复杂环境下轮式自主移动机器人定位与运动控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着智能移动机器人技术的快速发展,轮式移动机器人在科考、排险、救援、作战、智能交通等领域的应用需求日益增长,已经在各种场合辅助或替代人类以完成特定的任务。
     轮式移动机器人的运动多是在室外自然环境下进行的。由于环境的复杂性,机器人的自主运动或者遥操作都十分困难,因此迫切需要提升移动机器人在不确定环境下自主定位和运动控制的能力。
     本论文的研究内容来源于国家自然科学基金项目“基于机器视觉和惯性测量的轮式滑动转向移动机器人定位导航与遥感知”,是其中理论研究的重要组成部分。针对复杂环境下轮式移动机器人的作业要求,对移动机器人的运动机理、自主定位、运动控制等一系列重点问题和关键技术进行了研究。
     本论文主要由两个部分组成,第一部分针对一般意义下的复杂环境,如起伏地面和狭窄通道等展开研究。平台选用轮式滑动转向移动机器人(WheeledSkid_Steer MobileRobots,WSMR),WSMR的机构简单、性能可靠,有良好的驱动性和通过性。通过对WSMR的运动机理、定位方法、控制方法进行研究,可以提高自主移动机器人在这类环境下的运动性能。第二部分针对山区道路这种典型的三维室外复杂环境,研究数字高程模型辅助的自主定位方法,来提升在无GPS的情况下移动机器人自主导航的能力。
     轮式滑动转向移动机器人是一种全固定式四轮驱动机构的移动机器人,是非线性、时变、多变量、强耦合的系统,不能用简单的运动学和动力学模型来表示。本文在对WSMR的运动机理分析时,建立了运动打滑模型,在进行运动学分析时充分考虑到了打滑对机器人运动学的影响。在进行动力学分析时讨论了打滑因素对移动机器人运动平稳性的影响,提出并推导出了机器人运动的平稳性判据,得到了机器人保持平稳运动的边界条件。
     用机器人装配的多个异类传感器采集信息并进行融合来定位是移动机器人常用的自定位方法。尽管全球定位系统(Global Positioning System,GPS)在移动机器人导航定位方面有着广泛的应用,但是不依赖于GPS的移动机器人定位技术仍旧非常关键。本文中利用电机码盘、惯性测量单元、姿态参考系统等异类传感器采集数据,基于扩展卡尔曼滤波方法,将多传感器信息融合定位,在定位过程中引入运动打滑模型和传感器测量误差模型进行实时修正。实验结果表明该组合定位方法可以有效地提高WSMR在起伏地面运动的定位精度。
     WSMR非完整约束系统的模型不确定性给运动控制提出了挑战。本文采用自适应控制方法,在实时估计车轮与地面间摩擦力的同时,控制移动机器人渐进跟踪期望轨迹,并利用Lyapunov稳定性理论证明了控制器设计的稳定性。本文还提出了应用特技运动控制方法,来实现移动机器人高速精确转向的效果。
     本文中提出了一种利用数字高程模型数据辅助的轮式移动机器人运动定位方法。对于山区道路环境下的移动机器人定位,当无GPS信号时,航迹推测方法很难奏效。本文从存储于移动机器人本体上的山体数字高程模型数据与遥感影像数据中得到三维路网信息,通过对机器人运动轨迹和路网的几何特征进行匹配来实现移动机器人在山区道路环境下运动的在线全局定位,为移动机器人在山区环境下的作业提供理论支持。
     为了开展上述研究,本文构建了TamuBot和NKRover-1两套轮式滑动转向移动机器人实验平台,分别对该机器人在三维起伏地面的自定位和平面狭窄跑道中的特技运动控制进行了实验研究。为了测试机器人的定位精度,构建了基于全局视觉的轨迹跟踪系统。本文还进行了机器人山区道路环境下的自主定位实验,对地理信息数据和机器人轨迹进行实时匹配来实现在线的全局定位。
With the rapid development of Intelligent Mobile Robot Technology, the wheeled mobile robots are handling many tasks instead of person, for satisfying the demand in scientific expedition, Removal of Dangerous, relief, Battle, and Intelligent traffic areas.
     Mostly of working range for wheeled mobile robots are outdoor environments. The localization and tele-operation become very hard because of the complex environ-ments. Therefore, It's very urgent and important for mobile robots to improve the ability of self-localization and motion control in uncertain environments.
     All the works in the dissertation are sponsored by project fund from National Natural Science Foundation of China. In this paper, the movement principles, method of self localization and motion control were studied.
     The dissertation is mainly consists of two components. In the first part, researches are focused on the generally complex environments. such as uneven terrain or narrow spaces. Wheeled Skid-Steer Mobile Robots (WSMR) can fit situations in these environments well. WSMRs have simply mechanism, robust reliability,good driving and passing ability. the movement performance of autonomous mobile robots can be improved based on the research of WSMR's theorem. In the second part, facing at mountain roads which are the classic outdoor environments, a Digital Elevation Model aided self-location method is presented. the self-navigation ability for mobile robot without GPS signals can be improved using this method.
     Wheeled Skid-Steer Mobile Robots are driven by four fixed wheels. They are nonlinear, time-varying, Multi-variable and strong-coupling systems. The model of WSMR by simple kinematics and dynamics models can not be expressed easily. In this dissertation, a slippage model was built for WSMR robots,the effects of slippage are considered fully in analyzing the kinematics features. Effects are also discussed for stationarity in dynamic analysis caused by slippage factors. the paper present and derive the stationarity criterion, and obtained the boundary conditions for robots to keep stationarity when moving and turning in high speed.
