常见精神疾病共享遗传风险研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
精神分裂症、双相情感障碍和重性抑郁症是三种常见的精神疾病,发病率较高。大量研究显示这三种疾病在发病机制方面存在交叉重叠。为了寻找精神分裂症、双相情感障碍和重性抑郁症的共享遗传风险因子,我们分别开展了BCL9基因和MDGA1基因与这三种精神疾病的关联分析。
     BCL9基因位于染色体1q21.1的位置,该位置被证实和精神分裂症相关。此外,BCL9是Wnt信号通路中重要的一员,该通路在神经发育过程中起着重要的作用,因此BCL9基因还是精神疾病研究的功能候选基因。为了验证BCL9基因在中国汉族人群中是否是精神分裂症、双相情感障碍和重性抑郁症的共享遗传风险因子,我们对10个tagSNPs在12,229个样本(包括5,772个正常对照样本、4,187个精神分裂症患者、1,135个双相情感障碍患者和1,135个重性抑郁症患者)中进行分型。实验由三步组成,第一步和第二步采用LDR基因分型技术,第三步采用Taqman基因分型技术。在第一步实验中,我们发现rs672607与精神分裂症显著性相关(p=2.69×10~(-5))。在第二步试验中,我们成功重复到rs672607 (p=1.33×10~(-5))与精神分裂症显著性相关,另外我们还发现rs9326555、rs1240083和rs688325也与精神分裂症显著性相关(rs9326555 (p=0.0015) ; rs1240083(p=1.7×10~(-4));rs688325 (p=0.006))。第三步实验样本由1,135个精神分裂症患者、1,135个双相情感障碍患者、1,135个重性抑郁症患者和1,135个正常对照样本组成,我们再次验证rs672607与精神分裂症显著性相关,另外,还发现rs672607 (p=0.031)与双相情感障碍相关,rs672607、rs10494251、rs1541187、rs688325和rs946903与重性抑郁症相关(rs672607 (p=0.001);rs10494251 (p=0.036); rs1541187 (p=0.039);rs688325 (p=0.015);rs946903 (p=0.006))。最后我们将有关精神分裂症的三步研究进行合并,发现rs9326555、rs10494251、rs1240083、rs672607、rs688325和rs3766512 (rs9326555 (p=1.53×10~(-5)); rs10494251 (p=0.018); rs1240083 (p=1.52×10~(-4)) ; rs672607 (p=1.23×10~(-11)) ; rs688325 (p= 2.54×10~(-4)); rs3766512 (p=0.0098))与精神分裂症显著性相关。此外,我们还对第三步实验样本进行了人群层化分析,排除了由于人群层化导致的假阳性的问题。
     大量研究发现由细胞粘附分子介导的神经元迁移的异常会导致精神病患者的脑以及细胞结构的异常。像很多细胞粘附分子一样,MDGA1也包含很多起细胞粘附作用的结构域。此外,有文献报道MDGA1基因在高加索人群中与精神分裂症有显著性相关。为了进一步验证MDGA1基因在中国汉族人群中是否也与精神分裂症、双相情感障碍和重性抑郁症相关,我们对11个SNPs在1,135个精神分裂症患者、1,135个双相情感障碍患者、1,135个重性抑郁症患者和1,135个正常对照样本进行Taqman基因分型。我们发现rs11759115、rs1883901和rs9462341与精神分裂症有显著性关联(rs11759115, allele: p=0.01, genotype: p=0.003,odds ratio (OR)=0.81[0.68-0.96]; rs1883901, allele: p=0.02,genotype: p=0.02, OR=1.19 [1.0-1.39]; rs9462341, allele: p=0.03, genotype: p=0.02, OR=0.87 [=0.77-0.98])。经矫正后,rs11759115仍然与精神分裂症显著性相关(p=0.009)。由rs11759115和rs7769372组成的单倍型C-C与精神分裂症相关。对于双相情感障碍,我们发现rs1883901与双相情感障碍显著性相关(allele: p=0.0004, genotype: p=0.0004, OR=1.31 [1.12-1.52])。经矫正后,rs1883901仍然具有显著性(allele: p=0.009; genotype: p=0.0009)。由rs1883901、rs10807187和rs9462343组成的单倍型A-G-G与双相情感障碍显著性关联。
     总之,在本研究中,我们发现精神分裂症、双相情感障碍和重性抑郁症共享易感基因BCL9基因;精神分裂症和双相情感障碍共享易感基因MDGA1基因,为今后这三种常见精神疾病的发病机制研究和诊断治疗提供一定的依据。
Schizophrenia, bipolar disorder and major depressive disorder are three common psychiatric diseases with high morbidity and heritability. Several lines of evidence indicate that schizophrenia, bipolar disorder and major depressive disorder have overlap in pathogenesis. To investigate and detect the sharing genetic factors of schizophrenia, bipolar disorder and major depressive disorder, we carried out association studies of the BCL9 gene and the MDGA1 gene respectively.
     The BCL9 gene locates at 1q21.1, which was reported to be associated with schizophrenia. BCL9 is required in the Wnt-stimulated signaling pathway, which influences neuroplasticity, cell survival and adult neurogenesis, and may be involved in the etiology of mental disorders. Therefore, the BCL9 gene was also a functional candidate gene for mental disorders. We chose ten tagSNPs to be genotyped. We carried out a 3-stage case-control study. Totally 12,229 Chinese Han subjects were included in this study: 5,772 normal control subjects, 4,187 schizophrenia patients, 1,135 bipolar disorder patients, and 1,135 major depressive disorder patients. In the 1st and 2nd stage studies, we genotyped all ten tagSNPs using the Ligation Detection Reaction method (LDR). In the 3rd stage study, all tagSNPs were genotyped on the ABI 7900 DNA detection system using TaqMan? technology. In the 1st stage study, we found that rs672607 was significantly associated with schizophrenia (p=2.69×10~(-5)). Then in the 2nd stage study, rs672607 was successfully replicated (p=1.33×10~(-5)), and rs9326555 (p=0.0015), rs1240083 (p=1.7×10~(-4)), and rs688325 (p=0.006) were newly identified to be significant. We conducted the 3rd stage study by genotyping all tagSNPs in 1,135 schizophrenia patients, 1,135 bipolar disorder patients, 1,135 major depressive disorder patients and 1,135 shared normal controls for further validation. Finally, in the combined schizophrenia study, rs9326555 (p=1.53×10~(-5)), rs10494251 (p=0.018), rs1240083 (p=1.52×10~(-4)), rs672607 (p=1.23×10~(-11)), rs688325 (p=2.54×10~(-4)), and rs3766512 (p=0.0098) were significant. Moreover, we also found that rs672607 was significant in major depressive disorder (p=0.001) and bipolar disorder (p=0.031), and rs10494251 (p=0.036), rs1541187 (p=0.039), rs688325 (p=0.015), and rs946903 (p=0.006) were significant in major depressive disorder in the 3rd stage study. In addition, we carried out population stratification analysis in the 3rd stage sample set. We found that there was no obvious population stratification in our subjects, and our results should not be false positive association simply caused by population stratification.
