基于高斯混合模型的无线传感器网络节点定位算法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在详细分析了无线传感器网络节点定位技术的基础上,以节约成本,提高定位精度为目标,提出了三种基于高斯混合模型的定位算法(Location Estimation based on Gaussian Mixture Model,LEGMM)。在这三种定位算法中,两种是基于高斯混合模型的传感器网络离线定位算法(Offline LEGMM),它们分别是:基于高斯混合模型的网格循环定位算法(Iterative Grid LEGMM, IGrid-LEGMM)和基于高斯混合模型的期望最大化网格定位算法(Grid and Expectation Maximization LEGMM, Grid-EM-LEGMM);另外一种是基于高斯混合模型的传感器网络在线定位算法(Online LEGMM)。
     在本文中,无论是Offline LEGMM算法还是Online LEGMM算法都使用相同的信号采样方式:用一个配备了GPS设备的可移动节点收集来自传感器网络中其他节点的RSS信息。这个配备了GPS设备的可移动节点,叫做“RSS收集器”。本文中的三种定位算法均采用“最小化已知信息”对传感器节点进行定位,也就是说,我们的已知条件只有两个:一是RSS收集器在定位区域内沿着其移动路径采样到来自其它节点的RSS,二是接收到这些RSS信息时,RSS收集器自身的位置信息。本文所提出的算法不假设传感器网络中的节点数量已知,而是用定位算法来估计网络中传感器节点的数量。
     Offline LEGMM算法需要在RSS收集器经过其移动路径,并采样所有数据以后进行定位;而Online LEGMM算法可以在RSS收集器采样数据的同时,对定位区域内的传感器节点进行定位。
In wireless sensor networks, sensor’s location information is the prerequisite of many wireless sensor applications such as environment monitoring, data collecting, target tracking, etc. Thus, localization for wireless sensor is one of the hot topics in wireless sensor networks. The simplest solution for network localization is to equip every wireless node with a GPS (global positioning system) device. However, a GPS device is unavailable with the most wireless node due to considerations on either cost or the GPS satellite signal reception limitations. Therefore, researchers provide a set of in-network localization algorithms for the practical reason. This paper analysed the existing localization solustions, and found that there are some problems as follow.
     First, among those localization algorithms, comparing with the algorithms based on AOA(Angle of Arrival), TOA(Time of Arrival), and TDOA(Time Difference of Arrival), the RSS(Received Signal Strength) based algorithms do not require extra devices, and the RSS measurement is easily available and least expensive to derive from transceivers. However, because the RF(Radio Frequency) signal is influenced by the complicated environment condition, the localization results of RSS based algorithms are usually less accurate. Therefore, extensive research was carried out on designing robust RSS based localization algorithms using probabilistic models and calibration enhancements.
     Second, most of the existing localization algorithms suppose that the beacon nodes are fixed. In order to ensure the localization accuracy, the algorithms require enough number of beacon nodes and the distribution of those beacon nodes is expect to be uniform. However, the cost of the beacon node is far more than that of the general node. Therefore, there is a tradeoff between location accuracy and the cost of the localization system. In order to solve this problem, researchers provide movable beacon node, which can save the cost and ensure the localization accuracy at the same time. Because one movable beacon node can instead numbers of fixed node.
     In addition, many existing localization algorithms suppose that the number of sensor is known, and the ID of the signal’s sender is known. However, in real wireless network environment, we usually cannot forecast the number of the sensor, or the sender’s ID from the received signal.
     To solve these above problems, this paper proposes three localization algorithms. In order to save the localization cost, these three algorithms use the RSS measurement. And with the purpose of improving the localization accuracy, all of them are probabilistic algorithms based on Gaussian Mixture Model. Two of them are Offline LEGMM (location estimation based on Gaussian mixture model), and the other is Online LEGMM. The two Offline LEGMM are IGrid-LEGMM (Iterative Grid Location estimation based on Gaussian mixture model) and Grid-EM-LEGMM (Grid and Expectation Maximization Location estimation based on Gaussian mixture model, Grid-EM-LEGMM).
     Offline LEGMM algorithm and Online LEGMM algorithm are based on the same mathematical models, but differ in the amount of data that they rely on. The Offline LEGMM algorithm depends on the complete set of data, while the Online LEGMM algorithm depends on only a part of the time series, and incrementally builds the whole picture of the sensor locations.
     All of the three algorithms require only a single mobile GPS-equipped node with minimum system knowledge to collect RSS information. By the“minimum knowledge”assumption, we mean that it does not require informative clues, such as the number of wireless sensors or their identifiers, in order to localize the sensors. Instead, all of the three algorithms derive sensor positions and their number based on the RSS data collected by the GPS-equipped sensor while it roams in the wireless sensor fields. Each of the data points is connoted with the corresponding GPS locations. The GPS-equipped mobile sensor is called the RSS-collector.