     Estimation poses by fusing information from multi-sensors mounted on the robots are general method for mobile robots self-localization. Although Global Positioning System (GPS) are used widely in mobile robots outdoor localization, the technology of localization without GPS are still very crucial. this paper compose information from Encoders, Digital Compasses, Inertial Measurement Units and Attitude and Heading Reference Systems to localization using Extended Kalman Filter Based method. Slippage model and measurement error models are introduced into EKF to correcting estimation errors in real-time. The experimental results imply that this combined method can improve precision of localization on uneven terrain effectively.
     Challenges to Motion Control are posed Owing to the uncertainty of WSMR model. This paper design an adaptive control method in this dissertation to simultaneously estimate the wheel/ground contact friction information and control the robot to follow a desired trajectory. A Lyapunov based convergence analysis of controller and the estimation of the friction model parameter is presented. Paper also discuss how to control a WSMR robot to turning accurately in high speed by stunt movement in this section.
     The dissertation present a Digital Elevation Model aided self-location method in this dissertation. when robots are running on mountain roads. The regular method for self-localization works hardly without GPS signals. 3D network of roads are obtained from DEM models and remote sensing images stored in the robot memory. The global position can be localized in real-time by matching the geometry curvature features of movement trajectories and road network.
     In order to support above researches, this paper build two WSMR platforms, named TamuBot and NKRover,respectively. The self-localization experiments on terrain surface are implemented based on TamuBot Robots, and the stunt control experiments are implemented based on NKRover robot. A Trajectory Tracking system based on global vision was built for testing the precision of localization. this dissertation also implement some experiment to validate localization method based on geometry feature matching for mobile robot in mountain roads environments.
引文
[1]蔡自兴.机器人学.北京,2000.
    [2]蔡自兴,贺汉根,陈虹.未知环境中移动机器人导航控制研究的若干问题.控制与决策,2002,17(4):385-390.
    [3]王志文,郭戈.移动机器人导航技术现状与展望.机器人,2003,25(5):470-474.
    [4]Chatila R.Deliberation and reactivity in autonomous mobile robots.Robot and Autonomous System,1995,16:197-211.
    [5]Leonard J,Durrant-Whyte H F.Mobile robot localization by tracking geometric beacons.IEEE Transactions on Robotics and Automation,1991,7(3):376-382.
    [6]Durrant-White H F.Where am I? Industrial Robot,1994,21(2):11-15.
    [7]Nilsson N J.A mobile automation an application of artificial intelligence techniques.Proceedings of the 1st International Joint Conference on Artificial Intelligence,Las Vegas,Nevada,1969.509-520.
    [8]肖潇,方勇纯,贺峰,等.未知环境下移动机器人自主搜索技术研究.机器人,2007,29(3):224-229.
    [9]Krotkov E,Hebert M,Simmons R.Stereo Perception and dead reckoning for a prototype lunar rover.Autonomous Rovers,1995,2(4):313-331.
    [10]Baumgartner E.Motion planning technologies for planetary rovers and manipulators.Proceedings of International workshop on motion planning in virtual environments,toulouse,France,2005.
    [11]刘方湖,马培荪,曹志奎.五轮铰接式月球机器人的运动学建模.机器人,2001,23(6):481-485,492.
    [12]王巍,强文义,梁斌.月球机器人运动学建模与运动收敛性分析.控制与决策,2002,17(6):904-907.
    [13]Urmson C,Whittaker W.Self-Driving Cars and the Urban Challenge.Intelligent Systems,IEEE,2008,23(2):66-68.
    [14]Yi J,Song D,Levandowski A.Trajectory Tracking and Balance Stabilization Control of Autonomous Motorcycles.Proceedings of the 2006 IEEE International Conference on Robotics and Automation,Orlando,Florida,2006.2583-2589.