    
     The structural, cytoarchitectural and functional brain abnormalitities reported in patients with mental disorders may be due to aberrant neuronal migration influenced by cell adhesion molecules. MDGA1, like Ig-containing cell adhesion molecules, has several cell adhesion molecule-like domains. Moreover, Kahler et al. reported that the MDGA1 gene was a schizophrenia susceptibility gene in Scandinavian population. We recruited 1,135 schizophrenia patients, 1,135 bipolar disorder patients, 1,135 major depressive disorder patients and 1,135 normal control subjects of Chinese Han origin. A total of 11 common SNPs were genotyped using TaqMan? technology. The genotype frequency of rs11759115 differed significantly between schizophrenia patients and controls (permutated p=0.0086). Haplotype analysis revealed that the C-C haplotype consisting of rs11759115 and rs7769372 was positively associated with schizophrenia (permutated p=0.046). Rs1883901 was found to be positively associated with bipolar disorder in both allele and genotype distribution (allele: permutated p=0.0085; genotype: permutated p=0.0009; OR=1.31 [95%CI=1.12-1.52]). A haplotype consisting of rs1883901, rs10807187 and rs9462343 was positively associated with bipolar disorder with a global p value of 0.0391 after permutations. After permutations, the p value of an A-G-G haplotype of rs1883901- rs10807187-rs9462343 was 0.017. No individual SNP or haplotype was associated with major depressive disorder.
     In Conclusion, these results indicate that common variants in the BCL9 gene confer risk to schizophrenia, bipolar disorder and major depressive disorder in Chinese Han population and the MDGA1 gene confers risk to bipolar disorder and schizophrenia in the Chinese Han population. These findings will provide some help for the research of mental disorders pathogenesis.
引文
1. Botstein D, Risch N. Discovering genotypes underlying human phenotypes: past successes for mendelian disease, future approaches for complex disease. Nat Genet 2003 Mar; 33 Suppl: 228-237.
    2. Terwilliger JD, Weiss KM. Linkage disequilibrium mapping of complex disease: fantasy or reality? Curr Opin Biotechnol 1998 Dec; 9(6): 578-594.
    3. Bourgeron T, Giros B. Genetic markers in psychiatric genetics. Methods Mol Med 2003; 77: 63-98.
    4. Shastry BS. SNPs and haplotypes: genetic markers for disease and drug response (review). Int J Mol Med 2003 Mar; 11(3): 379-382.
    5. Winokur G. Genetic markers in depressive disorders. Prog Neuropsychopharmacol 1979; 3(5-6): 625-630.
    6. Engelborghs S, De Deyn PP. Biological and genetic markers of sporadic Alzheimer's disease. Acta Med Okayama 2001 Apr; 55(2): 55-63.
    7. Cardon LR, Bell JI. Association study designs for complex diseases. Nat Rev Genet 2001 Feb; 2(2): 91-99.
    8. Hancock DB, Scott WK. Population-based case-control association studies. Curr Protoc Hum Genet 2007 Jan; Chapter 1: Unit 1 17.
    9. Ott J. Linkage analysis with biological markers. Hum Hered 1995 May-Jun; 45(3): 169-174.
    10. Ott J. Issues in association analysis: error control in case-control association studies for disease gene discovery. Hum Hered 2004; 58(3-4): 171-174.
    11. Ott J, Hoh J. Statistical multilocus methods for disequilibrium analysis in complex traits. Hum Mutat 2001 Apr; 17(4): 285-288.
    12. Ott J. Estimation of the recombination fraction in human pedigrees: efficient computation of the likelihood for human linkage studies. Am J Hum Genet 1974 Sep; 26(5): 588-597.
    13. Lathrop GM, Lalouel JM, Julier C, Ott J. Multilocus linkage analysis in humans: detection of linkage and estimation of recombination. Am J Hum Genet 1985 May; 37(3): 482-498.
    14. Weeks DE, Lange K. The affected-pedigree-member method of linkage analysis. Am J Hum Genet 1988 Feb; 42(2): 315-326.
    15. Weeks DE, Harby LD. The affected-pedigree-member method: power to detect linkage. Hum Hered 1995 Jan-Feb; 45(1): 13-24.
    16. Suarez BK, Van Eerdewegh P. A comparison of three affected-sib-pair scoring methods to detect HLA-linked disease susceptibility genes. Am J Med Genet 1984 May; 18(1): 135-146.
    17. Holmans P. Likelihood-ratio affected sib-pair tests applied to multiply affected sibships: issues of power and type I error rate. Genet Epidemiol 2001 Jan; 20(1): 44-56.
    18. Lander E, Kruglyak L. Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet 1995 Nov; 11(3): 241-247.
    19. Wiltshire S, Cardon LR, McCarthy MI. Evaluating the results of genomewide linkage scans of complex traits by locus counting. Am J Hum Genet 2002 Nov; 71(5): 1175-1182.
    20. Greenberg DA, Abreu P, Hodge SE. The power to detect linkage in complex disease by means of simple LOD-score analyses. Am J Hum Genet 1998 Sep; 63(3): 870-879.
    21. Sullivan PF, Neale BM, Neale MC, van den Oord E, Kendler KS. Multipoint and single point non-parametric linkage analysis with imperfect data. Am J Med Genet B Neuropsychiatr Genet 2003 Aug 15; 121B(1): 89-94.
    22. Kruglyak L, Daly MJ, Reeve-Daly MP, Lander ES. Parametric and nonparametric linkage analysis: a unified multipoint approach. Am J Hum Genet 1996 Jun; 58(6): 1347-1363.
    23. O'Connell JR, Weeks DE. The VITESSE algorithm for rapid exact multilocus linkage analysis via genotype set-recoding and fuzzy inheritance. Nat Genet 1995 Dec; 11(4): 402-408.
    24. Lindner TH, Hoffmann K. easyLINKAGE: a PERL script for easy and automated two-/multi-point linkage analyses. Bioinformatics 2005 Feb 1; 21(3): 405-407.
    25. Gudbjartsson DF, Jonasson K, Frigge ML, Kong A. Allegro, a new computer program for multipoint linkage analysis. Nat Genet 2000 May; 25(1): 12-13.
    26. Cordell HJ, Clayton DG. Genetic association studies. Lancet 2005 Sep 24-30; 366(9491): 1121-1131.
    27. Risch N, Teng J. The relative power of family-based and case-control designs for linkage disequilibrium studies of complex human diseases I. DNA pooling. Genome Res 1998 Dec; 8(12): 1273-1288.
    28. Devlin B, Roeder K. Genomic control for association studies. Biometrics 1999 Dec; 55(4): 997-1004.
    29. Bacanu SA, Devlin B, Roeder K. The power of genomic control. Am J Hum Genet 2000 Jun; 66(6): 1933-1944.
    30. Falk CT, Rubinstein P. Haplotype relative risks: an easy reliable way to construct a proper control sample for risk calculations. Ann Hum Genet 1987 Jul; 51(Pt 3): 227-233.
    31. Terwilliger JD, Ott J. A haplotype-based 'haplotype relative risk' approach to detecting allelic associations. Hum Hered 1992; 42(6): 337-346.
    32. Spielman RS, McGinnis RE, Ewens WJ. Transmission test for linkagedisequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am J Hum Genet 1993 Mar; 52(3): 506-516.
    33. Ott J. Statistical properties of the haplotype relative risk. Genet Epidemiol 1989; 6(1): 127-130.
    34. Jennings HS. The Numerical Results of Diverse Systems of Breeding, with Respect to Two Pairs of Characters, Linked or Independent, with Special Relation to the Effects of Linkage. Genetics 1917 Mar; 2(2): 97-154.
    35. Lewontin RC. The Interaction of Selection and Linkage. I. General Considerations; Heterotic Models. Genetics 1964 Jan; 49(1): 49-67.