     In the three algorithms, we model the RSS values as Gaussian random variables coming from unknown number of signal sources, and use maximum likelihood estimation methods to derive the number and locations of these sources. To each of the localization algorithms, we use two kind of experiments (simulation and real test-bed experiment) to verify the validity and accuracy of the proposed localization algorithms. We introduce our localization algorithms as follows.
     1. IGrid-LEGMM combines the path loss model, Gaussian mixture model, and Bayesian information criterion together. IGrid-LEGMM first divides the location area into grids, and estimates the rough locations of the sensors using a grid-search method and the maximum likelihood estimation, which is called Grid-LEGMM. IGrid-LEGMM iteratively executes Grid-LEGMM with shrinking the location area and the grid’s size, and refines the accuracy of the localization results. The validity and accuracy of IGrid-LEGMM algorithm are evaluated by both simulations and real testbed experiments.
     2. Grid-EM-LEGMM improves IGrid-LEGMM, and it has two steps as follow. First, it uses Grid-LEGMM to estimates the number and rough locations of the sensors; Second, Grid-EM-LEGMM improves the location estimation accuracy using an EM (expectation maximization) method to refine the results of Grid-LEGMM, which is called EM-LGMM. The results of simulations and real testbed experiments show that the Grid-EM-LEGMM algorithm can produce reasonable location and number estimates of wireless sensors.
     3. Online LEGMM can localize the sensors while the RSS collector is moving and collecting data. It depends on only a part of the data series, and incrementally builds the whole picture of the sensor locations. Online LEGMM is an iterative algorithm. It groups the collected RSS data series into different groups as different inputs of each round for location estimations. In each round, the Online LEGMM consists of three different steps. First, search the likely wireless sensor locations on a grid structure using Grid-LEGMM. Second, refine the wireless sensors’locations using the EM-method. Finally, use a credit-based mechanism to revise and reinforce the estimation on the number and locations of the wireless sensors, which is called Credit-LEGMM, so that the spurious sensor can be removed. The performance of online localization algorithms are evaluated using simulations and real testbed experiments. And we compared the online localization algorithm and the Grid-EM-LEGMM algorithm using the Cramer-Rao lower bound.
     Our challenge and solutions on all of the three localization approaches in this paper are based on three aspects:
     1) all of them are based on GMM;
     2) all of them use a single RSS collector and only the RSS measurements to derive the wireless sensors' locations,
     3) all of them do not assume but derive the number of wireless sensors.
引文
[1]孙利民,李建中,陈渝,朱红松(编著).无线传感器网络[M].清华大学出版社,第一版,2005,5.
    [2] R.G.C.Inatanagonwiwat, D.Estrin. Directed diffusion: A scalable and robust communication paradigm for sensor networks[C]. In proceedings of the 6th International Conference on Mobile Computing and Networking(Mobicom’00), 2000. pp 55-66.
    [3] Lacoss R, Walton R. Strawman Design for a DSN to Detect and Track Low Flying Aircraft[C]. Proc. Distributed Sensor Nets Conf.1978: 41-52.
    [4] Hewish M. Little Brother is Watching You: Unattended Ground Sensors[J]. Defense Review, 2001, 34(6):46-52.
    [5]于海斌,曾鹏,梁(韦华)编著.智能无线传感器网络系统[M].科学出版社,2006年1月.
    [6] S.Meyer, A.Rakotonirainy. A survey of research on context-aware homes[C]. In: Proceedings of the Workshop on Wearable, Invisible, Context-aware, Ambient, Pervasive and Ubiquitous Computing,2003. pp 1-9.
    [7] G.O.A.Wayne, W.Manges and S.F.Smith. It’s time for sensors to go wireless[J].Sensor Magazine, 1999.
    [8]陈利虎.无线传感器网络实验平台的研究[M].国防科技大学出版社,2004.
    [9] D.Steere, A.Baptista, D.McNamee, C.Pu, J.Walpole. Research Challenges in Environmental Observation and Forecasting Systems[C]. In: Proceedings of ACM/IEEE MOBOCOM Conference, Boston, Aug 2000.pp 292-299.
    [10] R.L.Moses, D.Krishnamurthy, R.Patterson. An auto-calibration method for unattended ground sensors[C]. ICASSP, May 2002,3:2941-2944.
