基于监测数据的桥梁安全状况评估研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
确保桥梁结构的安全,需要在不同阶段对结构的安全进行监控、监测和评估。首先,在桥梁施工阶段,要对桥梁施工实施全程监督与控制,保证施工过程中结构处于安全状态,成桥状态桥面线形与受力状态符合设计要求。然后,对于新建桥梁,一来要通过成桥通车鉴定试验来验证桥梁的施工质量,二来可以建立可用于损伤识别和健康监测的基准有限元模型。最后,对于在役桥梁,要对桥梁结构的整体行为的进行实时监测,通过测定其关键性能指标,获取反映结构状况的信息,对其健康状况进行评估。
     虽然国内外在桥梁结构安全评估领域开展了不少研究工作,已有许多处理方法和研究成果,但还有许多关键问题或难点没有得到很好地解决,比如,对严寒地区大跨高墩连续刚构桥梁进行系统安全评估的研究成果不多。本论文就是基于这样的背景,在国家杰出青年科学基金项目(No.50925828)资助下,结合小沙湾黄河特大桥工程实际,旨在从桥梁施工阶段开始,到桥梁的实际运营阶段,对桥梁安全进行监控监测,然后基于监测数据对桥梁结构的安全性进行评估,确保结构处在一个安全的状态。重点研究了大跨度桥梁施工监控、大跨度桥梁基准有限元模型的建立和大跨度桥梁结构健康监测。研究结果可广泛应用于桥梁结构的施工监控、损伤识别、健康监测以及承载力评定,具有较大的理论意义和工程实用价值。
     本论文在如下几方面进行了理论、数值与试验研究,并取得了一些研究成果:
     (1)对黄河小沙湾特大桥进行了施工监控。首先介绍了施工监控的目的、原则和方法,并制定了施工监控的实施方案,对桥梁施工过程进行了全程监控,从线形和应力监控结果可以看出,小沙湾黄河特大桥上部结构质量符合规范要求,内力和线形误差均在可控范围内。
     (2)建立了小沙湾黄河大桥的基准有限元模型。通过实桥静动力测试获得桥梁真实特性。利用优化算法,以成桥动力特性实测结果为目标,对小沙湾黄河大桥的初始有限元模型进行了模型修正。修正后的小沙湾黄河大桥有限元模型的动力特性与实测值基本一致,表明该修正模型能够代表小沙湾黄河大桥的结构特性,可以作为后续健康监测以及损伤识别的基准模型。
     (3)建立了小沙湾黄河大桥的健康监测系统,并利用该系统对小沙湾黄河大桥成功监测至今。监测系统记录了桥梁结构的形变、动力响应情况,均满足结构设计的要求,监测系统的建立有助于为大桥的日常维护提供可靠的指导和判断。小沙湾黄河特大桥的各测点位移均较小,桥梁的运营处于安全状态。
     (4)利用建立的小沙湾黄河大桥健康监测系统获取的前两年监测数据,确定了小沙湾黄河大桥的健康监测通常限值。利用建立的小沙湾黄河大桥基准有限元模型,确定了小沙湾黄河大桥的安全限值。为小沙湾黄河大桥后续的健康监测及结构安全性评估提供了一个判定指标。
To guarantee the safety of bridge structure, it is essential to control, monitor andassess the safety of biridge structure at different stages. Firstly, during bridge construction,it is necessary to inspect and control the bridge construction throughout the the wholecourse to ensure the safe condition of structure in different stages, and the line shape andstress condition after the completion. Secondly, for the newly constructed bridges, it isessential to verify the construction quality and build the baseline finite element model forlater damage identification and health monitoring through the test for open to traffic. Inthe end, for existing bridge, it is also necessary to monitor the real-time overall behaviorof bridge, aquire the information that reflects the structure condition through measure itsKey Performance Indicators and assess its health condition.
