纳米粉体化学镀及特种陶瓷的制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对纳米氧化铝粉体进行化学镀Ni-P合金,不仅可以降低粉体颗粒间的团聚几率、提高粉体的表面活性,而且还可以综合基体粉体(氧化铝)与金属镀层(Ni-P合金)各自的优点,进而拓展一些新的功能。鉴于以上目的,本文研究了纳米粉体化学镀的前处理工艺和化学镀工艺,并优化出了最佳的前处理工艺、镀液配方及施镀方案。同时进行了镀液的寿命实验,通过对镀液中Ni~(2+)的定期检测,计算出溶液中NiSO_4的含量,并制定出了相应的补加方案。利用寿命实验测出镀液的使用周期,为复合粉体的生产化提供了有利的前提。在此基础上,对已施镀的氧化铝黑色粉末进行X射线衍射及扫描电镜检测,结果表明,氧化铝粉末施镀完全,镀层含镍量为9.32%,含磷量为2.32%,镀层呈晶体态结构。
     采用化学镀的方法将金属镍包覆在氧化铝粉体表面,可以避免传统球磨法所导致的粉体混合不均匀的问题。通过在粉体表面加入少量金属进行界面改性,可以改善单一颗粒增韧的强韧化效果,实现复合增韧。
     本文采用无压烧结工艺制备了镍磷合金镀层包覆氧化铝颗粒的特种陶瓷材料。主要研究内容如下:采用镀层中含镍量为9.32%,含磷量为2.32%的包覆型氧化铝颗粒进行了1150~1400℃的无压烧结实验研究,对比了不同烧结工艺下制得的样品情况,得到了最佳工艺:烧结温度为1350℃、保温时间40 min。并检测了样品的断裂韧性、致密度、耐磨性。与单一氧化铝陶瓷对比,断裂韧性从单一Al_2O_3陶瓷的3.0 MPa·m~(1/2)提高到6.91MPa·m~(1/2),增加了130.3%;致密度最高可达到96.8%;耐磨性良好。
Electroless Ni-P alloy plating on the nano alumina powder not only improves the weakness of the nano Alumina powder, which easily reunites, and enhances the powder's face activity, but also may combines the respective merit of substrate powder(Alumina) and metallic powder(Ni-P alloy), what is more, may develops some new traits. According to these purposes, during the electroless plating on the nano Alumina power, the paper mainly researches the craft of the former disposal, the basic formulation of the electroless nickel bath and idiographic scheme of electroless Ni-P alloy plating, sequentially elicit optimal the craft of the former disposal, the basic formulation of the electroless nickel bath and idiographic scheme of electroless Ni-P alloy plating. At the same time, the life span of the EN solution is also studied by a series of experiments, which firstly analyses the content of Ni~(2+)by titration , secondly calculating the content of NiSO_4 by formula and accordingly constituting appropriate addition scheme. Making use of the experiments of the life span of the EN solution may ascertain the metal turn over (MTO) of the EN solution, the aim of experiments is a batch production of the powder. On this ground work, the black nano Alumina powder which is plated steer the diffraction of X ray and Scan the electric mirror examination analysis, As a result, the alumina dust is fully plated ,the plated lay includes the nickel as 9.32%, phosphorus as 2.32%, which present the crystal structure.
     Coating surfaces of Al_2O_3 powder by electroless method is believed to be an effective way to prevent powders from amalgamating and growing, avoiding heterogeneous distribution of low content additive when using conventional ball-milling method, to achieve synergistic toughening by interfacial modification.
     In this paper, with Ni-P coated Al_2O_3 powder as staring powders, sintered composites was obtained by non-pressing the mixture of powder. The mail contents are as follows: Non-pressing were carried out in the range of 1150℃to 1400℃with Ni content 9.32% and phosphorus content 2.32%. For comparison, the processing parameters of Al_2O_3/ Ni-P special ceramics were further optimized to be 1350℃and 40 min. Then the sample's properties were tested which included break flexibility density and abrasion. In comparison with Al_2O_3 composites, the break flexibility was improved from 3.0 MPa·m~(1/2) to 6.91 MPa·m~(1/2) by 130.3%; the highest density was 96.8%; the abrasion was ameliorated.
引文
[1]Mou J, Mao Z Y, Li J. Erosion behavior and evaluation of erosion resistant AT30Z. Wear, 1995, 181: 194-201.
    [2]Chen X M, Liu X Q, Liu F et al. 3Y-TZP ceramics toughened by Sr_2Nb_2O_7 secondary phase. Eur Ceramic Sec, 2001, 21 (4): 477-481.
    [3]Sigl L S, Mataga P A, Daljlleish B J et al. On the toughness of brittle materials reinforced with a ductile phase. Acta Metall, 1998, 36 (4): 945-953.
    [4]Li Y W, Ding H D, Hao H Q et al. Electroless plating improving the bending strength of copper graphite material. Rate Met Mater Eng, 1998, 27 (3): 182-185.