    [11] Cerpa A, Elson J, Estrin D, Girod L, Hamilton M, Zhao J. Habitat monitoring: application driver for wireless communications technology[C]. Proceedings of ACM SIGCOMM Workshop on Data Communications in Latin America and the Caribbean, Costa Rica. 2001:3-5.
    [12] A.V.U.Phani Kumar, A.M.Reddy V, D.Janakiram. Distributed collaboration for event detection in wireless sensor networks[C].MPAC,2005.
    [13] H.Bai, M.Atiquzzaman, D.Lilja. Wireless Sensor Network for Aircraft Health Monitoring[C]. In: Proceeding of Broadband Networks’04.Oct 2004: 748-750.
    [14]郑凯.基于ZigBee无线传感器技术的心电监护网络的研究[D].吉林大学:2009.
    [15]蒋承延,吴思远,陈伟.基于无线传感器网络的智能家居系统[J].微计算机信息,2007,13:205-207.
    [16] L.Q.Zhuang, K.M.Goh, J.B.Zhang. The wireless sensor networks for factory automation: Issue and challenges[C]. Proceeding of Emerging Technologies & Factory Automation’07, 2007, 9: 141-148.
    [17]白占元,徐皑冬.基于无线传感器网络的工程机械姿态控制系统[C]. 2007仪表、自动化及先进集成技术大会论文集(二),2007.
    [18] K. Lorincz, M. Welsh. MoteTrack: A Robust, Decentralized Approach to RF-Based Location Tracking[C]. In: Proceedings of International Workshop on Location and Contex-Awareness, Berlin, Germany: Springer-Verlag Press, 2005. pp 63-82.
    [19] D. Wu, L. Bao, M. Du and R. Li. Design and Evaluation of Localization Protocols and Algorithms in Wireless Sensor Networks Using UWB. Performance[C]. Computing and Communications Conference (IPCCC), Austin, Texas, USA, 7-9 Dec, 2008. pp. 18–25.
    [20]L.Girod, and D. Estrin. Robust range estimation using acoustic and multimodal sensing[C]. In: Proceedings of IEEE International Conference Intelligent Robots and Systems(IROS’01), Vol.3, Muai, Hawaii, USA, 2001.pp: 1312-1320.
    [21] Byrne J A. 21 Ideas for the 21st Century. Business Week, 1999. 8: 78-167.
    [22] 10 Emerging Technologies that Will Change the World. Technology Review, 2003, 106(1): 33-49.
    [23] A. Savvides, C. C. Han and M. B. Srivastava. Dynamic Fine-Grained Localization in Ad-Hoc Networks of Sensors[C]. In: Proceedings of Mobile Computing and Networks, Rome, Italy: ACM Press, July 2001. pp 166-179.
    [24]王继春.无线传感器网络节点定位若干问题[D].中国科学技术大学,2009年5月。
    [25] D.Niculescu, and B.Nath. Ad Hoc Positioning System (APS) Using AOA[C]. Proc. IEEE Infocom Conf. (INFOCOM), March 30–April 3,2003. Vol. 3, pp. 1734–1743.
    [26] A.Subramanian, P.Deshpande, J.Gao, and S.Das. Drive-by Localization of Roadside WiFi Networks[C]. Proc. IEEE Infocom Conf. (INFOCOM), April,2008. pp. 718–725.
    [27] D.Niculescu, and B.Nath. VOR Base Stations for Indoor 802.11 Positioning[C]. Proc. ACM MOBICOM, Philadelphia, PA,USA, 2004. pp. 58–69. ACM, New York, USA.
    [28] P.Deng, P.Z.Fan. An Efficient Position-Based Dynamic Location Algorithm[C]. Int. Workshop on Autonomous Decentralized System(IWADS’2000), Chengdu, PRC, Sep 2000.pp 36-39.
    [29] N. Bulusu, J. Heidemann and D. Estrin. GPS-less low-cost outdoor localization for very small devices[J]. IEEE Personal Communications, Sepcial Issue on Smart Spaces and Environment, 2000. 5:28–34.
    [30] R.Nagpal. Organizaing a global coordinate system from local information on an amporphous computer[R]. AI Memo 1666, MIT AI Laboratory, August 1999.
    [31] R.Nagpal, H.Shrobe, J.Bachrach. Organizaing a global coordinate system from local information on an ad-hoc sensor network[C]. In: 2nd Int’l Workshop on Information Processing in Sensor Networks(IPSN’03), Palo Alto, April 2003.
    [32] K.Pahlavan, A.H.Levesque. Wireless Information Networks[M]. 2nd Edition. Hoboken,New Jersey: John Wiley & sons, Sep 2005
    [33] G. Stansfield. Statistical theory of DF fixing[J]. Journal of the IEE, Dec. 1947, vol. 94(15):762-770.