    36. Ardlie KG, Kruglyak L, Seielstad M. Patterns of linkage disequilibrium in the human genome. Nat Rev Genet 2002 Apr; 3(4): 299-309.
    37. Pritchard JK, Przeworski M. Linkage disequilibrium in humans: models and data. Am J Hum Genet 2001 Jul; 69(1): 1-14.
    38. Devlin B, Risch N. A comparison of linkage disequilibrium measures for fine-scale mapping. Genomics 1995 Sep 20; 29(2): 311-322.
    39. Ozaki K, Tanaka T. Genome-wide association study to identify SNPs conferring risk of myocardial infarction and their functional analyses. Cell Mol Life Sci 2005 Aug; 62(16): 1804-1813.
    40. Bacanu SA, Devlin B, Roeder K. Association studies for quantitative traits in structured populations. Genet Epidemiol 2002 Jan; 22(1): 78-93.
    41. Pritchard JK, Rosenberg NA. Use of unlinked genetic markers to detect population stratification in association studies. Am J Hum Genet 1999 Jul; 65(1): 220-228.
    42. Feng Q, Abraham J, Feng T, Song Y, Elston RC, Zhu X. A method to correct for population structure using a segregation model. BMC Proc 2009; 3 Suppl 7: S104.
    43. Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res 2009 Sep; 19(9): 1655-1664.
    44. Pritchard JK, Stephens M, Rosenberg NA, Donnelly P. Association mapping in structured populations. Am J Hum Genet 2000 Jul; 67(1): 170-181.
    45. Hahn LW, Ritchie MD, Moore JH. Multifactor dimensionality reduction software for detecting gene-gene and gene-environment interactions. Bioinformatics 2003 Feb 12; 19(3): 376-382.
    46. Kendler KS. The genetic epidemiology of psychiatric disorders: a current perspective. Soc Psychiatry Psychiatr Epidemiol 1997 Jan; 32(1): 5-11.
    47. Chanock S. Genetic variation and hematology: single-nucleotide polymorphisms, haplotypes, and complex disease. Semin Hematol 2003 Oct; 40(4): 321-328.
    48. Huttley GA, Smith MW, Carrington M, O'Brien SJ. A scan for linkage disequilibrium across the human genome. Genetics 1999 Aug; 152(4): 1711-1722.
    49. Abecasis GR, Noguchi E, Heinzmann A, Traherne JA, Bhattacharyya S, Leaves NI et al. Extent and distribution of linkage disequilibrium in three genomic regions. Am J Hum Genet 2001 Jan; 68(1): 191-197.
    50. The International HapMap Project. Nature 2003 Dec 18; 426(6968): 789-796.
    51. Integrating ethics and science in the International HapMap Project. Nat Rev Genet 2004 Jun; 5(6): 467-475.
    52. A haplotype map of the human genome. Nature 2005 Oct 27; 437(7063): 1299-1320.
    53. Daly MJ, Rioux JD, Schaffner SF, Hudson TJ, Lander ES. High-resolution haplotype structure in the human genome. Nat Genet 2001 Oct; 29(2): 229-232.
    54. Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, Haynes C et al. Complement factor H polymorphism in age-related macular degeneration. Science 2005 Apr 15; 308(5720): 385-389.
    55. O'Donovan MC, Craddock N, Norton N, Williams H, Peirce T, Moskvina V et al. Identification of loci associated with schizophrenia by genome-wide association and follow-up. Nature Genetics 2008 Sep; 40(9): 1053-1055.
    56. Schouten JP, McElgunn CJ, Waaijer R, Zwijnenburg D, Diepvens F, Pals G. Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Research 2002 Jun 15; 30(12): -.
    57. Boomsma DI, Willemsen G, Sullivan PF, Heutink P, Meijer P, Sondervan D et al. Genome-wide association of major depression: description of samples for the GAIN Major Depressive Disorder Study: NTR and NESDA biobank projects. European Journal of Human Genetics 2008 Mar; 16(3): 335-342.
    58. Cloninger CR. The discovery of susceptibility genes for mental disorders. Proceedings of the National Academy of Sciences of the United States of America 2002 Oct 15; 99(21): 13365-13367.
    59. Miyamoto S, LaMantia AS, Duncan GE, Sullivan P, Gilmore JH, Lieberman JA. Recent advances in the neurobiology of schizophrenia. Mol Interv 2003 Feb; 3(1): 27-39.
    60. McGuffin P, Asherson P, Owen M, Farmer A. The strength of the genetic effect. Is there room for an environmental influence in the aetiology of schizophrenia? Br J Psychiatry 1994 May; 164(5): 593-599.
    61.季建林.《精神医学》. 2003.
    62. Risch N. Linkage strategies for genetically complex traits. II. The power of affected relative pairs. Am J Hum Genet 1990 Feb; 46(2):229-241.
    63. Gottesman. Schizophrenia Genesis: The Origins of Madness. 1991.
    64. Owens N, McGorry PD. Seasonality of symptom onset in first-episode schizophrenia. Psychol Med 2003 Jan; 33(1): 163-167.
    65. Susser E, Neugebauer R, Hoek HW, Brown AS, Lin S, Labovitz D et al. Schizophrenia after prenatal famine. Further evidence. Arch Gen Psychiatry 1996 Jan; 53(1): 25-31.
    66. St Clair D, Xu M, Wang P, Yu Y, Fang Y, Zhang F et al. Rates of adult schizophrenia following prenatal exposure to the Chinese famine of 1959-1961. JAMA 2005 Aug 3; 294(5): 557-562.
    67. Javitt DC, Zukin SR. Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry 1991 Oct; 148(10): 1301-1308.
    68. Farde L, Wiesel FA, Stone-Elander S, Halldin C, Nordstrom AL, Hall H et al. D2 dopamine receptors in neuroleptic-naive schizophrenic patients. A positron emission tomography study with [11C]raclopride. Arch Gen Psychiatry 1990 Mar; 47(3): 213-219.
    69. Huntsman MM, Tran BV, Potkin SG, Bunney WE, Jr., Jones EG. Altered ratios of alternatively spliced long and short gamma2 subunit mRNAs of the gamma-amino butyrate type A receptor in prefrontal cortex of schizophrenics. Proc Natl Acad Sci U S A 1998 Dec 8; 95(25): 15066-15071.
    70. Ordway GA, Klimek V. Noradrenergic pathology in psychiatric disorders: postmortem studies. CNS Spectr 2001 Aug; 6(8): 697-703.
    71. Lucas-Meunier E, Fossier P, Baux G, Amar M. Cholinergic modulation of the cortical neuronal network. Pflugers Arch 2003 Apr; 446(1): 17-29.
    72. Freedman R. Schizophrenia. N Engl J Med 2003 Oct 30; 349(18): 1738-1749.
    73. Sawa A, Snyder SH. Schizophrenia: diverse approaches to a complex disease. Science 2002 Apr 26; 296(5568): 692-695.
    74. Marenco S, Weinberger DR. The neurodevelopmental hypothesis of schizophrenia: following a trail of evidence from cradle to grave. Dev Psychopathol 2000 Summer; 12(3): 501-527.
    75. Broadbelt K, Jones LB. Evidence of altered calmodulin immunoreactivity in areas 9 and 32 of schizophrenic prefrontal cortex. J Psychiatr Res 2008 Jul; 42(8): 612-621.
