基于视觉的圆筒内壁均匀度在线检测系统
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
圆筒在现代化建设中有着大规模的应用,特别是机械、能源、军事等领域。然而在生产过程中,圆筒始终是用传统的人工离线检测方法进行检测。为提高检测圆筒的速度,当前工厂急需能实现圆筒在线检测的方法和系统。但由于圆筒的一端封闭,且生产现场温度高,现有的机器视觉检测方法和系统难以达到圆筒的实时在线检测的目的。文章提出了一种基于视觉的圆筒内壁几何参数检测方法,同时采用特殊结构的成像机构,通过对激光反射所形成的反映圆筒内壁几何尺寸变化的光斑图像进行处理,最终得到圆筒内壁几何参数变化信息。
     根据机器视觉检测原理,文章设计出以激光三角测距方法为基础,新的成像方法的检测方法。该方法采用反射镜改变激光光路,使激光垂直照射到圆筒内壁表面,最终成为反映圆筒内壁几何尺寸变化的光斑图像,使用三棱镜对激光光斑图像成像。这个方法能够达到激光垂直射入,图像垂直传出的效果。采用该方法能够完整地测试圆筒内壁,即便是接近圆筒封闭一端的远端,亦能够达到内壁检测的效果;同时,该方法将成像所需的电子设备远离被测圆筒设置,能够达到高温生产环境的长时间稳定工作的要求。
     为满足试验要求,对圆筒内壁进行精确定位的圆周检测,本文设计了一套机械系统。该系统用来固定光学设备和电子器件;精确控制待测圆筒的转动角度、转动速度;精确控制检测装置的水平位移,并可对其垂直高度进行调节,以达到最理想的检测效果。设计了步进电机驱动应用电路和单片机控制电路,并编写单片机程序,完成与上位机通信。配合图像处理等检测程序,使整个系统检测能力达到能精确定位的要求,使系统对检测点定位达到PC机可视化控制的要求。各机械装置与组件进行相互配合,最终实现实时在线检测的演示模型样机。
     以激光光斑中心定位算法作为研究对象,编写了将检测系统采集到的光斑图像自动转化成光斑位置数据的程序。通过模型样机实验,最终数据表明,该系统对于内壁尺寸检测分辨率,可达0.1毫米/像素,内壁尺寸变化检测范围可达16毫米。对圆筒内壁同一位置圆周的多次测量数据基本描述了该圆周的一致均匀度变化。
Cylinder has large-scale application in the mechanical, energy, military and other fields. But in the process of cylinder production , usually using the traditional manual offline detection methods to testing. In order to improving the speed of cylinder testing, the factory very urgently need to achieve cylinder-line detection method and system. However, because of cylinder’s one end closed, and at the high temperature production site, the existing machine vision detection method and system is difficult to achieve real-time online test cylinder. This paper put forward a method of vision-based one end closed cylinder wall geometric parameters on-line measurement, an imaging agency with special structure is designed, by processing the spot image which is formed by the laser reflector and reflects the cylinder wall geometry change, cylinder wall geometric parameters change information is accessed.
     According to the machine vision theory, testing the inner wall of the cylinder, this paper proposes a method based on laser triangulation distance measurement, using the new imaging method . This method adopt the specula change the direction to the laser light path, the laser light perpendicular raying to the cylinder wall surface to form a cylindrical wall geometry changes to reflect the spot image, using the prism of the laser spot image imaging. This method can achieve the vertical injection laser, image vertical spread. On the one hand, the method can detect the cylinder wall integrity, even close to the cylinder closed end of the inner wall of the remote also allows detection; the other hand, the method of electronic imaging equipment needed to set up away from the cylinder under test, production environment to meet high demands long hours.
     In order to meeting test requirement, progressing circle detection of accurate positioning to the cylinder wall, this paper design a set of mechanical system. The system used to secure the optics devices and electron devices; precisely control rotation angle of be tested cylinder and rotate speed; precisely control the horizontal shift of detecting device, and can be adjust its vertical height, to achieve the best detection result. Designed stepper motor driver application circuit and Single Chip Microcomputer control circuit, and compiled the SCM procedures, finished to communicate with the upper computer. Matching image processing and testing procedures, so that the whole system detect capacity can reach requirement of precisely position, and let the system can reach to PC visual control requirement to the detecting position. All the mechanical devices and components coordinate with each other, and ultimately achieve a demonstrate model prototype.of real-time online detection.