    [15]Song D,lee H N,Yi J,et al.Vision-based Motion Planning for an Autonomous Motorcycle on Ill-Structured Road.Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems,Beijng,China,2006.3279-3286.
    [16]张捍东,吴玉秀,岑豫皖;.多机器人合作与协调研究进展.计算机工程与应用,2008,44(24):238-245.
    [17]Parker L E.Current research in multirobot systems.Artificial Life and Robotics,2003,7(1):1-5.
    [18]Yi J,Wang H,Liu J,et al.LMST-Based Safety-Preserved Consensus Control of Multi-Robot Systems with Kinodynamic Constraints.Proceedings of the 2008 ASME Dynamic systems and Control Conference,Ann Arbor,Michigan,2008.
    [19]Ogren P,Fiorelli E,Leonard N.Cooperative control of mobile senfor networks:adaptive gradient climbing in a distributed environment.IEEE Trans.Automat.Contr.,2004,49(8):1292-1302.
    [20]Olfati-Saber R.Flocking for multi-agent dynamic systems:algorithms and theory.IEEE Trans.Automat.Contr.,2006,51(3):401-420.
    [21]Notarstefano G,Savla K,Bullo F,et al.Maintaining limited-range connectivity among second-order agents.Proceedings of American Control Conference,2006.2124-2129.
    [22]Canny J,Rega A,Reif J.An exact algorithm for kinodynamic Planning in the plane.Discr.Comput.Geometry,1991,6(3):461-484.
    [23]LaValle S.Planning Algorithms.Cambridge University Press,New York,NY.Also available at http://planning.cs.uiuc.edu/,2006..
    [24]Li N,Hou J,Sha L.Design and analysis of an MST-based topology control algorithm.IEEE Trans.Wireless Commun.,2005,4(3):1195-1206.
    [25]李磊,陈细军,曹志强,等.一种室内轮式自主移动机器人的导航控制研究.自动化学报,2003,29(6):893-899.
    [26]张朋飞,何克忠,欧阳正柱,等.多功能室外智能移动机器人实验平台—THMR-V.机器人,2002,24(2):97-101.
    [27]Borenstein J,Everett R,Feng L.Mobile robot positioning-sensors and techniques.Journal of Robotic System,1997,14(4):231-249.
    [28]王卫华.移动机器人定位技术研究[博士学位论文].武汉:华中科技大学,2005.
    [29]Chung H,Ojeda L,Borenstein J.Accurate mobile robot dead-reckoning with a precisoncalibrated fiber optic gyroscope.IEEE Transaction on Robotics and Automation,2001,17(1):80-84.
    [30]Wu Y,Hu x,Hu D,et al.Strapdown inertial navigation system algorithms based on dual quaternions.IEEE Transaction on Aerospace and Electronic Systems,2005,41(1):110-132.
    [31]Negenborn R.Robot localization and Kalman filters[M].Copenhagen,Denmark:Copenhagen University,2003.
    [32]Roumeliotic I.Reliable mobile robot localization[D].Los Angeles,California,USA:University of Southern California,1999.
    [33]Fuck Y,Krotkov E.Deadreckoning for a Lunar rover on uneven terrain.Proceedings of the 1996 IEEE International Conference on Robotics and Automation,Minneapolis,Minnesota,1996.411-416.
    [34]lagnemma K,Rzepniewski A,dubowsky S.Control of robotic vehicles with actively articulated suspensions in rough terrain.Autonomous robots,2003,14(1):5-16.
    [35]Volpe R,Balaram J,Ohm T.Rocky 7:a next generation Mars rover prototype.Journal of Advanced Robotics,1997,11(4):341-358.
    [36]Tarokh M,McDermott G,Hayati S.Kinematic modeling of a high mobility Mars rover.Proceedings of the 1999 IEEE International Conference on Robotics and Automation,Detroit,1999.992-998.
    [37]邓宗全,胡明,高海波.月球探测车的运动学建模.中国机械工程,2003,14(22):1911-1913.
    [38]蔡则苏,洪炳熔,刘玉强.基于虚拟样机的月球探测机器人运动学建模.哈尔滨工业大学学报,2004,36(2):209-214.
    [39]于金霞.移动机器人定位的不确定性研究[博士学位论文].长沙:中南大学,2007.
    [40]Ridao P,Forest J,Pacheco L.Sensorial and navigation systems for a mobile robot(ROGER).Proceedings of the 3rd IFAC SymPosium on Intelligent Autonomous Vehieles,Madrid,Spain,1998.450-455.
    [41]Bennett M,Emge S,Dyott R.Fiber optic gyros for robotics.Journal of American Institute of Aeronautics & Astronautics,1998,44(1):1315-1321.
    [42]Iagnemma K,Duowsky S.Traction control of wheeled robotic vehicles with application to planetary rovers.International Journal of Robotics Research,2004,23(10):1029-1040.
    [43]Barshan B,Durrant-Whyte F.Inertial navigation systems for mobile robots.IEEE Transactions on Robotics and Automation,1995,11(3):328-342.