    76. Johnstone EC, Crow TJ, Frith CD, Husband J, Kreel L. Cerebral ventricular size and cognitive impairment in chronic schizophrenia. Lancet 1976 Oct 30; 2(7992): 924-926.
    77. Thompson PM, Vidal C, Giedd JN, Gochman P, Blumenthal J, Nicolson R et al. Mapping adolescent brain change reveals dynamic wave of accelerated gray matter loss in very early-onset schizophrenia. Proceedings of the National Academy of Sciences of the United States of America 2001 Sep 25; 98(20): 11650-11655.
    78. Sullivan EV, Shear PK, Lim KO, Zipursky RB, Pfefferbaum A. Cognitive and motor impairments are related to gray matter volume deficits in schizophrenia. Biol Psychiatry 1996 Feb 15; 39(4): 234-240.
    79. Wilke M, Kaufmann C, Grabner A, Putz B, Wetter TC, Auer DP. Gray matter-changes and correlates of disease severity in schizophrenia: a statistical parametric mapping study. Neuroimage 2001 May; 13(5): 814-824.
    80. Owen MJ, Williams NM, O'Donovan MC. The molecular genetics of schizophrenia: findings promise new insights. Molecular Psychiatry 2004; 9(1): 14-27.
    81. Millar JK, Wilson-Annan JC, Anderson S, Christie S, Taylor MS, Semple CA et al. Disruption of two novel genes by a translocation co-segregating with schizophrenia. Hum Mol Genet 2000 May 22; 9(9): 1415-1423.
    82. Ekelund J, Hovatta I, Parker A, Paunio T, Varilo T, Martin R et al. Chromosome 1 loci in Finnish schizophrenia families. Hum Mol Genet 2001 Jul 15; 10(15): 1611-1617.
    83. Hennah W, Varilo T, Kestila M, Paunio T, Arajarvi R, Haukka J et al. Haplotype transmission analysis provides evidence of association for DISC1 to schizophrenia and suggests sex-dependent effects. Hum Mol Genet 2003 Dec 1; 12(23): 3151-3159.
    84. Fallin MD, Lasseter VK, Avramopoulos D, Nicodemus KK, Wolyniec PS, McGrath JA et al. Bipolar I disorder and schizophrenia: a 440-single-nucleotide polymorphism screen of 64 candidate genes among Ashkenazi Jewish case-parent trios. Am J Hum Genet 2005 Dec; 77(6): 918-936.
    85. Callicott JH, Straub RE, Pezawas L, Egan MF, Mattay VS, Hariri AR et al. Variation in DISC1 affects hippocampal structure and function and increases risk for schizophrenia. Proc Natl Acad Sci U S A 2005 Jun 14; 102(24): 8627-8632.
    86. Hodgkinson CA, Goldman D, Jaeger J, Persaud S, Kane JM, Lipsky RH et al. Disrupted in schizophrenia 1 (DISC1): association with schizophrenia, schizoaffective disorder, and bipolar disorder. Am J Hum Genet 2004 Nov; 75(5): 862-872.
    87. Sachs NA, Sawa A, Holmes SE, Ross CA, DeLisi LE, Margolis RL. A frameshift mutation in Disrupted in Schizophrenia 1 in an American family with schizophrenia and schizoaffective disorder. Mol Psychiatry 2005 Aug; 10(8): 758-764.
    88. Millar JK, Pickard BS, Mackie S, James R, Christie S, Buchanan SR et al. DISC1 and PDE4B are interacting genetic factors in schizophrenia that regulate cAMP signaling. Science 2005 Nov 18; 310(5751): 1187-1191.
    89. Kamiya A, Kubo K, Tomoda T, Takaki M, Youn R, Ozeki Y et al. A schizophrenia-associated mutation of DISC1 perturbs cerebralcortex development. Nat Cell Biol 2005 Dec; 7(12): 1167-1178.
    90. Straub RE, MacLean CJ, O'Neill FA, Burke J, Murphy B, Duke F et al. A potential vulnerability locus for schizophrenia on chromosome 6p24-22: evidence for genetic heterogeneity. Nat Genet 1995 Nov; 11(3): 287-293.
    91. Maziade M, Bissonnette L, Rouillard E, Martinez M, Turgeon M, Charron L et al. 6p24-22 region and major psychoses in the Eastern Quebec population. Le Groupe IREP. Am J Med Genet 1997 May 31; 74(3): 311-318.
    92. Hovatta I, Lichtermann D, Juvonen H, Suvisaari J, Terwilliger JD, Arajarvi R et al. Linkage analysis of putative schizophrenia gene candidate regions on chromosomes 3p, 5q, 6p, 8p, 20p and 22q in a population-based sampled Finnish family set. Mol Psychiatry 1998 Sep; 3(5): 452-457.
    93. Maziade M, Roy MA, Rouillard E, Bissonnette L, Fournier JP, Roy A et al. A search for specific and common susceptibility loci for schizophrenia and bipolar disorder: a linkage study in 13 target chromosomes. Mol Psychiatry 2001 Nov; 6(6): 684-693.
    94. Straub RE, Jiang Y, MacLean CJ, Ma Y, Webb BT, Myakishev MV et al. Genetic variation in the 6p22.3 gene DTNBP1, the human ortholog of the mouse dysbindin gene, is associated with schizophrenia. Am J Hum Genet 2002 Aug; 71(2): 337-348.
    95. Schwab SG, Knapp M, Mondabon S, Hallmayer J, Borrmann-Hassenbach M, Albus M et al. Support for association of schizophrenia with genetic variation in the 6p22.3 gene, dysbindin, in sib-pair families with linkage and in an additional sample of triad families. Am J Hum Genet 2003 Jan; 72(1): 185-190.
    96. Tang JX, Zhou J, Fan JB, Li XW, Shi YY, Gu NF et al. Family-based association study of DTNBP1 in 6p22.3 and schizophrenia. Mol Psychiatry 2003 Aug; 8(8): 717-718.
    97. Williams NM, Preece A, Morris DW, Spurlock G, Bray NJ, Stephens M et al. Identification in 2 independent samples of a novel schizophrenia risk haplotype of the dystrobrevin binding protein gene (DTNBP1). Arch Gen Psychiatry 2004 Apr; 61(4): 336-344.
    98. Wei J, Hemmings GP. The NOTCH4 locus is associated with susceptibility to schizophrenia. Nature Genetics 2000 Aug; 25(4): 376-377.
    99. Yang MS, Yu L, Guo TW, Zhu SM, Liu HJ, Shi YY et al. Evidence for association between single nucleotide polymorphisms in T complex protein 1 gene and schizophrenia in the Chinese Han population. Journal of Medical Genetics 2004 May; 41(5): -.
    100. Meira-Lima IV, Pereira AC, Mota GF, Floriano M, Araujo F, Mansur AJ et al. Analysis of a polymorphism in the promoter region of the tumor necrosis factor alpha gene in schizophrenia and bipolardisorder: further support for an association with schizophrenia. Molecular Psychiatry 2003; 8(8): 718-720.
    101. Chumakov I, Blumenfeld M, Guerassimenko O, Cavarec L, Palicio M, Abderrahim H et al. Genetic and physiological data implicating the new human gene G72 and the gene for D-amino acid oxidase in schizophrenia. Proceedings of the National Academy of Sciences of the United States of America 2002 Oct 15; 99(21): 13675-13680.