     Though many research works are carried out home and abroad, and there are manyprocess methods and research findings about bridge safety assessment, many keyproblems or difficulties have not been solved, such as there is few research results for thelong-span high-pier continuous rigid frame bridge in cold regions.. Based on the researchbackground and sponsored by supported by a grant from National Science Fund forDistinguished Young Scholars (No.50925828),combined with the engineering practicesof Xiaoshawan Huanghe Super Major Bridge, this dissertation aims to study a few keytechniques of the assessment of bridge safety from the construction phase to the actualoperational phase, control and monitor the bridge safety, gurantee its condition all the time,the construction control for long-span bridge, the setup of baseline finite element modellong-span bridge and health monitoring for long-span bridge are mainly investigated. Theresults of the dissertation can be used in the practice of bridge structures for constructioncontrol, damage identification, health monitoring and bearing capacity evaluation and theapplication is significant theoretically and practically.
     In this dissertation, following aspects are studied theoretically, numerically andexperimentally, and some results are achieved:
     (1) The construction control is carried through successfully for XiaoshawanHuanghe Super Major Bridge. The aim, principle and method of construction control are introduced, and the implementation plan is set up. The the construction process arecontrolled all the time. From the results of line shape and stress, it can be seen that thequality of superstructure meets the requirements of codes, and the errors of internal forceand ling shape are all manageable.
     (2) The baseline finite element model of Xiaoshawan Huanghe Super Major Bridge isset up. Firstly, the basic theory of optimization algorithm is introduced; secondly, the theinitial finite element model is set up according to the design drawings and based on theanalytical results the in-situ vibration testing is carried out; In the end, the baseline finiteelement model is set up based on optimization algorithm and model updating. Thebaseline finite element model can reflect the dynamic behavior very well and can be usedin the future health monitoring.
     (3) The real-time health monitoring is carried out successfully. The monitoringsystem records the displacement, stress and temperature of bridge structure under differentcondition, the setup of monitoring system is helpful for the routine maintenance of bridge.From the available results, the displacement and strain at the survey points are little andvary regularly with the variation of air temperature, the dynamic characteristics variesvery little and the variation of bridge deck elevation is also very small. From all the resultsit can be concluded that the bridge is healthy and in a safe operation condition.
     (4) Based on the data drawn from the Health Mornitoring System of XiaoshawanHuanghe Super Major Bridge, the normal limit values were determined. And the safetythreshold values were alsl determined based on the baseline FE model. All these valuescan be worked as the decision indicators for the health monitoring and structural safetyassessment of Xiaoshawan Huanghe Super Major Bridge.
引文
[1]宋丽加.悬臂施工连续梁桥的线形控制技术.四川建筑,2008,28(2):184-187.
    [2]赵晨.连续刚构桥梁施工监控及仿真分析.重庆:重庆大学硕士学位论文,2012.
    [3] JTG D62-2004.公路钢筋混凝土及预应力混凝土桥涵设计规范.北京:人民交通出版社,2004.
    [4] Wilson J C, Liu T. Ambient vibration measurements on a cable-stayed bridge.Earthquake Engineering and Structural Dynamics,1991(20):723-747.
    [5] Chang C C, Chang T Y P, Zhang Q W. Ambient vibration of long-span cable-stayedbridge. Journal of Bridge Engineering, ASCE,2001,6(1):46-53.
    [6] Zang C, Imregun M. Structural damage detection using artificial neural networksand measured FRF data reduced via component projection. Journal of sound andvibration,2001,242(5):813-827.
    [7] Chang C C, Xu YG, To WM.Selection of training samples for model updating usingneural networks.Journal of sound and vibration,2002,249(5):867-883.
    [8] Atalla M J, Inman D J. On model updating using neural networks. Mechanical andsignal processing,1998,12(1):135-161.
    [9] Levin R I, Lieven N A, Lowenberg M H. Measuring and improving neural networkgeneralization for model updating. Journal of sound and vibration,2000,238(3):401-424.
    [10] Xu Bin, Wu Zhishen, Chen Genda, et al. Direct identification of structuralparameters from dynamic responses with neural networks. Engineering applic-ations of artificial intelligence,2004,17(8):931-943.
    [11] Chang C C, Xu Y G, To W M. Selection of training samples for model updatingusing neural networks. Journal of sound and vibration,2002,249(5):867-883.
    [12]彭雪林.基于健康监测的大跨度斜拉桥基准有限元模型.福州:福州大学硕士学位论文,2004.
    [13]欧进萍.重大工程结构智能传感网络与健康监测系统的研究与应用.中国科学基金,2005(1):8-12.
