLSP/UWAC based on SOPC technology is the core integrated four systems: algorithm simulation evaluation system, algorithm load system, field test sampling system and acoustic wave storage system, with high degree of automation, easy to expand, based on real underwater acoustic channel research, simulation and implementation, shielding the underlying complexity of the specific hardware design and communications systems to realize. In the study of direct sequence spread spectrum underwater acoustic communication system with CDMA system showed that HLSP/UWAC can effectively improve the water efficiency of acoustic communication technology research.
     3) Propose and implemented in-application programming (IAP) based on SOPC technology. During update process of underwater acoustic communication at the field testing, work of removable watertight equipment has the problem of low efficiency and high failure rate. In order to improve efficiency and reduce the failure rate of field testing, the In-Application Programming system for acoustic communications field test has been proposed and it has been designed to achieve in support of WiFi.
引文
[1]田忠.基于IEEE802.15.4的无线传感网络验证系统的设计与实现: [硕士学位论文].南京:东南大学,2006
    [2]许肖梅,陈东升,许鹭芬,童峰.水声信道中一种抗多途跳频通信的研究.台湾海峡,2001,20(2):152-156
    [3]崔莉,鞠海玲,苗勇,等.无线传感器网络研究进展.计算机研究与发展,2005,42(1):163-174.
    [4] Kong Jiejun, Cui Junhong, Wu Dapeng, et al. Building underwater ad-hoc networks and sensor networks for large scale real-time aquatic applications. In: IEEE Military Communications Conference Proceedings, MILCOM2005, 2005:160-166.
    [5]孙博,程恩,欧晓丽.浅海水声信道研究与仿真.无线通信技术,2006(3):11-15
    [6]李淑秋,李启虎,张春华.水下声学传感器网络的发展和应用.物理,2006,35(11):945-952
    [7]戴荣涛,王青春.现代水声通信技术的发展及应用.科技广场,2008,8:241
    [8]许肖梅.水声通信与水声网络的发展与应用.声学技术,2009,28(6):812-813
    [9] Kilfoyle D B, Baggeroer A B. The State of the Art Underwater Acoustic Telemetry. IEEE Journal of Oceanic Engineering, 2000, 25(1): 4-27
    [10] Dale Green. Underwater acoustic communications and networks. In: Sixth International Symposium on Underwater Technology. UT2009, Wuxi, China, 2009
    [11] Joseph A. Rice. Seaweb acoustic com/nav networks. DARPA ATO Disruption Tolerant Networking Program. 2005, August 2
    [12]蔡惠智,刘云涛,蔡慧,等.水声通信及其研究进展.物理,2006,35(12):1038-1043
    [13]王明华.高速水声通信中OFDM的关键技术与应用研究:[博士学位论文].哈尔滨:哈尔滨工程大学. 2007
    [14]张玉良等.高速数字水声通信系统的研究.声学与电子工程,2002,4:6-12
    [15] Daniel B. Kilfoyle, Arthur B. Baggeroer. The State of the Art in Underwater Acoustic Telemetry. IEEE J. Oceanic. Eng., 2000, 25(1):4-24
    [16] M. Suzuki, T. Sasaki. Digital acoustic image transmission system for deep sea research submersible. In Proc. Oceans’92, Newport, RI. Oct. 1992, 567-570
    [17] J. Fischer, K. Bennett, S. Reible, J. Cafarella, I. Yao. A high rate underwater acoustic data communications transceiver. In Proc. Oceans'92, Newport RI, Oct 1992, 571-576