    102. Hattori E, Liu CY, Badner JA, Bonner TI, Christian SL, Maheshwari M et al. Polymorphisms at the G72/G30 gene locus, on 13q33, are associated with bipolar disorder in two independent pedigree series. American Journal of Human Genetics 2003 May; 72(5): 1131-1140.
    103. Chen YS, Akula N, Detera-Wadleigh SD, Schulze TG, Thomas J, DePaulo JR et al. Findings in an independent sample support association between bipolar affective disorder and the G72/G30 locus on chromosome 13q33. American Journal of Human Genetics 2003 Nov; 73(5): 496-496.
    104. Zou FG, Li C, Duan SW, Zheng YL, Gu NF, Feng GY et al. A family-based study of the association between the G72/G30 genes and schizophrenia in the Chinese population. Schizophrenia Research 2005 Mar 1; 73(2-3): 257-261.
    105. Wang XY, He G, Gu NF, Yang JD, Tang JX, Chen Q et al. Association of G72/G30 with schizophrenia in the Chinese population. Biochemical and Biophysical Research Communications 2004 Jul 9; 319(4): 1281-1286.
    106. Craddock N, O'Donovan MC, Owen MJ. The genetics of schizophrenia and bipolar disorder: dissecting psychosis. Journal of Medical Genetics 2005 Mar; 42(3): 193-204.
    107. Blouin JL, Dombroski BA, Nath SK, Lasseter VK, Wolyniec PS, Nestadt G et al. Schizophrenia susceptibility loci on chromosomes 13q32 and 8p21. Nature Genetics 1998 Sep; 20(1): 70-73.
    108. Kendler KS, Myers JM, O'Neill FA, Martin R, Murphy B, MacLean CJ et al. Clinical features of schizophrenia and linkage to chromosomes 5q, 6p, 8p, and 10p in the Irish study of high-density schizophrenia families. American Journal of Psychiatry 2000 Mar; 157(3): 402-408.
    109. Gurling, Brynjolfsson. Genomewide genetic linkage analysis confirms the presence of susceptibility loci for schizophrenia, on chromosomes 1q32.2, 5q33.2, and 8p21-22 and provides support for linkage to schizophrenia, on chromosomes 11q23.3-24 and 20q12.1-11.23 (vol 68, pg 661, 2001). American Journal of Human Genetics 2001 Apr; 68(4): 1075-1075.
    110. Stefansson H, Sigurdsson E, Steinthorsdottir V, Bjornsdottir S, Sigmundsson T, Brynjolfsson J et al. Neuregulin 1 and susceptibility to schizophrenia. American Journal of HumanGenetics 2002 Oct; 71(4): 185-185.
    111. Stefansson H, Sarginson J, Kong A, Yates P, Steinthorsdottir V, Gudfinnsson E et al. Association of neuregulin 1 with schizophrenia confirmed in a Scottish population. American Journal of Human Genetics 2003 Jan; 72(1): 83-87.
    112. Williams NM, Preece A, Spurlock G, Norton N, Williams HJ, Zammit S et al. Support for genetic variation in neuregulin 1 and susceptibility to schizophrenia. Molecular Psychiatry 2003; 8(5): 485-487.
    113. Tang JX, Chen WY, He G, Zhou J, Gu NF, Feng GY et al. Polymorphisms within 5 ' end of the Neuregulin 1 gene are genetically associated with schizophrenia in the Chinese population. Molecular Psychiatry 2004; 9(1): 11-12.
    114. Shi XZ, Shi YY, Tang JX, Tang RQ, Yu L, Gu NF et al. A case control and family based association study of Neuregulin1 gene and schizophrenia. American Journal of Medical Genetics Part B-Neuropsychiatric Genetics 2004 Sep 15; 130B(1): 76-76.
    115. Gerber DJ, Hall D, Miyakawa T, Demars S, Gogos JA, Karayiorgou M et al. Evidence for association of schizophrenia with genetic variation in the 8p21.3 gene, PPP3CC, encoding the calcineurin gamma subunit. Proceedings of the National Academy of Sciences of the United States of America 2003 Jul 22; 100(15): 8993-8998.
    116. Nakata K, Ujike H, Sakai A, Takaki M, Imamura T, Tanaka Y et al. The human dihydropyrimidinase-related protein 2 gene on chromosome 8p21 is associated with paranoid-type schizophrenia. Biological Psychiatry 2003 Apr 1; 53(7): 571-576.
    117. Miyakawa T, Leiter LM, Gerber DJ, Gainetdinov RR, Sotnikova TD, Zeng HK et al. Conditional calcineurin knockout mice exhibit multiple abnormal behaviors related to schizophrenia. Proceedings of the National Academy of Sciences of the United States of America 2003 Jul 22; 100(15): 8987-8992.
    118. Liu H, Abecasis GR, Heath SC, Knowles A, Demars S, Chen YJ et al. Genetic variation in the 22q11 locus and susceptibility to schizophrenia. Proceedings of the National Academy of Sciences of the United States of America 2002 Dec 24; 99(26): 16859-16864.
    119. Weinshilboum RM, Otterness DM, Szumlanski CL. Methylation pharmacogenetics: Catechol O-methyltransferase, thiopurine methyltransferase, and histamine N-methyltransferase. Annual Review of Pharmacology and Toxicology 1999; 39: 19-52.
    120. Lachman HM, Morrow B, Shprintzen R, Veit S, Parsia SS, Faedda G et al. Association of codon 108/158 catechol-O-methyltransferase gene polymorphism with the psychiatric manifestations of velo-cardio-facial syndrome. American Journal of Medical Genetics 1996 Sep 20; 67(5): 468-472.
    121. Fan JB, Zhang CS, Gu NF, Li XW, Sun WW, Wang HY et al. Catechol-O-methyltransferase gene Val/Met functional polymorphism and risk of schizophrenia: A large-scale association study plus meta-analysis. Biological Psychiatry 2005 Jan 15; 57(2): 139-144.
    122. Shifman S, Bronstein M, Sternfeld M, Pisante-Shalom A, Lev-Lehman E, Weizman A et al. A highly significant association between a COMT haplotype and schizophrenia. American Journal of Human Genetics 2002 Dec; 71(6): 1296-1302.
    123. Liu H, Heath SC, Sobin C, Roos JL, Galke BL, Blundell ML et al. Genetic variation at the 22q11 PRODH2/DGCR6 locus presents an unusual pattern and increases susceptibility to schizophrenia. Proceedings of the National Academy of Sciences of the United States of America 2002 Mar 19; 99(6): 3717-3722.
    124. Chen WY, Shi YY, Zheng YL, Zhao XZ, Zhang GJ, Chen SQ et al. Case-control study and transmission disequilibrium test provide consistent evidence for association between schizophrenia and genetic variation in the 22q11 gene ZDHHC8. Human Molecular Genetics 2004 Dec 1; 13(23): 2991-2995.
    125. Glaser B, Schumacher J, Williams HJ, Abou Jamra R, Ianakiev N, Milev R et al. No association between the putative functional ZDHHC8 single nucleotide polymorphism rs175174 and schizophrenia in large European samples. Biological Psychiatry 2005 Jul 1; 58(1): 78-80.
    126. Brzustowicz LM, Simone J, Mohseni P, Hayter JE, Hodgkinson KA, Chow EWC et al. Linkage disequilibrium mapping of schizophrenia susceptibility to the CAPON region of chromosome 1q22. American Journal of Human Genetics 2004 May; 74(5): 1057-1063.