    [44]Borenstein J,Feng L.Gyrodometry:A new method for combining data from gyros and odometry in mobile robtos.Proceedings of the 1996 IEEE International Conference on Robotics and Automation,Minneapolis,MN,1996.423-428.
    [45]Ojeda L,Raju M,Borenstein J.FLEXnav:A fuzzy logic expert dead-reckoning system for the segway RMP.Proceedings of the SPIE Defense and Security Symposium,Unmanned Ground Vehicle Technology V1(OR54),Orlando,FL,2004.1-13.
    [46]尚文,马旭东,戴先中.融合多传感器信息的移动机器人自定位方法.东南大学学报,2004,34(6):784-788.
    [47]Slimane N,Abdessemed Y,Bouguechal N.A Real time Controller Based on Multisensor Data Fusion for an Autonomous Wheeled Mobile Robot.Journal of Electrical Engineering,2004,4(1):13-19.
    [48]Carelli R,Freire O.Corridor navigation and wall-following stable control for sonar-based mobile robots.Robotics and Autonomous System,2003,45:235-247.
    [49]Ojeda L,Borenstein J.Methods for the reduction of odometry errors in over-constrained mobile robots.Autonomous Robots,2004,16(3):273-286.
    [50]Ojeda L,Cruz D,Reina G,et al.Current-based slippage detection and odometry correction for mobile robots and planetary rovers.IEEE Transactions on Robotics,2006,22(2):366-378.
    [51]Martinez J,Mandow A,Morales J.Approximating kinematics for tracked mobile robots.Int.J.Robot.Res.,2005,24(10):867-878.
    [52]Mandow A,Martinez J,Morales J.Experimental kinematics for wheeled skid-steer mobile robots.Proceedings of IEEE/RSJ Int.Conf.Intell.Robot.Syst.,San Diego,CA,2007.1222-1227.
    [53]Kitano M,Kuma M.An analysis of horizontal plane motion of tracked vehicles.Journal of Terramechanics,1977,14(4):211-225.
    [54]Wong Y.Theory of Ground Vehicles,3rd ed.Hoboken,NJ:John Wiley & Sons,Inc.,2001.
    [55]Wong J,Chiang C.A general theory for skid steering of tracked vehicles on firm ground.Proceedings of the Institution of Mechanical Engineers,Part D:Journal of Automobile Engineering,2001,215(3):343-355.
    [56]Ward C C,Iagnemma K.A dynamic-model-based wheel slip detector for mobile robot on outdoor terrain.IEEE Transactions on Robotics,2008,24(4):821-831.
    [57]Sukkarieh S.Low cost,high integrity aided inertial navigation systems for land vehicle applications[D].Sydney,Austrialia:Dept.Mech.Mechatron.Eng.,Univ.,2000.
    [58]Dissanayake G,Sukkarieh S,Nebot E,et al.The aiding of a low-cost strapdown inertial measurement unit using vehicle model constraints for land vehicle applications.IEEE Transaction on Robotics and Automation,2001,17(5):731-747.
    [59]Yi J,Song D,Zhang J.Adaptive trajectory tracking control of skid-steered mobile robots.Proceedings of IEEE Int.Conf.Robot.Autom.,Roma,Italy,2007.2605-2610.
    [60]Yi J,Zhang J,Song D,et al.IMU-based localization and slip estimation for skid-steered mobile robots.Proceedings of IEEE/RSJ International Conference on Intelligent RObots and Systems,San Diego,CA,2007.2345-2850.
    [61]Murphy R.人工智能机器人学导论.北京:电子工业出版社,2004.
    [62]庄严.移动机器人基于多传感器数据融合的定位及地图创建研究[博士学位论文].大连:大连理工大学,2004.
    [63]Smith R,Self M,Cheesema P.Estimating Uncertain Spatial Relationships in Robotics.Autonomous Robot Vehicles,1990.167-193.
    [64]Montemerlo M,Thrun S.Simultaneous Localization and Mapping with Unknown Data Association Using FastSLAM.Proceedings of the IEEE International Conference on Robotics and Automation,2003.1985-1991.
    [65]Fox D,Burgard W,Kruppa H.A Probabilistic Approach to Collaborative Multi-robot Localization.Autonomous Robots,2000,8(3):325-344.
    [66]王卫华,陈卫东,席裕庚.移动机器人地图创建中的不确定传感信息处理.自动化学报,2004,29(2):267-274.
    [67]Wolf J,Burgard W.Robust vision-based localization by combining an image-retrieval system with Monte Carlo localization.IEEE Transaction on Robotics and Automation,2005,21(2):208-216.
    [68] Se S. Vision-based global localization and mapping for mobile robots. IEEE Transaction on Robotics and Automation, 2005, 21(3):364-375.
    