    [18] M. Stojanovic, et al. Adaptive multichannel combining and equalization for underwater acoustic communications. J.A.S.A. 1993, 94(3):1621-1631
    [19]乔刚.基于矢量传感器的水声通信技术研究: [硕士学位论文].哈尔滨:哈尔滨工程大学. 2004
    [20] Ethem M. Sozer, Milica Stojanovic, John G.Proakis. Underwater Acoustic Networks. IEEE Journal of Oceanic Engineering, 2000, 25(1):72-83
    [21] Chitre M, Shahabudeen S, Stojanovic M.Underwater Acoustic Communications and Networking: Recent Advances and Future Challenges. Marine Technology Science Journal, 2008, 42(1):103–116
    [22] Howe G. S., Tarbit P. S. D., Hinton O. R., Sharif B. S., Adams A. E.. Sub-sea acoustic remote communications utilising an adaptive receiving beamformer for multipath suppression. OCEANS '94. 'Oceans Engineering for Today's Technology and Tomorrow's Preservation.' Proceedings, 1994, 1:313-316
    [23] L. Freitag, M. Johnson, M. Stojanovic. Efficient equalizer update algorithms for acoustic communication channels of varying complexity. In: OCEANS '97. MTS/IEEE Conference Proceedings, 1997, 1:580
    [24] Kim B C, Lu I T. Parameter study of OFDM underwater communication system. In: Proceedings of IEEE Oceans 2000 Conference, 2000:1251-1255
    [25] Huang Jianguo, He Chengbing, Zhang Qunfei, et al. A novel spread spectrum OFDM underwater acoustic communication. In: IET International Conferenceon Wireless Mobile and Multimedia Networks Proceedings, ICWMMN 2006, 2006:157-162
    [26] Stojanovic M. Low complexity OFDM detector for underwater acoustic channels. In: Proceedings of IEEE Oceans 2006 Conference, 2006:1-6
    [27]李媛媛,许亮.基于正交频分复用的水声通信系统.中国新通信,2007:59-62
    [28] Kilfoyle D B, Preisig J C, Baggeroer A B. Spatial modulation over partially coherent multiple-input/multiple-output channels. IEEE Transactions on Signal Processing, 2003, 51(3):794-804
    [29] Roy S, Duman T, Ghazikhanian L, et al. Enhanced underwater acoustic communication performance using space-time coding and processing. In: Ocean'04-MTS/IEEE Techno-Ocean'04:Bridges across the Oceans-Conference Proceedings, 2004:26-33
    [30] Ormondroyd R F. A robust underwater acoustic communication system using OFDM-MIMO. In: Proceedings of OCEANS 2007-Europe, 2007:1-6
    [31] Edelmann G F, Akal T, Hodgkiss W S, et al. An initial demonstration of underwater acoustic communication using time reversal. IEEE Journal of Oceanic Engineering, 2002, 27(3):602-609
    [32] Rouseff D, Jackson D R, Fox W L J, et al. Underwater acoustic communication by passive-phase conjugation: Theory and experimental results. IEEE Journal of Oceanic Engineering, 2001, 26(4):821-831
    [33] Kebkal K G, Bannasch R. Implementation of a sweep-spread function for communication over underwater acoustic channels. In: Proceedings of MTS/IEEE Oceans 2000, 2000:1829-1837