    [14] Liao W H, Wang D H, Huang S L. Wireless Monitoring of Cable Tension ofCable-Stayed Bridges Using PVDF Piezoelectric Films. Journal of IntelligentMaterial Systems and Structures.2001,12(5):331-339.
    [15] Mohammad Ilyas, Imad Mahgoub. Handbook of Sensor Networks: CompactWireless and Wired Sensing Systems. Washington D C: CRC,2005.
    [16] Mari AntonioR, Valdes Manuel. Long-term behavior of continuous precast concretegirder bridge model. Journal of Bridge Engineering,2000,5(1):22-30.
    [17] Gaicedo J M, Marulanda J, Thomson P, Dyke S J. Monitoring of bridges to detectchanges in structural health. Proceedings of the American Control Conference,2001(1):453-458.
    [18]方明山.20世纪桥梁工程发展历程回顾及展望.桥梁建设,1999(1):58-60.
    [19]刘来君,陈跃.云南大保高速公路连续刚构桥施工控制.桥梁建设,2004(6):56-58.
    [20]林颖.浅谈连续刚构施工控制设计.广州:广东省交通咨询服务中心,2003(3):51-53.
    [21] Russell H W. Inspection and control of concrete for highway and bridge construction.American Concrete Institute Journal,1950,21(6):437-442.
    [22]方志,刘光栋,王光炯.斜拉桥施工的灰色预测控制系统.湖南大学学报,1997,24(3):74-81.
    [23] Yang Jong-Ho, Im Duk-Ki, Kim Chang-Hyun, Ahn Sang-Sup, Lee Wan-Soo.Construction and geometry control of Incheon cable-stayed bridge. StructuralEngineering International: Journal of the International Association for Bridge andStructural Engineering (IABSE),2012,22(1):49-52.
    [24] Waldner H Eugene, Kulicki John M. Quincy bayview bridge-construction control.ASCE,1988:24-39.
    [25] Al-Qarra H Dee. Estuary Bridge-control of geometry during construction.Proceedings of the Institution of Civil Engineers: Civil Engineering,1999,132(1):31-39.
    [26] Matsumoto Tatsunori, Kitiyodom Pastsakorn, Matsui Hiromasa, KatsuzakiYoshikazu. Monitoring of load distribution of the piles of a bridge during and afterconstruction. Soils and Foundations,2004,44(4):109-117.
    [27]李元松,李新平,姜天华,杨爱平.大跨度斜拉桥施工控制方法研究.武汉工程大学学报,2007,29(4):45-48.
    [28] Gucunski Nenad, Antoljak Strahimir, Maher Ali. Seismic methods in postconstruction condition monitoring of bridge decks. Geotechnical Special Publication,2000(108):35-51.
    [29] Vohra Sandeep, Johnson Gregg, Todd Michael, Danver Bruce, Alhouse Bryan.Distributed strain monitoring with arrays of fiber Bragg grating sensors on anin-construction steel box-girder bridge. IEICE Transactions on Electronics,2000,E83-C(3):454-461.
    [30] Casas J R, Aparicio A C. Monitoring of the Alamillo cable-stayed bridge duringconstruction. Experimental Mechanics,1998,38(1):24-28.
    [31] Gilliland James A, Dilger W H. Monitoring concrete temperature duringconstruction of the confederation bridge. Canadian Journal of Civil Engineering,1997,24(6):941-950.
    [32]韩大建,官万轶,颜全胜.斜拉桥施工过程的预测和控制.华南理工大学学报,2001,29(1):14-17
    [33]宋士新.大跨度连续刚构桥梁施工控制关键问题分析与研究.广州:华南理工大学硕士学位论文,2012.
    [34]林元培.卡尔曼滤波法在斜张桥的应用.土木工程学报,1983,16(3):7-14.
    [35]李国平,刘健.大跨连续梁桥线形最优施工控制的理论与方法.华东公路,1992(2):66-70.
    [36]顾安邦,常英,乐云翔.大跨径预应力连续刚构桥施工控制的理论与方法.重庆交通学院学报,1999,18(4):47-53.
    [37]杨高中,周军生.连续刚构桥在我国的应用和发展.公路,1998(6):1-7.
    [38]向中富.桥梁施工控制技术.北京:人民交通出版社,2001.