    [69] Sim R, Dudek G. Learning and evaluating visual features for pose estimation. Proceedings of the 7th Int. Conf. Computer Vision(ICCV'99), Kerkyra,Greece, 1999. 1217-1222.
    
    [70] Borenstein J, Feng L. UMBmark: A benchmark test for measuring odometry errors in mobile robot. Proceedings of the 1995 SPIE Conference on Mobile Robot, Philadelphia, Pennsylvania, 1995. 22-26.
    
    [71] Chong S, Kleeman L. Accurate odometry and error modelling for a mobile robot. Proceedings of the 1997 IEEE International Conference on Robotics and Automation, Albu-querque,NM, 1997. 2783-2788.
    
    [72] Martinelli A, Siegwart R. Estimating the odometry error of a mobile robot during navigation.Proceedings of European Conference on Mobile Robots, Warsaw, Poland, 2003. 1-6.
    
    [73] Chong S, Kleeman L. Precision-calibration of fiber-optics gyroscopes for mobile robot navigation. Proceedings of the 2000 IEEE International Conference on Robotics and Automation,San Francisco, CA, 2000. 2064-2069.
    
    [74] SICK AG Corporation. Technical Description: LMS Laser Measurement Systems. Wald-kirch, Germany, 2000.
    
    [75] Ye C, Borenstein J. Characterization of a 2D laser scanner for mobile robot obstacle negotiation. Proceedings of the 2002 IEEE International Conference on Robotics and Automation,Washington DC, USA, 2002. 2512-2518.
    
    [76] Ye C, Borenstein J. A novel filer for terrain mapping with laser rangefinders. IEEE Transactions on Robotics and Automation, 2004, 20(5):913-921.
    