    127. Duan JB, Martinez M, Sanders AR, Hou CP, Saitou N, Kitano T et al. Polymorphisms in the trace amine receptor 4 (TRAR4) gene on chromosome 6q23.2 are associated with susceptibility to schizophrenia. American Journal of Human Genetics 2004 Oct; 75(4): 624-638.
    128. Pimm J, McQuillin A, Thirumalai S, Lawrence J, Quested D, Bass N et al. The Epsin 4 gene on chromosome 5q, which encodes the clathrin-associated protein enthoprotin, is involved in the genetic susceptibility to schizophrenia. American Journal of Human Genetics 2005 May; 76(5): 902-907.
    129. Begni S, Moraschi S, Bignotti S, Fumagalli F, Rillosi L, Perez J et al. Association between the G1001C polymorphism in the GRIN1 gene promoter region and schizophrenia. Biological Psychiatry 2003 Apr 1; 53(7): 617-619.
    130. Volk DW, Austin MC, Pierri JN, Sampson AR, Lewis DA. Decreased glutamic acid decarboxylase(67) messenger RNA expression in a subset of prefrontal cortical gamma-aminobutyric acid neurons in subjects with schizophrenia. Archives of General Psychiatry 2000Mar; 57(3): 237-245.
    131. Freedman R, Stromberg I, Seiger A, Olson L, Nordstrom AL, Wiesel FA et al. Initial Studies of Embryonic Transplants of Human Hippocampus and Cerebral-Cortex Derived from Schizophrenic Women. Biological Psychiatry 1992 Dec 15; 32(12): 1148-1163.
    132. Egan M, Straub R, Goldberg TE, Callicott J, Hariri A, Mattay V et al. Variation in GRM3 affects cognition, prefrontal glutamate, and risk for schizophrenia. Neuropsychopharmacology 2004 Dec; 29: S56-S56.
    133. Kieseppa T, Partonen T, Haukka J, Kaprio J, Lonnqvist J. High concordance of bipolar I disorder in a nationwide sample of twins. American Journal of Psychiatry 2004 Oct; 161(10): 1814-1821.
    134. Edvardsen J, Torgersen S, Roysamb E, Lygren S, Skre I, Onstad S et al. Heritability of bipolar spectrum disorders. Unity or heterogeneity? Journal of Affective Disorders 2008 Mar; 106(3): 229-240.
    135. McGuffin P, Rijsdijk F, Andrew M, Sham P, Katz R, Cardno A. The heritability of bipolar affective disorder and the genetic relationship to unipolar depression. Archives of General Psychiatry 2003 May; 60(5): 497-502.
    136. Belmaker RH, Agam G. Mechanisms of disease: Major depressive disorder. New England Journal of Medicine 2008 Jan 3; 358(1): 55-68.
    137. Kendler KS, Gatz M, Gardner CO, Pedersen NL. A Swedish national twin study of lifetime major depression. American Journal of Psychiatry 2006 Jan; 163(1): 109-114.
    138. Nutt DJ. Relationship of neurotransmitters to the symptoms of major depressive disorder. J Clin Psychiatry 2008; 69 Suppl E1: 4-7.
    139. Hirschfeld RM. History and evolution of the monoamine hypothesis of depression. J Clin Psychiatry 2000; 61 Suppl 6: 4-6.
    140. Delgado PL. Depression: the case for a monoamine deficiency. J Clin Psychiatry 2000; 61 Suppl 6: 7-11.
    141. Schumacher J, Jamra RA, Freudenberg J, Becker T, Ohlraun S, Otte ACJ et al. Examination of G72 and D-amino-acid oxidase as genetic risk factors for schizophrenia and bipolar affective disorder. Molecular Psychiatry 2004 Feb; 9(2): 203-207.
    142. Schulze TG, Ohlraun S, Czerski PM, Schumacher J, Kassem L, Deschner M et al. Genotype-phenotype studies in bipolar disorder showing association between the DAOA/G30 locus and persecutory delusions: A first step toward a molecular genetic classification of psychiatric phenotypes. American Journal of Psychiatry 2005 Nov; 162(11): 2101-2108.
    143. Baum AE, Akula N, Cabanero M, Cardona I, Corona W, Klemens B et al. A genome-wide association study implicates diacylglycerol kinase eta (DGKH) and several other genes in the etiology of bipolardisorder. Molecular Psychiatry 2008 Feb; 13(2): 197-207.
    144. Sklar P, Smoller JW, Fan J, Ferreira MAR, Perlis RH, Chambert K et al. Whole-genome association study of bipolar disorder. Molecular Psychiatry 2008 Jun; 13(6): 558-569.
    145. McGuffin P, Knight J, Breen G, Brewster S, Boyd PR, Craddock N et al. Whole genome linkage scan of recurrent depressive disorder from the depression network study. Human Molecular Genetics 2005 Nov 15; 14(22): 3337-3345.
    146. Camp NJ, Lowry MR, Richards RL, Plenk AM, Carter C, Hensel CH et al. Genome-wide linkage analyses of extended Utah pedigrees identifies loci that influence recurrent, early-onset major depression and anxiety disorders. American Journal of Medical Genetics Part B-Neuropsychiatric Genetics 2005 May 5; 135B(1): 85-93.
    147. Weiser M, Reichenberg A, Rabinowitz J, Kaplan Z, Mark M, Bodner E et al. Association between nonpsychotic psychiatric diagnoses in adolescent males and subsequent onset of schizophrenia. Archives of General Psychiatry 2001 Oct; 58(10): 959-964.
    148. Krabbendam L, van Os J. Affective processes in the onset and persistence of psychosis. Schizophrenia Research 2006 Oct; 86: S29-S30.
    149. Angst J, Gamma A, Neuenschwander M, Ajdacic-Gross V, Eich D, Rossler W et al. Prevalence of mental disorders in the Zurich Cohort Study: a twenty year prospective study. Epidemiologia E Psichiatria Sociale 2005 Apr-Jun; 14(2): 68-76.
    150. Laursen TM, Labouriau R, Licht RW, Bertelsen A, Munk-Olsen T, Mortensen PB. Family history of psychiatric illness as a risk factor for Schizoaffective disorder - A Danish register-based cohort study. Archives of General Psychiatry 2005 Aug; 62(8): 841-848.
    151. Cardno AG, Rijsdijk FV, Sham PC, Murray RM, McGuffin P. A twin study of genetic relationships between psychotic symptoms. American Journal of Psychiatry 2002 Apr; 159(4): 539-545.
    152. Berrettini W. Evidence for shared susceptibility in bipolar disorder and schizophrenia. American Journal of Medical Genetics Part C-Seminars in Medical Genetics 2003 Nov 15; 123C(1): 59-64.
    153. Salisbury DF, Shenton ME, Tohen M, Zarate C, McCarley RW. P300 topography during the early course of psychosis. Psychophysiology 1999 Aug; 36: S100-S100.
    154. Salisbury DF, Shenton ME, McCarley RW. P300 topography differs in schizophrenia and manic psychosis. Biological Psychiatry 1999 Jan 1; 45(1): 98-106.
    155. Franks RD, Adler LE, Waldo MC, Alpert J, Freedman R. Neurophysiological studies of sensory gating in mania: comparison with schizophrenia. Biol Psychiatry 1983 Sep; 18(9): 989-1005.
    156. Adler LE, Gerhardt GA, Franks R, Baker N, Nagamoto H, Drebing C et al. Sensory physiology and catecholamines in schizophrenia and mania. Psychiatry Res 1990 Mar; 31(3): 297-309.