    [39] Ding Youliang, Li Aiqun. Finite element model updating for the RunyangCable-stayed Bridge tower using ambient vibration test results. Advances inStructural Engineering,2008,11(3):323-335.
    [40] El-Borgi S, Neifar M, Cherif F, Choura S, Smaoui H. Modal identification, modelupdating and nonlinear analysis of a reinforced concrete bridge. JVC/Journal ofVibration and Control,2008,14(4):511-530.
    [41] Schlune Hendrik, Plos Mario, Gylltoft Kent.Improved bridge evaluation throughfinite element model updating using static and dynamic measurements. EngineeringStructures,2009,31(7):1477-1485.
    [42] Jung Dae-Sung, Kim Chul-Young. FE model updating based on hybrid geneticalgorithm and its verification on numerical bridge model. Structural Engineering andMechanics,2009,32(5):667-683.
    [43] Lin Xiankun, Zhang Lingmi, Guo Qintao, Zhang Yufeng.Dynamic finite elementmodel updating of prestressed concrete continuous box-girder bridge. EarthquakeEngineering and Engineering Vibration,2009,8(3):399-407.
    [44] Deng Lu, Cai C S. Bridge model updating using response surface method andgenetic algorithm. Journal of Bridge Engineering,2010,15(5):553-564.
    [45] Altunisik Ahmet Can, Bayraktar Alemdar, Sevlm Baris, Kartal Murat Emre, AdanurSüleyman. Finite element model updating of an arch type steel laboratory bridgemodel using semi-rigid connection. Steel and Composite Structures,2010,10(6):541-561.
    [46] Hiatt Matthew R, Mathiasson Annika C, Okwori John, Jin Seungseop, Shang Shen,Yun Gunjin, Caicedo Juan, Christenson Richard, Yun Chungbang, Sohn Hoon.Finiteelement model updating of a PSC box girder bridge using ambient vibration test.Advanced Materials Research,2011(168-170):2263-2270.
    [47] Sanayei Masoud, Phelps John E, Sipple Jesse D, Bell Erin S, Brenner Brian R.Instrumentation, nondestructive testing, and finite-element model updating forbridge evaluation using strain measurements. Journal of Bridge Engineering,2012,17(1):130-138.
    [48] Park Wonsuk, Kim Ho-Kyung, Jongchil Park. Finite element model updating for acable-stayed bridge using manual tuning and sensitivity-based optimization.Structural Engineering International: Journal of the International Association forBridge and Structural Engineering (IABSE),2012,22(1):14-19.
    [49] Ribeiro D, Cal ada R, Delgado R, Brehm M, Zabel V. Finite element modelupdating of a bowstring-arch railway bridge based on experimental modalparameters. Engineering Structures,2012(40):413-4352012.
    [50] Jung Dae-Sung, Kim Chul-Young. Finite element model updating of a simplysupported skewed PSC I-girder bridge using Hybrid Genetic Algorithm. KSCEJournal of Civil Engineering,2013,17(3):518-529.
    [51] Jung Dae-Sung, Kim Chul-Young. Finite element model updating on small-scalebridge model using the hybrid genetic algorithm. Structure and InfrastructureEngineering,2013,9(5):481-495.
    [52] Jaishi Bijaya, Kim Hyo-Jin, Kim Moon Kyum, Ren Wei-Xin, Lee Sang-Ho. Finiteelement model updating of concrete-filled steel tubular arch bridge underoperational condition using modal flexibility. Mechanical Systems and SignalProcessing,2007,21(6):2406-2426.
    [53] Teughels A, De Roeck G. Structural damage identification of the highway bridgeZ24by FE model updating. Journal of Sound and Vibration,2004,278(3):589-610.
    [54] Zapico J L, González M P, Friswell M I, Taylor C A, Crewe A J. Finite elementmodel updating of a small scale bridge. Journal of Sound and Vibration,2003,268(5):993-1012.
    [55] Brownjohn J M W, Moyo P, Omenzetter P, Lu Y. Assessment of highway bridgeupgrading by dynamic testing and finite-element model updating. Journal of BridgeEngineering,2003,8(3):162-172.
    [56] Teughels Anne, De Roeck Guido. Damage assessment of the Z24bridge by FEmodel updating. Key Engineering Materials,2003(245-346):19-26.