    [77] 史恩秀.轮式移动机器人的运动控制及定位方法研究[博士学位论文].西安:西安理工大学, 2006.
    
    [78] Pourboghrat F, Karlsson P. Adaptive Control of Dynamic Mobile Robots with Nonholonomic constraints. Computers and Electrical Engineering, 2002, 28:241-253.
    
    [79] Ollero A, Amidi O. Predictive Path Tracking of Mobile robots. Application to the CMU Navlab. Proceedings of Robots in Unstructured Environments. ICAR'91, volume 2, Pisa,Italy, 1991. 1081-1086.
    
    [80] Normey-Rico E, Gomez-Ortega J, Camacho E. A Smith-Predictor based Generalised Predictive Controller for Mobile Robot Path-Tracking. Control Engineering Practice, 1999,7(6):729-740.
    
    [81] Gu D, Hu H. Neural predictive control for a car-like Mobile Robot. Robotics and Autonomous System, 2002, 39(2):73-86.
    
    [82] Gregor K, Igor S. Tracking-Error Model-Based Predictive Control for Mobile Robots in Real Time. Robotics and Autonomous System, 2007, 55:460-469.
    
    [83] Kim H, Oh H. Tracking Control of a Two-Wheeled Mobile Robot Using Input-Output Linearization. Control Engineering Practice, 1999, 7(3):369-373.
    [84] John P. Multi-input Ground Vehicle Control Using Quadratic Programming Based Control Allocation Techniques[M]. Auburn University, 2004.
    
    [85] Julien S, Dimitri M. Building parametric and probabilistic dynamic vehicle models using neural networks. Proceedings of AIAA Modeling and Simulation Technologies Conference and Exhibit, Montreal, Canada, 2001. 43-47.
    
    [86] Naranjo E, Gonzalez C, reviejo J, et al. Adaptive Fuzzy Control for Inter-Vehicle Gap Keep- ing. IEEE Trans. Intell. Transp. Syst., 2003, 4(3): 132-142.
    
    [87] Li-Xin W. Stable adaptive fuzzy control of nonlinear systems. IEEE Transactions on Fuzzy Systems, 1993, 1(2):146-155.
    
    [88] Dai X, Li C K. An Approach to tune Fuzzy Controllers Based on Reinforcement Learning for Autonomous Vehicle Control. IEEE Transaction on Intelligent Transportation System,2005, 6(3):285-293.
    
    [89] Martinez J, Mandow A, Morales J, et al. Approximating Kinematics for Tracked Mobile Robots. The International Journal of Robotics Research, 2005, 24(10):867-878.
    
    [90] Weiss KR. Skid-steering. Automobile Engineer, 1971.22-25.
    
    [91] Yi J. A fault tolerant longitudinal control and tire road friction estimation system for automated highway systems[D]. USA: Department Mech. Eng., University Califonia Berkeley,5, 2002.
    
    [92] Yi J, Alvarez L, Horowitz R. Adaptive emergency brake control with underestimation of friction coefficient. IEEE Transaction of Control System Technology, 2002, 10(3):381-392.
    
    [93] 刘银瑞.汽车拖拉机理论.北京,2005.
    