    [34] W.Figel, N.Shepherd, W.Trammell. Vehicle location by a signal attenuation method[J]. IEEE Transactions on Vehicular Technology, 1969. (18):105-109.
    [35] G.D.Ott. Vehicle location in cellular mobile radio system[J]. IEEE Transactions on Vehicular Technology, 1977. (26):43-46.
    [36] I.F.Akyildiz, W.su, Y.Sankarasubramaniam, and E. Cayirci. Wireless Sensor Networks: a Survey[J]. Computer Networks, 2002: 393-422.
    [37] C.Savarse, J.Rabay, K.Langendoen. Robust positioning algorithms for distributed ad-hoc wireless sensor networks[C]. In: Ellis CS,ed. Proc. of the USENIX Technical Annual Conf. Monterey: USENIX Press, 2002: 317-327.
    [38] C.Savarese, J.M.Rabaey, J.Beutel. Locationing in distributed ad-hoc wireless sensor network[C]. In: Proc. of the 2001 IEEE Int’l Conf. on Acoustics, Speech, and Signal. Vol.4, Salt Lake: IEEE Signal Processing Society, 2001. 2037?2040.
    [39] P.Bergamo, G.Mazzini. Localization in sensor networks with fading and mobility[C]. In: Proc. of the 13th IEEE Int’l Symp. On Personal, Indoor and Mobile Radio Communications. Lisbon: IEEE Communications Society, 2002, 2: 750?754.
    [40] L. Doherty, KSJ. Pister, LE. Ghaoui. Convex position estimation in wireless sensor networks[C]. In: Proc. of the IEEE INFOCOM 2001. Vol.3, Anchorage: IEEE Computer and Communications Societies, 2001: 1655?1663.
    [41] L.Doherty. Algorithms for position and data recovery in wireless sensor networks[D]. Berkeley: University of California, 2000.
    [42] Y. Shang, W. Rum, Y.Zhang, MPJ.Fromherz. Localization from mere connectivity[J]. In: Proc. of the 4th ACM Int’l Symp. on Mobile Ad Hoc Networking & Computing. Annapolis: ACM Press, 2003: 201?212.
    [43]王福豹,史龙,任丰原.无线传感器网络中的自身定位系统和算法[J].软件学报. 2005.16(5): 857-868.
    [44] J.Hightower, G.Boriello. Location systems for ubiquitous computing[J]. Computer, 2001,34(8):57?66.
    [45] Rao A, Papadimitriou C, Shenker S, Stoica I. Geographic routing without location information[C]. In: Proc. of the 9th Annual Int’l Conf. on Mobile computing and Networking. San Diego: ACM Press, 2003. 96?108.
    [46] Niculescu D, Nath B. Localized positioning in ad hoc networks[C]. In: Cayirci E, Znati T, Ekici E, eds. Proc. of the 1st IEEE Int’l Workshop on Sensor Network Protocols and Applications. Anchorage: IEEE Communications Societies, 2003. 42?50.
    [47] Capkun S, Hamdi M, Hubaux J-P. GPS-Free positioning in mobile ad-hoc networks[J]. Cluster Computing, 2002,5(2):157?167.
    [48] Want R, Hopper A, Falcao V, Gibbons J. The active badge location system[J]. ACM Trans. on Information Systems, 1992, 10(1):91?102.
    [49] Kiran Yedavalli, Bhaskar Krishnamachari. Sequence-Based Localization in Wireless Sensor Networks[J]. IEEE Transactions on mobile computing, January 2008.7(1): 81-94.
    [50] Avvides A, Park H, Srivastava MB. The bits and flops of the N-hop multilateration primitive for node localization problems[C]. In: Proc. of the 1st ACM Int’l Workshop on Wireless Sensor Networks and Applications. Atlanta: ACM Press, 2002. 112?121.
    [51] Harter A, Hopper A, Steggles P, Ward A, Webster P. The anatomy of a context-aware application[C]. In: Proc. of the 5th Annual ACM/IEEE Int’l Conf. on Mobile Computing and Networking. Seattle: ACM Press, 1999. 59?68.
    [52] Harter A, Hopper A. A distributed location system for the active office[J]. IEEE Network, 1994,8(1):62?70.
    [53] Welch G, Bishop G, Vicci L, Brumback S, Keller K, Colucci D. The HiBall tracker: High-Performance wide-area tracking for virtual and augmented environments[J]. In: Proc. of the ACM Symp. on Virtual Reality Software and Technology. London: ACM Press, 1999. 1?11.
    [54] Bulusu N. Self-Configuring localization systems [D]. Los Angeles: University of California, 2002.