    [57] Brownjohn J M W, Lee J, Cheong B. Dynamic performance of a curvedcable-stayed bridge. Engineering Structure,1999,21(11):1025-1017.
    [58]夏品奇, Brownjohn J M W.斜拉桥有限元建模与模型修正.振动工程学报.2003,16(2):219-223
    [59] Brownjohn J M, Xia P Q. Dynamic assessment of curved cable-stayed bridge bymodel updating. Journal of Structural Engineering, ASCE,2000,126(2):252-260.
    [60]李兆霞,李爱群,陈鸿天,郭力,周太全.大跨度桥梁结构以健康监测和状态评估为目标的有限元模拟.东南大学学报,2003,33(5):562-572.
    [61]林贤坤.预应力连续箱梁桥的基准动力有限元模型研究.振动与冲击,2009,28(11):38-43.
    [62]黄民水,李杰,何波.框架结构基准有限元模型的理论及试验.武汉工程大学学报,2009,31(9):24-27.
    [63] Mottershead J E,Friswell M L. Model updating in structural dynamics. Journal ofSound and Vibration,1993,167(2):347-375.
    [64] Astrom K J, Eykhoff P. System Identification-A Survey. Automation,1971(7):123-162.
    [65]杨序贵,刘守圭.基于优化方法的有限元模型修正方法.中山大学学报(自然科学版),2005,44(增刊):161-162.
    [66]刘继荣,周传荣.一个基于优化的有限元模型修正方法.振动与冲击,2003,22(2):33-35.
    [67]郭彤,李爱群,韩大章.基于灵敏度分析与优化设计原理的大跨桥梁动力模型修正.桥梁建设,2004(6):20-23.
    [68]郑惠强,陈鹏程,宓为建,石来德.大型桥吊结构动力有限元模型修正.同济大学学报,2001,29(12):1412-1415.
    [69]范立础,袁万城,张启伟.悬索桥结构基于敏感性分析的动力有限元模型修正.土木工程学报2000,33(1):9-14.
    [70]张启伟.基于环境振动测量值的悬索桥结构动力模型修正.振动工程学报,2002,15(1):74-78.
    [71] Yi Ting Hua, Li Hong Nan, Gu Ming. Recent research and applications of GPSbased technology for bridge health monitoring. Science China TechnologicalSciences,2010,53(10):2597-2610.
    [72] Ragland William S, Penumadu Dayakar, Williams Richard T. Finite elementmodeling of a full-scale five-girder bridge for structural health monitoring.Structural Health Monitoring,2011,10(5):449-465.
    [73] Fraser Michael, Elgamal Ahmed, He Xianfei, Conte Joel P. Sensor network forstructural health monitoring of a highway bridge. Journal of Computing in CivilEngineering,2010,24(1):11-24.
    [74] Sung Yu-Chi, Miyasaka Takaaki, Lin Tzu-Kang, Wang Chun-Ying, WangChung-Yue. A case study on bridge health monitoring using position-sensitivedetector technology. Structural Control and Health Monitoring,2012,19(2):295-308.
    [75] Moore John C, Glenncross-Grant Rex, Mahini Seyed Saeed, Patterson Robert.Regional timber bridge girder reliability: Structural health monitoring and reliabilitystrategies. Advances in Structural Engineering,2012,15(5):793-806.
    [76] Lin Tzu-Kang, Huang Ming-Chih, Lin Chi-Chang, Wang Jer-Fu. Bridge healthmonitoring considering multiple-input and nonlinear high-order effects.International Journal of Advancements in Computing Technology,2012,4(23):483-491.
    [77] Magalh es F, Cunha A, Caetano E. Vibration based structural health monitoring ofan arch bridge: From automated OMA to damage detection. Mechanical Systemsand Signal Processing,2012(28):212-228.
    [78] Ismail Z, Ibrahim Z, Ong A Z C, Rahman A G A. Approach to reduce the limitationsof modal identification in damage detection using limited field data fornondestructive structural health monitoring of a cable-stayed concrete bridge.Journal of Bridge Engineering,2012,17(6):867-875.
    [79] Okasha Nader M, Frangopol Dan M. Integration of structural health monitoring in asystem performance based life-cycle bridge management framework. Structure andInfrastructure Engineering,2012,8(11):999-1016.