    157. Gould TD, Manji HK. The Wnt signaling pathway in bipolar disorder. Neuroscientist 2002 Oct; 8(5): 497-511.
    158. Hall AC, Lucas FR, Salinas PC. Axonal remodeling and synaptic differentiation in the cerebellum is regulated by WNT-7a signaling. Cell 2000 Mar 3; 100(5): 525-535.
    159. McMahon AP, Bradley A. The Wnt-1 (int-1) proto-oncogene is required for development of a large region of the mouse brain. Cell 1990 Sep 21; 62(6): 1073-1085.
    160. Lie DC, Colamarino SA, Song HJ, Desire L, Mira H, Consiglio A et al. Wnt signalling regulates adult hippocampal neurogenesis. Nature 2005 Oct 27; 437(7063): 1370-1375.
    161. Klein PS, Melton DA. A molecular mechanism for the effect of lithium on development. Proc Natl Acad Sci U S A 1996 Aug 6; 93(16): 8455-8459.
    162. Kang UG, Seo MS, Roh MS, Kim Y, Yoon SC, Kim YS. The effects of clozapine on the GSK-3-mediated signaling pathway. FEBS Lett 2004 Feb 27; 560(1-3): 115-119.
    163. Beaulieu JM, Sotnikova TD, Yao WD, Kockeritz L, Woodgett JR, Gainetdinov RR et al. Lithium antagonizes dopamine-dependent behaviors mediated by an AKT/glycogen synthase kinase 3 signaling cascade. Proc Natl Acad Sci U S A 2004 Apr 6; 101(14): 5099-5104.
    164. Matigian N, Windus L, Smith H, Filippich C, Pantelis C, McGrath J et al. Expression profiling in monozygotic twins discordant for bipolar disorder reveals dysregulation of the WNT signalling pathway. Mol Psychiatry 2007 Sep; 12(9): 815-825.
    165. Zandi PP, Belmonte PL, Willour VL, Goes FS, Badner JA, Simpson SG et al. Association study of Wnt signaling pathway genes in bipolar disorder. Arch Gen Psychiatry 2008 Jul; 65(7): 785-793.
    166. de la Roche M, Worm J, Bienz M. The function of BCL9 in Wnt/beta-catenin signaling and colorectal cancer cells. BMC Cancer 2008; 8: 199.
    167. Sampietro J, Dahlberg CL, Cho US, Hinds TR, Kimelman D, Xu WQ. Crystal structure of a beta-catenin/BCL9/Tcf4 complex. Molecular Cell 2006 Oct 20; 24(2): 293-300.
    168. Stadeli R, Basler K. Dissecting nuclear Wingless signalling: Recruitment of the transcriptional co-activator Pygopus by a chain of adaptor proteins. Mechanisms of Development 2005 Nov; 122(11): 1171-1182.
    169. Brzustowicz LM, Hodgkinson KA, Chow EW, Honer WG, Bassett AS. Location of a major susceptibility locus for familial schizophrenia on chromosome 1q21-q22. Science 2000 Apr 28; 288(5466): 678-682.
    170. Gurling HM, Kalsi G, Brynjolfson J, Sigmundsson T, Sherrington R, Mankoo BS et al. Genomewide genetic linkage analysis confirms the presence of susceptibility loci for schizophrenia, on chromosomes 1q32.2, 5q33.2, and 8p21-22 and provides support for linkage to schizophrenia, on chromosomes 11q23.3-24 and 20q12.1-11.23. Am J Hum Genet 2001 Mar; 68(3): 661-673.
    171. Hwu HG, Liu CM, Fann CS, Ou-Yang WC, Lee SF. Linkage of schizophrenia with chromosome 1q loci in Taiwanese families. Mol Psychiatry 2003 Apr; 8(4): 445-452.
    172. Zheng Y, Wang X, Gu N, Feng G, Zou F, Qin W et al. A two-stage linkage analysis of Chinese schizophrenia pedigrees in 10 target chromosomes. Biochem Biophys Res Commun 2006 Apr 21; 342(4): 1049-1057.
    173. Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature 2008 Sep 11; 455(7210): 237-241.
    174. Stefansson H, Rujescu D, Cichon S, Pietilainen OPH, Ingason A, Steinberg S et al. Large recurrent microdeletions associated with schizophrenia. Nature 2008 Sep 11; 455(7210): 232-U261.
    175. Stefansson H, Ophoff RA, Steinberg S, Andreassen OA, Cichon S, Rujescu D et al. Common variants conferring risk of schizophrenia. Nature 2009 Aug 6; 460(7256): 744-747.
    176. Shi JX, Levinson DF, Duan JB, Sanders AR, Zheng YL, Pe'er I et al. Common variants on chromosome 6p22.1 are associated with schizophrenia. Nature 2009 Aug 6; 460(7256): 753-757.
    177. Purcell SM, Wray NR, Stone JL, Visscher PM, O'Donovan MC, Sullivan PF et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 2009 Aug 6; 460(7256): 748-752.
    178. Landegren U, Kaiser R, Sanders J, Hood L. A ligase-mediated gene detection technique. Science 1988 Aug 26; 241(4869): 1077-1080.
    179. Shi YY, He L. SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res 2005 Feb; 15(2): 97-98.
    180. Zapata C, Carollo C, Rodriguez S. Sampling variance and distribution of the D ' measure of overall gametic disequilibrium between multiallelic loci. Annals of Human Genetics 2001 Jul; 65: 395-406.
    181. Daly MJ, Rioux JD, Schaffner SE, Hudson TJ, Lander ES. High-resolution haplotype structure in the human genome. Nature Genetics 2001 Oct; 29(2): 229-232.
    182. Buchner A, Erdfelder E. On assumptions of, relations between, and evaluations of some process dissociation measurement models. Conscious Cogn 1996 Dec; 5(4): 581-594.
    183. Devlin B, Roeder K, Wasserman L. Genomic control, a new approachto genetic-based association studies. Theor Popul Biol 2001 Nov; 60(3): 155-166.
    184. Pritchard JK, Donnelly P. Case-control studies of association in structured or admixed populations. Theoretical Population Biology 2001 Nov; 60(3): 227-237.
    185. Kohler K, Bickeboller H. Structured Association tests in case-control studies. Annals of Human Genetics 2005 Nov; 69: 768-768.
    186. Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics 2000 Jun; 155(2): 945-959.
    187. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007 Sep; 81(3): 559-575.
    188. Wodarz A, Nusse R. Mechanisms of Wnt signaling in development. Annu Rev Cell Dev Biol 1998; 14: 59-88.
    189. Wilson SW, Houart C. Early steps in the development of the forebrain. Dev Cell 2004 Feb; 6(2): 167-181.
    190. Ciani L, Salinas PC. WNTs in the vertebrate nervous system: from patterning to neuronal connectivity. Nat Rev Neurosci 2005 May; 6(5): 351-362.
    191. St Clair D. Copy number variation and schizophrenia. Schizophr Bull 2009 Jan; 35(1): 9-12.
    192. Pagnamenta AT, Wing K, Akha ES, Knight SJ, Bolte S, Schmotzer G et al. A 15q13.3 microdeletion segregating with autism. Eur J Hum Genet 2009 May; 17(5): 687-692.
    193. Glessner JT, Wang K, Cai G, Korvatska O, Kim CE, Wood S et al. Autism genome-wide copy number variation reveals ubiquitin and neuronal genes. Nature 2009 May 28; 459(7246): 569-573.