    [55] Hazas M, Ward A. A novel broadband ultrasonic location system[C]. In: Borriello G, Holmquist LE, eds. Proc. of the 4th Int’l Conf. on Ubiquitous Computing. Goteborg: Springer-Verlag, 2002. 264?280.
    [56] Hazas M, Ward A. A high performance privacy-oriented location system. In: Titsworth F, ed. Proc. of the 1st IEEE Int’l Conf. on Pervasive Computing and Communications. Fort Worth: IEEE Computer Society, 2003. 216?233.
    [57] Want R, Schilit BN, Adams NI, Gold R, Petersen K, Goldberg D, Ellis JR, Weiser M. An overview of the ParcTab ubiquitous computing experiment[J]. IEEE Personal Communications, 1995,2(6):28?43.
    [58] Orr RJ, Abowd GD. The smart floor: A mechanism for natural user identification and tracking[C]. In: Proc. of the 2000 Conf. on Human Factors in Computing Systems. The Hague: ACM Press, 2000. 275?276.
    [59]曹小红,李颖,丰皇.无线传感器网络节点定位技术综述[J].信息技术,2009年第七期:233-235,240.
    [60] Beutel J. Geolocation in a PicoRadio environment [D]. Berkeley: UC Berkeley, 1999.
    [61] Hightower J, Borriello G. Location sensing techniques[R]. Technical Report UW CSE 2001-07-30, Seattle: Department of Computer Science and Engineering, University of Washington, 2001.
    [62] Pentland A. Machine understanding of human action[C]. In: Proc. of the 7th Int’l Forum on Frontier of Telecommunication Technology. Tokyo: ARPA Press, 1995. 757?764.
    [63] Bulusu N, Estrin D, Heidemann J. Tradeoffs in location support systems: The case for quality-expressive location models for applications[C]. In: Proc. of the Ubicomp 2001 Workshop on Location Modeling for Applications. Atlanta, 2001. 7?12.
    [64] Harter A, Jones A, Hooper A. A new location technique for the active office[J]. IEEE Personal Communications, 1997,4(5):42?47.
    [65] Spec: Smartdust chip with integrated RF communications[R/OL]. 2001. http://www.jlhlabs.com/jhill_cs/spec/
    [66] EdgarH.C. Wireless Sensor Networks: Architectures and Protocols[M]. Boca Raton, Florida: CRC Press LLC,2004.
    [67] T. He, J.A. Stankovic, C.Huang, T. Abdelzaher, and B.M. Blum. Range-Free Localization Schemes for Large Scale Sensor Networks[C]. Proc. Annual Int. Conf. Mobile Computing and Networking (MOBICOM), San Diego, CA, USA, 2003. pp. 81–95. ACM, New York, USA.
    [68] D. Niculescu, and B, Nath. DV based positioning in adhoc networks[J]. Telecommunication Systems. 2003(22(1-4)): 267–280.
    [69] Zhang Ying, Huang Qingfeng, Liu Juan. Sequential localization algorithm for active sensor network deployment [ C]. Proceedings of the 20th International Conference on Advanced Information Networking and Applications ( AINA′06 ). 2006,2: 171-178.
    [70] Aram Galstyan,Bhaskar Krishnamaehari,Sundeep Pattem,et al. Distributed Online Localization in Sensor Networks using a Moving Target[C]. In:Proceedings of the 3nd International Workshop on Information Processing in Sensor Networks(IPSN-2004),Berkeley,CA.
    [71] Kim Kyunghwi, Lee Wonjun. MBAL: a mobile beacon-assisted localization schem for wireless sensor networks[C]. ICCCN 2007. Proceedings of 16th International Conference. 2007, 57-62.
    [72] Mihail L. Sichitiu and Vaidyanathan Ramadurai. Location of wireless sensor networks with a mobile beacon[C]. Center for Advances Computing and Communications(CACC), Raleigh, NC, Tech. Rep. TR-03/06, July 2003.
    [73] Arnab Chakrabarti, Ashutosh Sabharawal, Behnaam Aazhang. Using PredictableObserver Mobility for Power Efficient Design of Sensor Networks, In: Proceedings of the 2nd International Workshop on information Processing in Sensor Networks(IPSN’03),April 2003, 129-145.
    [74] Radhika Nagpal, Howard Shrobe, and Jonathan Bachrach, Organizing a Global Coordinate System from Local Information on an Ad Hoc Sensor Network[C]. In: Proceedings of the 2nd International Workshop on Information Processing in Sensor Networks(IPSN’03), April 2003.