    [5]范景莲,徐浩翔,黄柏云等.金属-Al_2O_3陶瓷基复合材料的研究与发展前景.粉末冶金工业,2003,13(3):1-5.
    [6]于志强,武高辉,孙东立等.Al_2O_3微粉的表面改性及表征.无机材料学报,2003,18(6):1250-1254.
    [7]陈范才,周海晖,张小华.化学镀镍磷合金工艺中问题与探讨.表面技术,2002,31(3):44-46.
    [8]Chung W S, Chang S Y, Lin S J. Electroless nickel plating on SiC powder with hypophosphite as a reducing agent. Plating and Surface Finishing, 1996, 83 (3): 68-71.
    [9]Velez M, Quinones H, Di G A R et al. Electroless Ni-B coated WC and VC powder as precursors for liquid phase sintering. Internation Journal of Refractory Metals & Hard Materials, 1999, (17): 99-102.
    [10]李宁,袁国伟,黎德育.化学镀镍基合金理论与技术.哈尔滨:哈尔滨工业大学出版社,2000:36-41.
    [11]熊晓东,翟玉春,田彦文等.铝粉化学镀纯镍机理.东北大学学报(自然科学版),1999,17(5):512-516.
    [12]Kishimotou S, Shinya N. Development of metallic closed cellular materials containing polymer. Materials and Design, 2000, 21: 575-578.
    [13]Reksc W, Idziak A. Plating plastics with electroless Nickel in a bath containing boron hydride hydrazine. Plating and Surface Finishing, 1990, 77 (1): 56-59.
    [14]Luan B, Cui N, Liu H K et al. Low-temperature surface micro-encapsulation of Ti_2Ni hydrogen-storage alloy powders. Journal of Power Sounse, 1994, 52: 295-299.
    [15]赵雷康,裴新.氧化铝陶瓷粉的制备方法.国外建材科技,2002,23(1):39-41.
    [16]马智勇.化学镀法制备纳米Co-Al_2O_3复合粉末的研究(硕士学位论文).杭州:浙江大学,2002.
    [17]卢金山,高濂,归林华等.Al_2O_3/Ni包裹粉体的制备、烧结行为及其显微结构研究.无机材料学报,2001,16(2):277-282.
    [18]张永忠,樊建中,张奎等.化学镀镍层的耐蚀性.表面技术,1998,27(3):23-25.
    [19]刘定福.化学镀Ni_2P合金耐蚀性的影响因素.电镀与环保,1999,19(2):15-16.
    [20]戴长松.化学镀镍液稳定性的综合评价.电镀与环保,1997,17(4):9-11.
    [21]何志亮,邢建东,高义民.陶瓷颗粒化学镀镍工艺及设备.电镀与精饰,2003,25(3):28-29.
    [22]Liu R,Gao C,Yang J.High corrosion-resistant and long-life-span.Metal Finishing,2002:100(3):34-37(4).
    [23]李世普.特种陶瓷工艺学.武汉:武汉理工大学出版社,1990:98-109.
    [24]童祜嵩.颗粒粒度与比表面测量原理.上海:上海科学技术文献出版社,1989:49.
    [25]肖纪美.抗断裂的材料设计.金属学报,1997,33(2):113-125.
    [26]任俊,卢寿慈.固体颗粒在液相中的分散.北京科技大学学报,1998,20(1):1-6.
    [27]任俊,卢寿慈.固体颗粒的分散.中国粉体技术,1998,4(1):25-33.
    [28]杨静漪,李理,蔺玉胜等.纳米ZrO_2水悬浮液稳定性的研究.无机材料学报,1997,12(5):665-670.
    [29]孙静,高廉,郭景坤.分散剂用量对几种纳米氧化锆粉体尺寸表征的影响.无机材料学报,1999,14(3):465-469.
    [30]翁学华,彭美春.α-Al_2O_3粉末在有机溶液中的分散性研究.陶瓷工程,1994,27(3):11-14.
    [31]赵斌,姚明懿,张宗涛等.银超微粒子分散液中银离子粒径的控制.石油化工,1996,25(30):159-163.
    [32]李明伟,尹钟大,来忠红等.羰基镍粉末悬浮液性能研究.粉末冶金工业,2002,12(1):17-22.
    [33]孟天财.铝粉在环氧丙烷中的乳化分散.南京理工大学学报,1994,2:73-77.
    [34]李平英,郭书印,方建新等.钠分散体的制备与应用研究.化学试剂,1996,18(4):234-236.
    [35]刘粤惠,王迎军,吴东晓等.超细粉透射电镜试样分散新方法.中国陶瓷,1997,33(5):15-17.
    [36]王利军,张有兰,刘志华等.炭黑在水性体系中的分散及分散剂结构的影响.天津大学学报,1999,32(5):616-620.
    [37]T佐藤,R J鲁赫著,江龙等译.聚合物吸附对胶态分散体稳定性的影响.北京:科学出版社,1988:29-97.
    [38]王长卓.涂料流动和颜料分散.北京:化学工业出版社,1994:246-254.
    [39]Birdi K S. Handbook of Surface and Colloid Chemistry. New York: CRC Press. LLC, 1997: 561-569.