    [34] Rulkov N F, Sushchik M M, Tsimring L S, et al. Digital communication using chaotic pulse position modulation. IEEE Transactions on Circuits and SystemsⅠ: Fundamental Theory and Applications, 2001, 48(12) 1436-1444
    [35]贾连兴.仿真技术与软件.北京:国防工业出版社,2006. 5-6
    [36]吴海彬.基于半物理仿真的海上平台沉浮运动研究: [博士学位论文].杭州:浙江大学. 2002
    [37]吴旭光,杨惠珍,王新民.计算机仿真技术.北京:化学工业出版社,2008. 3-4
    [38]朱世强,武星军,金波.半物理仿真—种事半功倍的工程设计方法,西北大学学报,1999,29:244-247
    [39]刘延斌,金光.半物体仿真技术的发展现状.光机电信息,2003(1):27-32
    [40]王子才.仿真技术发展及应用.中国工程科学,2003,5(2):41-43
    [41]李升波,王建强,李克强.硬件在环仿真测试台监控系统的设计与开发[J].系统仿真学报,2007,19(16):3684
    [42]张宗涛.工程机械行驶驱动系统半物理仿真平台设计:[硕士学位论文].西安:长安大学. 2009
    [43]龙利. MATLAB环境下控制系统实时仿真实验的研究:[硕士学位论文].重庆:重庆大学. 2005
    [44]金晓华.基于dSPACE半实物仿真的电机测试平台研究:[硕士学位论文].南京:东南大学. 2006
    [45] Kendall I R, Jones.R.P. An investigation into the use of hardware-in-the-loop simulation testing for auto-motive electronic control systems. Control Engineering Practice, 1999, 11(11):1343-135
    [46]戴金海.银河仿真Ⅱ型计算机的实时输入输出.计算机仿真,1993,2
    [47]李霞,水声通信中的自适应均衡与空间分集技术研究:[博士学位论文].哈尔滨:哈尔滨工程大学,2004
    [48] RuMin Chao, ShiZheng Lin, YuXiang Huang. The Implementation of PC-based Instrumentation for Underwater Acoustic Communication System. In: Proceedings of the 16th IEEE International Symposium on the Applications of Ferroelectrics, 2007:1-5
    [49]王汝夯,黄建国,张群飞,褚福照.水下制导多用途仿真实验平台.计算机仿真,2007,24(11):277-280
    [50] Zheng Peng, JunHong Cui, Bing Wang, Keenan Ball, Lee Freitag. An Underwater Network Testbed: Design, Implementation and Measurement. In:Proceedings of the 2007 International Conference on Mobile Computing and Networking - Second Workshop on Underwater Networks, 2007:65-72
    [51]王瑛,陈美玲,潘云.基于LabVIEW的水声遥控系统测试平台的设计.测控技术,2009,28(8):6-8
    [52] Tricia Fu, Daniel Doonan, Chris Utley, Hua Lee. FIELD TESTING OF A SPREAD SPECTRUM ACOUSTIC MODEM WITH SPARSE CHANNEL ESTIMATION. In: IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, 2008:5292-5295
    [53]陈立纲,苑秉成.水声探测系统的目标噪声场建模与半实物仿真研究.仪器仪表学报,2010,31(8):1855-1859
    [54] R. J.尤立克.水声原理.哈尔滨:哈尔滨船舶工程学院出版社,1990,1-9
    [55]惠俊英.水下声信道.北京:国防工业出版社,1992,30-33
    [56] B. Baggeroer. Acoustic telemetry-an overview. IEEE J. Oceanic Eng. 1984, 9(4):229-235
    [57]李启虎.声呐信号处理引论.北京:海洋出版社,2000,107-108
    [58]牛停举.基于信道模型的水声通信系统特性研究:[硕士学位论文].烟台:烟台大学,2009
    [59]陶毅.浅海水声信道抗多途调频通信系统研究:[博士学位论文].厦门:厦门大学,2008
    [60] Milica Stojanovic. Recent Advances in High-Speed Underwater Acoustic Communications, IEEE J. Oceanic Eng., 1996, vol.21(2):125-136
    [61]李军,章新华,王凯,徐朝阳.应用声学,2009,28(1):42-46
    [62] D. B. Kilfoyle, A. B. Baggeroer. The state of the art in underwater acoustic telemetry. IEEE Journal of Oceanic Engineering, 2000, 25:4-27