    [75] N. B. Priyantha, H.Balakrishnan, E. Demaine, S. Teller. Anchor-Free Distributed Localization in Sensor Networks[R]. MIT Laboratory for Computer Science Tech Report #892, April 2003.
    [76]于海斌,曾鹏,王忠锋等.分布式无线传感器网络通信协议研究[J].通信学报,2004,25(10): 102-110.
    [77]方红雨,崔逊学,刘綦.无线传感器网络的定位问题综述[J].电脑与信息技术,2005年12月,13(6):1-7.
    [78] J. Hightower, R. Want, and G. Borriello, SpotON: An indoor 3D location sensing technology based on RF signal strength[R]. Tech. Rep. CSE 2000-02-02, University of Washington, Seattle, WA, Feb. 2000.
    [79] M. Hel’en, J. Latvala, H. Ikonen, and J. Niittylahti. Using calibration in RSSI-based location tracking system[C]. In: Proceedings of the 5th World Multiconference on Circuits, Systems, Communications&Computers(CSCC2001), 2001.
    [80] P. Bahl and V.N. Padmanabhan, Enhancements to the radar user location and tracking system[R]. In Microsoft Research Technical Report MST-TR-2000-12, 2000.
    [81] Da-Chung Mao, Chao-Chun Chen, Chiang Lee. Aggressive Rectangle Truncation Localization with Verification Mechanism in Wireless Sensor Networks[C]. In Proceedings of International Wireless Communications and Mobile Computing Conference(IWCMC2007), March, 2007, Guadeloupe, French Caribbean.
    [80] P. Bahl and V. Padmanabhan. RADAR: An In-Building RF-based User Location and Tracking System[C].INFOCOM, Tel Aviv, Israel, 26-03, March, 2000(2): pp 775–784, In: Proceedings of IEEE INFOCOM, Tel Aviv, Israel. IEEE Computer and Communications Societies Press, Los Alamitos, Calif.
    [83] A.Mainwaring, J.Polastre, R.Szewczyk, D.Culler. Wireless sensor networks for habitat monitoring[C]. In Proc. ACM Workshop on Sensor Networks and Applications(Atlanta GA), Sep 2002.
    [84] Jie Liu, Peng Zhao. Apply Geometric Duality to Energy-efficient Non-local Phenomenon Awareness Using Sensor Networks[J]. IEEE Wireless Communication.2004,12: 62-68.
    [85]徐剑,胡记文.无线传感器网络对于反恐应用的初探[J].今日科苑,Modem Science, 2008,04:191.
    [86] James J Caffery and James J Caftery Jr. Wireless Location in CDMA Cellular Radio Systems[C]. Kluwer Academic Publisher 01. October,1999.
    [87] Xiuzhen Cheng, Andrew Thaeler, Guoliang Xue, Dechang Chen. TPS: A Time-Based Positioning Scheme for Outdoor Wireless Sensor Networks[C]. IEEE Infocom2004, March, 2004. pp 2685-2696.
    [88] N.B. Priyanath, A.Chakraborty, and H.Balakrishna. The Criket Location Support Systme[C]. In: Proceedings f the 6th Annual International Conference on Mobile Computing and Networking(Mobicom), Aug 2000. pp 32-43.
    [89]曾鹏,于海斌,梁英,尚志军,王忠锋.分布式无线传感器网络体系结构及应用支撑技术研究[J].信息与控制,2004,33(3):307-313.
    [90] J.A. Stankovic, F.Abdelzaher, C.Y.Lu, et al. Real-time Communication and Coordination in Embedded Sensor Networks[C]. Porceedings of the IEEE’03,2003:1002-1022.
    [91] M.Tubaishat, S.Madria. Sensor Networks: An Overview[J]. IEEE Potentials, 2003, 22(2): 20-33.
    [92] M.A.M. Vieira, D.C. Silva, C.N. Coelho, J.M.Mata. Survey on Wireless Sensor Network Devices[C].Emerging Technologies and Factory Automation(ETFA’03), 2003: 16-19.
    [93] R.Brooks, S.Iyengar. Multi-Sensor Fusion[M]. NJ: Prentice-Hall, Inc., Upper Saddle River,1998.
    [94] D.Hall. Mathematical Techniques in Multisensor Data Fusion[M]. Artech House, Boston, MA, 1992.
    [95] L.Klein. Sensor and Data Fusion Concepts and Applications[M].SPIE Optical Engr Press, WA, 1993.
    [96] P.Varshney. Distributed Detection and Data Fusion[M]. New York:Springer-Verlag, 1997.
    [97] G.P.D.Estrin, L.Girod, M.Srivastava. Instrumenting the world with wireless s ensor networks[C]. In Proceedings of the International Conference on Acoustics, Speech and Signal Processing(ICASSP’01), 2001.