    [80] Seo Junwon, Phares Brent, Lu Ping, Wipf Terry, Dahlberg Justin. Bridge ratingprotocol using ambient trucks through structural health monitoring system.Engineering Structures,2013(46):569-580.
    [81] Koo K Y, Brownjohn J M W, List D I, Cole R. Structural health monitoring of theTamar suspension bridge. Structural Control and Health Monitoring,2013,20(4):609-625.
    [82] Bae Sun-Chan, Jang Won-Suk, Woo Sungkwon, Shin Do Hyoung. Prediction ofWSN placement for bridge health monitoring based on material characteristics.Automation in Construction,2013.
    [83] Newhook John P, Edalatmanesh Rahman. Integrating reliability and structural healthmonitoring in the fatigue assessment of concrete bridge decks. Structure andInfrastructure Engineering,2013,9(7):619-633.
    [84]韩大建,谢峻.大跨度桥梁健康监测技术的近期研究进展.桥梁建设,2002(6):69-73.
    [85] Cornwell P J, Kam M K, Carlson B, et al. ComparativeStudy of Vibration-basedDamage id Algorithms. In: Proc.of16thInternational Modal Analysis Conference.Santa Barbara, USA:1998.1710-1716.
    [86] Bement MT, Farrar C R. Issues for the application of statistical models in damagedetection. In: Proc.of18thInternational Modal Analysis Conference. San Antonio,USA:2000.1392-1398.
    [87] Doebling S W, Farrar C R. Computation of Structural flexibility for bridge healthmonitoring using ambient modal data. In: Proc. of11thASCE EngineeringMechanics Conference. Ft. Lauderdale USA:1996.1114-1117.
    [88]曹树谦,张文德,萧龙翔.振动结构模态分析-理论、试验与应用.天津:天津大学出版社,2001.
    [89]刘晖,瞿伟廉,袁润章.基于灵敏度分析的结构损伤识别中的传感器优化配置.地震工程与工程振动,2003,23(6):85-90
    [90]刘福强.柔性智能架结构振动土动控制及相关问题研究.南京:南京航空航天大学博士学位论文,1999.
    [91]崔飞,袁万城,史家钧.传感器优化布设在桥梁健康监测中的应用.同济大学学报,1999,27(2):165-169.
    [92] Thomas G Came, Clark R Dohmann. A modal test design strategy for modalcorrelation. In: Proceedings of the13th International Modal Analysis Conference.New York: Union College, Schenectady,1995.927-933.
    [93] Lim T W. Actuator/sensor placement for modal parameter identification of flexiblestructures. Modal analysis: the international journal of analytical and experimentalmodal analysis,1993,8(1):1-13.
    [94] Shih Y T, Lee A C, Chen J H. Sensor and actuator placement for modalidentification. Mechanical systems&signal processing,1998,12(5):641-659.
    [95] Worden K, Burrows A P. Optimal sensor placement for fault detection.Engineering structures,2001,23(8):885-901.
    [96] Baruh H, Choe K. Sensor failure detection method for flexible structures. Journal ofguidance, control, and dynamics,1987,10(5):474-482.
    [97] Yousuff A, Skelton R E. Optimal controller reduction by covariance equivalentrealizations. IEEE transactions on automatic control,1986, AC-31(1):56-60.
    [98] Stabb M, Blelloch P. Application of flexibility shapes to sensor selection. In:Proceedings of the13th international modal analysis conference. Schenectady NewYork: Union college press,1995.1255-1262.
    [99]王元清,姚南,张天申,石永久.基于最优化理论的多阶段模型修正及其在桥梁安全评估中的应用.工程力学,2010,27(1):91-98.
    [100] Bakir Pelin Gundes, Reynders Edwin, De Roeck Guido. Sensitivity-based finiteelement model updating using constrained optimization with a trust region algorithm.Journal of Sound and Vibration,2007,305(1-2):211-225.
    [101] Zhang Y X, Jia C X, Li Jian, Spencer Jr. Model updating based on an affine scalinginterior optimization algorithm. Engineering Optimization,2012.
    [102]黄民水.基于环境激励的桥梁结构模型修正.武汉:华中科技大学博士学位论文,2008.
    [103]宗周红,朱三凡,夏樟华.大跨径连续刚构桥安全性评估的基准有限元模型.铁道学报,2011,33(9):94-101.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700