    194. Diskin SJ, Hou C, Glessner JT, Attiyeh EF, Laudenslager M, Bosse K et al. Copy number variation at 1q21.1 associated with neuroblastoma. Nature 2009 Jun 18; 459(7249): 987-991.
    195. Cho SC, Yim SH, Yoo HK, Kim MY, Jung GY, Shin GW et al. Copy number variations associated with idiopathic autism identified by whole-genome microarray-based comparative genomic hybridization. Psychiatr Genet 2009 Aug; 19(4): 177-185.
    196. Stefansson H, Rujescu D, Cichon S, Pietilainen OP, Ingason A, Steinberg S et al. Large recurrent microdeletions associated with schizophrenia. Nature 2008 Sep 11; 455(7210): 232-236.
    197. Purcell SM, Wray NR, Stone JL, Visscher PM, O'Donovan MC, Sullivan PF et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 2009 Jul 1.
    198. Shi J, Levinson DF, Duan J, Sanders AR, Zheng Y, Pe'er I et al. Commonvariants on chromosome 6p22.1 are associated with schizophrenia. Nature 2009 Aug 6; 460(7256): 753-757.
    199. Ferreira MAR, O'Donovan MC, Meng YA, Jones IR, Ruderfer DM, Jones L et al. Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder. Nature Genetics 2008 Sep; 40(9): 1056-1058.
    200. Sullivan PF, de Geus EJ, Willemsen G, James MR, Smit JH, Zandbelt T et al. Genome-wide association for major depressive disorder: a possible role for the presynaptic protein piccolo. Mol Psychiatry 2009 Apr; 14(4): 359-375.
    201. Pradel G, Schachner M, Schmidt R. Inhibition of memory consolidation by antibodies against cell adhesion molecules after active avoidance conditioning in zebrafish. Journal of Neurobiology 1999 May; 39(2): 197-206.
    202. Barsegov V, Thirumalai D. Dynamics of unbinding of cell adhesion molecules: Transition from catch to slip bonds. Proceedings of the National Academy of Sciences of the United States of America 2005 Feb 8; 102(6): 1835-1839.
    203. Schuster T, Krug M, Hassan H, Schachner M. Increase in proportion of hippocampal spine synapses expressing neural cell adhesion molecule NCAM180 following long-term potentiation. Journal of Neurobiology 1998 Nov 15; 37(3): 359-372.
    204. Litwack ED, Babey R, Buser R, Gesemann M, O'Leary DD. Identification and characterization of two novel brain-derived immunoglobulin superfamily members with a unique structural organization. Mol Cell Neurosci 2004 Feb; 25(2): 263-274.
    205. Takeuchi A, O'Leary DD. Radial migration of superficial layer cortical neurons controlled by novel Ig cell adhesion molecule MDGA1. J Neurosci 2006 Apr 26; 26(17): 4460-4464.
    206. Takeuchi A, Hamasaki T, Litwack ED, O'Leary DD. Novel IgCAM, MDGA1, expressed in unique cortical area- and layer-specific patterns and transiently by distinct forebrain populations of Cajal-Retzius neurons. Cereb Cortex 2007 Jul; 17(7): 1531-1541.
    207. Kahler AK, Djurovic S, Kulle B, Jonsson EG, Agartz I, Hall H et al. Association analysis of schizophrenia on 18 genes involved in neuronal migration: MDGA1 as a new susceptibility gene. Am J Med Genet B Neuropsychiatr Genet 2008 Oct 5; 147B(7): 1089-1100.
    208. Fujimura Y, Iwashita M, Matsuzaki F, Yamamoto T. MDGA1, an IgSF molecule containing a MAM domain, heterophilically associates with axon- and muscle-associated binding partners through distinct structural domains. Brain Res 2006 Jul 26; 1101(1): 12-19.
    209. Lewis CM, Levinson DF, Wise LH, DeLisi LE, Straub RE, Hovatta I et al. Genome scan meta-analysis of schizophrenia and bipolar disorder, part II: Schizophrenia. Am J Hum Genet 2003 Jul; 73(1): 34-48.
    210. Shalata A, Mandel H, Reiss J, Szargel R, Cohen-Akenine A, Dorche C et al. Localization of a gene for molybdenum cofactor deficiency, on the short arm of chromosome 6, by homozygosity mapping. Am J Hum Genet 1998 Jul; 63(1): 148-154.
    211. De Juan C, Iniesta P, Gonzalez-Quevedo R, Moran A, Sanchez-Pernaute A, Torres AJ et al. Genomic organization of a novel glycosylphosphatidylinositol MAM gene expressed in human tissues and tumors. Oncogene 2002 May 2; 21(19): 3089-3094.
    212. Diaz-Lopez A, Rivas C, Iniesta P, Moran A, Garcia-Aranda C, Megias D et al. Characterization of MDGA1, a novel human glycosylphosphatidylinositol-anchored protein localized in lipid rafts. Exp Cell Res 2005 Jul 1; 307(1): 91-99.
    213. Owen MJ. Molecular genetic studies of schizophrenia. Brain Res Brain Res Rev 2000 Mar; 31(2-3): 179-186.
    214. Arnold SE, Talbot K, Hahn CG. Neurodevelopment, neuroplasticity, and new genes for schizophrenia. Prog Brain Res 2005; 147: 319-345.
    215. Savitz J, Drevets WC. Bipolar and major depressive disorder: neuroimaging the developmental-degenerative divide. Neurosci Biobehav Rev 2009 May; 33(5): 699-771.
    216. Rakic P. Principles of neural cell migration. Experientia 1990 Sep 15; 46(9): 882-891.
    217. Rakic P. A century of progress in corticoneurogenesis: from silver impregnation to genetic engineering. Cereb Cortex 2006 Jul; 16 Suppl 1: i3-17.
    218. Yagi H, Sato M. [Control of neural cell migration during the development of the central nervous system]. Brain Nerve 2008 Apr; 60(4): 383-394.
    219. Zhang Y, Yeh J, Richardson PM, Bo X. Cell adhesion molecules of the immunoglobulin superfamily in axonal regeneration and neural repair. Restor Neurol Neurosci 2008; 26(2-3): 81-96.
    220. Katidou M, Vidaki M, Strigini M, Karagogeos D. The immunoglobulin superfamily of neuronal cell adhesion molecules: lessons from animal models and correlation with human disease. Biotechnol J 2008 Dec; 3(12): 1564-1580.
    221. Nagel RL. Epistasis and the genetics of human diseases. C R Biol 2005 Jul; 328(7): 606-615.
    222. Motsinger AA, Ritchie MD. Multifactor dimensionality reduction: an analysis strategy for modelling and detecting gene-gene interactions in human genetics and pharmacogenomics studies. Hum Genomics 2006 Mar; 2(5): 318-328.
    223. Ansorge WJ. Next-generation DNA sequencing techniques. N Biotechnol 2009 Apr; 25(4): 195-203.
    224. Williams SM, Canter JA, Crawford DC, Moore JH, Ritchie MD, Haines JL. Problems with genome-wide association studies. Science 2007 Jun29; 316(5833): 1840-1842.
    225. Couzin J, Kaiser J. Genome-wide association. Closing the net on common disease genes. Science 2007 May 11; 316(5826): 820-822.
    226. van Os J, Kapur S. Schizophrenia. Lancet 2009 Aug 22; 374(9690): 635-645.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700