    [63] Georgios B G, Yingbo Hua, Petre Stoica. Signal Processing Advances in Wireless and Mobile Communications. BEIJING: Publishing House of Electronics Industry, 2004, 51-53
    [64] Andrzej Cichocki, Shun-ichi Amari. Adaptive blind signal and image processing. Chichester: John Wiley & Sons Ltd, 2002:161-162
    [65] Jan-Jaap van de Beek, Ove Edfors, Magnus Sandell, Sarah Kate Wilson and Per Ola B?rjesson. On channel estimation in OFDM systems. IEEE VTC’95, 1995, 2: 815-819
    [66]孙翠珍.正交频分复用(OFDM)系统中信道估计算法的研究:[硕士学位论文].西安:西安科技大学, 2005
    [67] Nilson R, Edfors O, Sandell M. An analysis of two-dimensional pilot-symbol assisted modulation for OFDM. Proceedings of IEEE International Conference on Personal Wireless Communications, 1997, 71-74
    [68] R. Negi, J. Cioffi. Pilot tone selection for channel estimation in a mobile OFDM system. IEEE Transactions on Consumer Electronics, 1998, 44:1122-1128
    [69] R J Vaccaro, C S Ramalingam, D W Tufts. Least-squares time-delay estimation for transient signals in a multipath enviroment. J. Acoust. Soc. Am, 1992, 92 (1):210-218
    [70] P. Stoica, K. C. Sharman. Novel eigenanalysis method for direction estimation. IEEE Proceedings, 1990, 137:19-26
    [71] Mason, S. Berger, C. Zhou, S. Willett. Detection, synchronization, and Doppler scale estimation with multicarrier waveforms in underwater acoustic communication. Selected areas in communications, 2008, 26(9): 1638-1649
    [72]臧铁飞,龙腾,吴嗣亮.一种新的星载SAR多普勒调频率的估计方法.北京理工大学学报,2000,20(6):729-732
    [73]赵兴号,陶然,周思永.基于Radon-Ambiguity变换和分数阶傅立叶变换的Chirp信号检测及多参数估计.北京理工大学学报,2003,23(3):371-377
    [74]张贤达,保铮.非平稳信号分析与处理.北京:国防工业出版社,2001
    [75]邹红星,戴琼海,李衍达.不含交叉项干扰且具有WVD聚集性的时频分布之不存在性.中国科学(E辑),2001,31(4): 348-354
    [76] J eong J, Williams WJ. Kernel design for reduced interference distributions. IEEE Transactions on Signal Processing, 1992, 40 (2): 402-412
    [77] Belouchrani, A. Cheriet. On the use of a new compact support kernel in time frequency analysis. IEEE Statical Signal Processing, 2001, 33 -336
    [78]齐林,陶然,周思永.基于分数阶Fourier变换的多分量LFM信号的检测和参数估计.中国科学(E辑),2003,33(8):749-759
    [79]李家强,金荣洪,耿军平等.基于分数阶频率域混合相关的线性调频信号检测与参数估计.上海交通大学学报,2006,40(9):1478-1482
    [80]王福昌,熊兆飞,黄本雄.通信原理.北京:清华大学出版社,2006,301-302
    [81] C. E. Shannon. The Mathematical Theory of Communications. BSTJ, Vol. 27, July-Oct. 1948, 379-423, 623-656
    [82]吴湛击.现代纠错编码与调制理论及应用.北京:人民邮电出版社,2008,2-6
    [83] S. Verdu. Fifty years of Shannon theory. IEEE Trans. Inform. Theory, 1998,44(6):2057-2078
    [84]樊昌信,张甫翊,徐炳祥等.通信原理(第五版).北京:国防工业出版社,2001,280
    [85]黄晓萍,桑恩方.一个水声扩频通信系统设计与实现.海洋工程,2007,25(1):127-132
    [86]丁姝,黄华,崔炳胜,赵晓群.串行级联码在浅海水声通信中的性能研究.大连民族学院学报,2009,11(5):417-421
    [87] Goalic A, Trubuil J, Beuzelin N. Channel coding for underwater acoustic communication system. In: Proceedings of Oceans 2006, 2006:1-4