    [98] R.H.K.J.M.Kahn, K.S.J.Pister. Next century challenges: Mobile networking for“smart dust”[C]. In Proceedings of the 5th International Conference on Mobile Computing and Networking(Mobicom’99), 1999.
    [99] P.Enge, P.Misra. Special Issue on Global Positioning System. Proceedings of the IEEE, 1999,87(1): 3-15.
    [100]张明华.基于WLAN室内定位技术研究[D].上海交通大学,2009.
    [101] T.Cinar, F.Ince. Contribution of GALILEO to Search and Rescue[C]. In Proceedings of the 2nd International Conference on Recent Advances in Space Technologies, Turkish Air Force Acad, Istanbul, Turkey. 2005: 254-259.
    [102] FCC Docket No.94-102, Revision of the Commission Rules to Insure Compatibility with Enhanced 911 Emergency Calling Systems[R]. Federal Communications Commission Tech. Rep. RM-8143, 1996.
    [103] J.M.Zagami, S.A.Parl, J.J.Bussgang, et al. Providing Universal Location Services Using a Wireless E911 Location Network[J]. IEEE Communications Magazine, 1998, 36(4):66-71.
    [104] FCC, FCC Acts to Promote Competition and Public Safety in Enhanced Wireless 911 Services. www.fcc.gov/911/enhanced, 1999.
    [105] FCC, Wireless 911 Services, http://www.fcc.gov/cgb/consumerfacts/wireless 911srvc.html, 2008.
    [106]肖健,吕爱琴,陈吉忠等.无线传感器网络技术中的关键性问题[J].传感器世界,2004,7:14-18.
    [107] F. Caballeroa, L. Merinob, P. Gila, I. Mazaa, and A. Ollero. A probabilistic framework for entire WSN localization using a mobile robot[J]. Robotics and Autonomous Systems, Oct. 2008. 56:798–806.
    [108](美)拉帕波特(Rappaport,T.S.)著,周文安等译.无线通信原理与应用[M].电子工业出版社,第二版,2006.
    [109]杜巧玲.无线传感器网络三维节点定位问题的研究[D].长春:吉林大学通信工程学院,2009.
    [110]李新.无线传感器网络中节点定位算法的研究[D] .北京:中国科学技术大学,2008.
    [111] M. D. Yacoub. Foundations of Mobile Radio Engineering[M]. CRC Press, 1993.
    [112]蒋泽,顾朝志.无线信道模型综述[J].重庆工学院学报,2005,8(8):63-67.
    [113] R. Peng and M. L. Sichitiu. Probabilistic localization for outdoor wireless sensor networks[J]. ACM SIGMOBILE Mobile Computing and Communications Review, 2007,1(11):53-64.
    [114] Tan P-N,Steinbach M,Kumar V著,范明,范宏建等,译.数据挖掘导论[M].北京:人民邮电出版社,2006.
    [115] H. Akaike, Information theory and an extension of the maximum likelihood principle[C].2nd International Symposium on Information Theory. Tsahkadsor, Armenian SSR,1973,pp.267-281.
    [116] G. Schwarz.Estimating the dimension of a model[J]. Annals of Statistics, 1978(6):461-464.
    [117] M. Ding and X. Cheng. Fault Tolerant Target Tracking in Sensor Networks[C]. Proceedings of the tenth ACM international symposium on Mobile ad hoc networking and computing, New Orleans, LA, USA. ACM, New York, USA,2009, pp. 125-134.
    [118]段江娇.基于模型的时间序列数据挖掘[D].上海:复旦大学,2008.
    [119] NCTUns 5.0 Network Simulator and Emulator[EB/OL].(2008-09-20) http://nsl.csie.nctu.edu.tw/nctuns.html.
    [120] A.M. Ladd, K.E. Bekris, G. Marceau, A. Rudys, L.E. Kavraki and D.Wallach. Robotics-based location sensing using wireless Ethernet[C]. Proceedings of ACM international conference on Mobile computing and networking(MOBICOM). Atlanta, Georgia, USA, 2002, Nov, pp. 227–238. ACM, New York,NY, USA.
    [121] M. L. Sichitiu, and V. Ramadurai. Localization Sensor Networks with a Mobile Beacon[C]. Proc.Mobile Ad-hoc and Sensor Systems (MASS),FL, USA, 2004, October 25–27, pp. 174–183.
    [122]孙国林.无线移动网络辅助定位算法研究[D].电子科技大学,2005.