    [40]王瑞刚,吴厚政,陈如玉等.陶瓷料浆稳定分散进展.陶瓷学报,1999,20(1):35-40.
    [41]谢灼利,孙宏伟,郑冲.α-Al_2O_3稳定浆料的研究.无机材料学报,1998,13(6):818-822.
    [42]Toshihiro I, Yoshikazu K, Akira N et al. Effect of dispersant on paste rheology in preparation of proous alumina with oriented pores by extrusion method. Journal of Porous Materials, 2006, 13 (3): 269-273.
    [43]Kevin P P, David S W, David S W. Tape casting of free Alumina/Zirconia powders for composite fabrication. Journal of the American Ceramic Society. 1994, 77 (8): 2137-2141.
    [44]Young A C, Omatete O O, Janney M A et al. Gelcasting of Alumina. Journal of the American Ceramic Society. 1991, 74 (3): 612-618.
    [45]周吉高,李包顺,黄校先等.纳米氧化锆粉体的表面改性研究.无机材料学报,1996,11(2):237-240.
    [46]曾健青,张镜澄.用超临界流体干燥法制备纳米级二氧化锆.广州化学,1997,3:9-12.
    [47]刘雪霆,许煜汾,范文元.共沸蒸馏法制备ZrO_2纳米晶微粉的研究.合肥工业大学学报(自然科学版),1998,21(5):43-47.
    [48]何志亮,邢建东,高义民.陶瓷颗粒表面的化学镀镍.铸造,2003,52(2):101-104.
    [49]Middeke H J.Plating on plastics part Ⅳ-electroless metal deposition.Electroplating and Finishing.2005,24(4):18-24.
    [50]盛平哓,张玉梅.无机粉体的化学镀.电镀与精饰,1991,13(4):28-29.
    [51]胡文彬,刘磊,亚婷.难度基材的化学镀镍技术.北京:化学工业出版社,2003:1-3.
    [52]马俊如,余翔林.高技术前沿展望.北京:中国科学技术大学出版社,1993:1111.
    [53]张立德.纳米材料.北京:化学工业出版社,2000:54.
    [54]陈玉金,邱成军,宿辉等.碳纳米管化学复合镀镍钴.中国表面工程,2003,(2):29-32.
    [55]Lei Z X, Li X K, Wang H Z et al. Magnetic properties of carbon nanotubes encapsulating nanaosized nickel particles. New carbon materials, 2002, 17 (4): 67-70.
    [56]Jian L, Liu T. Preparation of NiAl_2O_4/Al_2O_3 composite nanopowder. Powder metallurgy technology, 2005, 23 (5): 339-342.
    [57]果世驹.粉末烧结理论.北京:冶金工业出版社,1998,3.
    [58]施剑林.固相烧结-Ⅱ气孔显微结构模型及其热力学稳定性,致密化方程.硅酸盐学报,1997,25(5):499-512.
    [59]施剑林.固相烧结Ⅲ-粗化与致密化关系及物质传输途径.硅酸盐学报,1997,25(6):657-667.
    [60]武建军,张运.弥散强化铜基复合材料制备工艺.粉末冶金技术,1997,17(30):195-200.
    [61]Jianjun W, Guobin L. Copper matrix composites reinforced with nanometer alunina particle. Journal of Materials Science & Technology, 1999, 15 (2): 143-146.
    [62]Sung T O, Tohru S. Fabrication and mechanical properties of 5 vol% copper dispersed alumina nanocomposite. Journal of European Ceramic Society, 1998, 18:31-37.
    [63]Maki S, Harada Y. Application of resistance sintering technique to fabrication of metal matrix composite. Journal of Materials Processing Technology, 2001, 119 (3): 210-215.
    [64]张大童,李元元,罗宗强.快速凝固高硅铝合金粉末的热挤压过程.中国有色金属学报,2001,11(1):6-9.
    [65]David W. Composites industry paint technology advancements. Products Finishing, 2004, (2): 68-69.
    [66]Liu D M. Influence of dispcrsant on powders dispersion and properties of zirconis green compacts. Ceramics International, 2000, (26): 279-287.
    [67]王相田,胡黎明,顾达等.超细颗粒分散过程分析.化学通报,1995,(5):13-17.
    [68]Lashmore D S, Ratzker M, Pratt W. Electrodeposition and corrosion performance of Ni-P amorphous alloys. Plating and Surface Finishing, 1986: 74-82.
    [69]林广涌,雷廷权,周玉.陶瓷材料断裂韧性的评定方法.宇航材料工艺,1995,4:12-19.
    [70]周玉.陶瓷材料学.哈尔滨:哈尔滨工业大学出版社,1995:326-371.
    [71]Niihara K, Morena R, Hasselman D P H. Evaluation of K_(IC) of brittle solids by the indentation method with low crack-to-indent ratios. Journal of Materials Science Letters, 1982, 1:13-16.
    [72]龚江洪.陶瓷材料断裂力学.北京:清华大学出版社,2001:49-64.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700