    [88] Forney G D. Concatenated codes. Cambridge, MA: MIT Press,1966
    [89]宁永海,夏晓剑,沈森. RS码在水声数据无线传输中的应用研究.网络与通信,2009,23:48-53
    [90]姚中华,黄建国.水声通信中级联纠错码技术研究.信息安全与通信保密,2006,10:69-71
    [91]郭淑霞,高颖,黄建国,申晓红.级联码在水下远程通信中的应用研究.无线通信技术,2005,2:14-17
    [92]孙小东,王日胜,侯朝焕.一种多载波跳频水声通信系统的级联码方案.电声技术,2007,31(11):68-70
    [93]郭淑霞,敏娟,费益,黄建国.基于水声信道的级联TCM编码技术研究.无线通信技术,2006,3:7-10
    [94]韩维,黄建国,韩晶. LDPC码在水下语音通信中的性能.吉林大学学报(工学版),2010,40(5):1377-1380
    [95]赵晓群,张玲,杨萍,李立志.准循环低密度校验码在浅海水声通信系统中的性能.同济大学学报(自然科学版),2009,37(10):1409-1413
    [96]高路,贺志强,田宝玉,吴伟陵,蔡惠智.高速水声通信系统仿真研究.声学学报,2003,28(1): 33-39
    [97]俞大磊,张歆.水声通信系统中的Turbo编码方案研究.国外电子测量技术,2010,29(3):26-30
    [98]栾肇鹏,杨波,朱敏.基于TURBO码的OFDM水声通信系统应用. 2009,30(11):65-69
    [99]桑恩方,徐小卡,乔钢,苏军. Turbo码在水声OFDM通信中的应用研究.哈尔滨工程大学学报,2009,30(1):60-66
    [100]刘胜兴,许肖梅.浅海水声信道中Turbo码性能研究.厦门大学学报(自然科学版),2006,45(5):656-659
    [101]高春仙,刘慧.水下数据传输Turbo码译码系统的实现.海洋科学,2007,31(10):55-60
    [102] Haldun M. Ozaktas, Orhan Ankan, M. Alper Kutay, and Gozde Bozdaki. Digital computation of the fractional Fourier transform. IEEE Transactions on signal processing. September 1996, 44(9): 2141-2150
    [103]陶然,齐林,王越.分数阶Fourier变换的原理与应用.北京:清华大学出版社, 2009
    [104] T. C. Yang. Correlation-based decision-feedback equalizer for underwater acoustic commu- nications. IEEE J. Ocean. Eng.. Oct. 2005, 30: 865-880
    [105] J. C. Preisig. Performance analysis of adaptive equalization for coherent acoustic commu- ications in the time-varying ocean environment. Acoust. Soc. 2005, 118: 263-278
    [106]殷敬伟,惠俊英,蔡平,王逸林.基于分数阶Fourier变换的水声信道参数估计.系统工程与电子技术. Oct. 2007,29(10): 1624-1627
    [107] Zhen-biao Lin. Wideband ambiguity function of broadband signals. Acoust. Soc. June 1988, 83(6): 2108-2116
    [108] Taehyuk Kang Litis, R.A.. Matching pursuits channel estimation for an underwater acoustic OFDM modem. 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, 2008, 5296-5299
    [109] C. C. Tsimenidis, B. S. Sharif, O. R. Hinton, A. E. Adam. Analysis and modelling of experimental doubly-spread shallow-water acoustic channels. Oceans 2005-Europe, 2005, 2:854- 858
    [110] S. Pei, W. Hsue. The multiple-parameter discrete fractional fourier transform. IEEE Signal Processing Letters, 2006, 13(6):329–332
    [111]朱彤.基于正交频分复用的水声通信技术的研究.哈尔滨工程大学博士论文.2004:2-6页,20页,23-24页
    [112]张少联.OFDM技术在水声通信中的应用研究.哈尔滨工程大学硕士论文.2007.3:24-26页
    [113] B. S. Sharif, J. Neasham, O. R. Hinton, and A. E. Adams,“A computationally efficient Doppler compensation system for underwater acoustic communications,”IEEE J. Ocean. Eng., vol. 25, no. 1, pp. 52–61, Jan.2000
    [114] B. Li, S. Zhou, M. Stojanovic, L. Freitag, and P. Willett,“Multicarrier Communication over Underwater Acoustic Channels with Nonuniform Doppler Shifts,”IEEE J. Ocean. Eng., vol. 33, no. 2, Apr. 2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700