    [94] Le A, Rye D, Durrant-Whyte H. Estimation of track-soil interactions for autonomous tracked vehicles. Proceedings of IEEE Int. Conf. Robot. Autom., Albuquerque,NM, 1997. 1388—1939.
    [95] Song Z, Zweiri Y, Seneviratne L. Nonlinear observer for slip estimation of skid-steering vehicles. Proceedings of IEEE Int. Conf. Robot. Autom., Orlando, 2006. 1499-1504.
    [96] Anousaki G, Kyriakopoulos K. A dead-reckoning scheme for skid-steered vehicles in outdoor environments. Proceedings of IEEE Int. Conf. Robot. Autom., New Orleans, LA, 2004. 580-585.
    [97] Anousaki G, Kyriakopoulos K. Simultaneous localization and map building of skid-steered robots. IEEE Robot. Automat. Mag., 2007, 14(1):79-89.
    [98] Balakrishna R, Ghosal A. Modeling of slip forwheeled mobile robts. IEEE Trans. Robot.Automat., 1995, 11(1): 126-132.
    [99] Kozlowski K, Pazderski D. Practical stabilization of a skid-steering mobile robot - A kinematic-based approach. Proceedings of 2006 IEEE Conf. Mechatron., Budapest, Hungary, 2006. 519-524.
    [100] Wang D, Low C. Modeling and analysis of skidding and slipping in wheeled mobile robots:Control design perspective. IEEE Trans. Robotics, 2008, 24(3):676-687.
    [101]王鸿鹏,Yi J,刘景泰,et al.基于非线性Kalman滤波器的轮式滑动转向移动机器人定位误差分析.Proceedings of第27届中国控制会议论文集,volume 5,2008.446-450.
    [102]Borenstein J,Feng L.Measurement and corection of systematic odometry errors in mobile robots.IEEE Transactions on Robotics and Automation,1996,12(6):869-880.
    [103]Borenstein J,Koren Y.A Mobile Platform for Nursing Robots.IEEE Transaction on Industrial Electronics,1985,32:158-165.
    [104]Crowley J L.Asychronous Control of Orientation and Desplacement in a Robot Vehicle.Proceedings of the 1989 IEEE International Conference on Robotics and Automation,1989.1277-1282.
    [105]刘国良,强文义.移动机器人信息融合技术研究.哈尔滨工业大学学报,2003,35(7):802-805.
    [106]Kalman R.A new approach to linear filtering and prediction problems.Journal of Basic Engineering,1960,82(1):35-45.
    [107]Boutayeb M,Aubry D.A strong tracking extended Kalman observer for nonlinear discretetime systems.IEEE Trans.Automat.Contr.,1999,44(8):1550-1556.
    [108]Bruce J,Balch T,Veloso M.Fast and inexpensive color image segmentation for interactive robots.Proceedings of IEEE/RSJ International Conference on Intelligent RObots and Systems,volume 3,2000.2061-2066.
    [109]Caracciolo L,De A,Iannitti S.Trajectory Tracking Control of a Four-Wheel Differentially Driven Mobile Robot.Proceedings of the 1989 IEEE International Conference on Robotics and Automation,Detroit,MI,1999.2632-2638.
    [110]Campion G,Georges B,Brigitte A N.Structural Properties and Classification of Kinematic and Dynamic Models of Wheeled Mobile Robots.IEEE Transactions on Robotics and Automation,1996,12(1):47-62.
    [111]邬伦,刘瑜,张晶.地理信息系统——原理、方法和应用.北京,2004.
    [112]E C E.A Subdivision Algorithm for computer display of curved surfaces[D].Salt Lake City:University of Utah,1974.
    [113]Levoy M,Whitted T.The use of points as display primitives.Technical Report TR 85-022.The University of North Carolina at Chapel Hill,Department of Computer Science,1985.
    [114]Reeves W T,Blau R.Approximate and probabilistic algorithms for shading and rendering structured particle systems.ACM SIGGRAPH Computer Graphics,1985,19(3):313-322.
    [115]Woleson H J.On Curve Matching.IEEE Transaction On Analysis and Machine Intelligence,1990,12(5):483-489.
    [116]Schmid C,Zisserman A.The Geometry and Matching and Curves Over Multiple Views.International Journal of Computer Vision,2000,40(3):199-233.
    [117]Besl P,McKay N D.A Method for Registration of 3-D Shape.IEEE Transactions on Pattern Analysis and Machine Intelligence,1992,14(2):239-256.
    [118] Ucoluk G, Toroslu H. Reconstruction of 3-D Surface Object from Its Pieces. Proceedings of the 9th Canadian Conference on Computational Geometry, Kingston,Elsevier, 1997. 187—192.
    [119] Leitao H, Stolfi J. A Multicale Method for the Reassembly of Two-Dimensional Fragmental Objects. Transactions and Pattern Analysis and Machine Intelligence, 2002, 24(9): 1239-1251.
    [120] Kong W, Kimia B B. On solving 2D and 3D puzzles Using Curve Matching. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Hawaii, 2001. 583-590.
    [121] Thomas B S, Philip N K, Kimia B B. On Aligning Curves. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(1):116—125.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700