    [123] V. Bhargava, and M. L. Sichitiu. Physical Authentication 740 Through Localization in Wireless Local Area Networks[C]. IEEE Globecom 2005. St. Louis, MO, 2005, November 28–December 2, Vol. 5, pp. 2658–2662.
    [124] J. Latvala, J. Syrj¨arinne, H. Ikonen, and J. Niittylahti. Evaluation of RSSI-based human tracking[C]. Proceeding in European Signal Processing Conference. 2000, pp. 2273–2277.
    [125] Ramadurai,V. and Sichitiu, M.L. Localization inWireless Networks: A Probabilistic Approach[C]. Proc. Int. Conf. Wireless Networks (ICWN), Las Vegas, NV, USA, 2003, June 23–26, pp. 275-281.
    [126] Dempster,A.P.,Laird,n.m.,Rubin,d.b. Maximan likelihood estimation fromincomplete data via the algorithm[J]. J. Roy statist Soc.B. 1977,39:1-38.
    [127]孙大飞,陈志国,刘文举.基于EM算法的极大似然参数估计探讨[J].河南大学学报(自然科学版),2002, Dec, 32(4):35-41.
    [128] Jeff A. Bilmes. A Gentle Tutorial of the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models[R]. International Computer Science Institute, Berkeley CA, ICSI-TR-97-021, 1998, April.
    [129]宋杨.基于高斯混合模型的运动目标检测算法研究[D].大连理工大学, 2008.
    [130] Ghahramami Z, Jordan M. Learning from incomplete data [R]. Technical Report AI Lab Memo No.1509, CBCL Paper No.108, MIT AI Lab, August 1995.
    [131] G. Mclachlan and D. Peel. Finite Mixture Models[M]. New York: John wiley and Sons, 2000.
    [132]朱周华.期望最大(EM)算法及其在混合高斯模型中的应用[J].现代电子技术,2003,24:88-90.
    [133]张香云,汪四水.基于EM算法的高斯混合密度参数估计[J].杭州师范学院学报(自然科学版), 2005, Sep,4(5):349-352.
    [134] S.M. Kay. Fundementals of Statistical Signal Processing: Estimation Theory [M]. vol. 1, New Jersey: Parentice Hall PTR, 1st ed, 1993.
    [135] H. Godrich, A.M. Haimovich, R.S. Blum. Target localization accuracy and multiple target localization: Tradeoff in MIMO radars[C].IEEE Asilomar Conference on Signals, Systems and Computers, 2008, 42nd. 26-29 Oct. pp. 614-618.
    [136] N. Patwari, A.O. Hero, M. Perkins, N.S. Correal, and R.J. Odea. Relative Localization Estimation in Wireless Sensor Network[J]. IEEE Transactions on Signal Processing. 2003, (51): 2137–2148.
    [137]陈利虎.无线传感器网络实验平台的研究[M].国防科技大学出版社,2004.
    [138] Rong Peng, Mihail L. Sichitiu. Robust, Probabilistic, Constraint-Based Localization for Wireless Sensor Networks[C]. In Proc. of SECON, Sep.2005.
    [139] J.K. Nelson, M.R. Gupta, J.E. Almodovar, and W.H.Mortensen. A Quasi EM Method for Estimating Multiple Transmitter Locations[J]. Signal Processing Letters, 2009, May. 5-16, 354–357.
    [140] Yuan Zhang, Lichun Bao, Max Welling and Shih-Hsien Yang. Base Station Localization in Search of Empty Spectrum Spaces for Cognitive Radio Networks[C]. In Proceedings of the 5th International Conference on Mobile Ad-hoc and Sensor Networks (MSN), 2009.
    [141] F. Wang, L. Qiu, and S. Lam. Probabilistic Region-Based Localization for Wireless Networks[J]. ACM SIGMOBILE Mob. Comput. Commun. Rev. 2007, 1–11, pp. 3–14.
    [142] A. Haeberlen, E. Flannery, A. Ladd, A. Rudys, D. Wallach, and L. Kavraki. Practical Robust Localization Over Large- 765 Scale 802.11Wireless Network[C]. Mobile Computing and Networking (MOBICOM). The Tenth ACM Int. Conf. Philadelphia, PA, USA, 2004, September, pp. 70-84. ACM, New York, USA.
    [143]白鸥,汪凌.俄罗斯全球导航卫星系统(GLONASS)现状与展望[J].测绘技术装备,2002,4(1):30-32.
    [144] Yuan Zhang, Lichun Bao, Shih-Hsien Yang and Max Welling. Localization Algorithms for Wireless Sensor Retrieval[J]. the Computer Journal (CJ), Special Issue on Algorithms, Protocols, and Future Applications of Wireless Sensor Networks, publisher: Oxford Journals, 2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700