     To laser spot center positioning algorithm as object of study, compiled the procedure of spot diagram collected images with detecting system automatically change into spot position data. Through the experiment of the model prototype, the final data show that the system towards to inner wall size detecting resolution ratio, can up to 0.1mm/pixel, detecting range of inner wall size can up to 16mm. The repeated measurement data to cylinder wall at the same location , basically described the same change of degree of uniformity.
引文
[1]唐辉,叶静.国标《包装用于发货、运输和收货标签的一维条码和二维条码》的研究与制定.交通标准化,2006(10):42-46.
    [2]肖朝晖,纪钢.条码技术及其在包装防伪中的应用.包装工程,2005,26(3):68-70.
    [3]孙旭,杭柏林.错位散斑技术及其在轮胎检测中的应用.轮胎工业,2007,27(7):441-443.
    [4]陈亚军,张二虎.基于机器视觉的印品质量在线检测.今日印刷,2005(11):12-14.
    [5]苑玮琦,张永辉.基于DSP5402的指纹识别系统实现问题研究.微计算机信息,2007,23(32):195-196,187.
    [6]田莹,苑玮琦.人耳识别技术研究综述.计算机应用研究,2007,24(4):21-25.
    [7]苑玮琦,林忠华,徐露.一种快速而准确的虹膜识别方法.计算机应用研究,2007,24(6):197-200.
    [8]王坚,任现君,苏建刚.基于激光投影法的火炮身管内膛疵病深度测量.中国测试技术,2004,30(5):16-17,54.
    [9]窦益华,贾连璧,郑跃辉等.油管内壁损伤检测及评判方法.1998,26(4):28-31.
    [10]王坚,苏建刚,任现君.身管内壁形貌检测技术研究.中国测试技术,2004,30(4):52-54.
    [11]李莉,邸旭,马宏.炮管内膛型廓自动光电检测系统.仪器仪表学报,2006,27(6):1544-1546.
    [12]孙吉红,杨清文,战延谋等.基于激光测量的身管磨损量检测系统研制.计算机测量与控制,2004,12(12):1131-1133.
    [13]吴恩启,李江雄,柯映林.微细管道内壁三维测量技术研究.计算机辅助设计与图形学学报,2005,17(1):151-154.
    [14] Manabe T, Tsujimura T, TomitaS, et al. Acoustic inspection system for underground telecommunication conduit. Instrumentation and Measurement Technology Conference, 1994:761-764.
    [15] Okada T, Sanemori, T. MOGRER: A vehicle study and realization for in-pipe inspection tasks. IEEE Journal of Robotics and Automation, 1987, 3(6):573-582.
    [16] Basu A, Southwell D. Omni-directional sensors for pipe inspection. IEEE International Conference on Intelligent Systems for the 21st Century, 1995:3107-3112.
    [17] Kuntze H B, Haffner H. Experiences with the development of a robot for smart multisensoric pipe inspection. IEEE International Conference on Robotics and Automation, 1998:1773-1778.
    [18] Duran O, Althoefer K, Seneviratne L D. Laser profiler model for robot-based pipe inspection. Proceedings of World Automation Congress, 2004, 15(28):353-358.
    [19] Duran O, Althoefer K, Seneviratne L D. Experiments using a laser-based transducer and automated analysis techniques for pipe inspection. Proceedings of IEEE International Conference on Robotics and Automation, 2003:2561-2566.
    [20] Duran O, Althoefer K, Seneviratne L D. A sensor for pipe inspection: model, analysis and image extraction. Proceedings of International Conference on Image Processing, 2003:597-600.
    [21] Duran O, Althoefer K, Seneviratne L D. Automated Pipe Defect Detection and Categorization Using Camera/Laser-Based Profiler and Artificial Neural Network. IEEE Transactions on Automation Science and Engineering, 2007, 4(1):118-126.
    [22] Costa R R, dosReis N R S, Liu H, et al. Robotized system for in-pipe inspection. IEEE International Symposium on Industrial Electronics, Brazil, 2003:1021-1025.
    [23] Orghidan R, Salvi J, Mouaddib E M. Accuracy estimation of a new omnidirectional 3D vision sensor. Processing of IEEE International Conference on Image Processing, Italy, 2005:III-365-8.
    [24]庄葆华,王少清,张吉华等.高精度激光三角法位移测量被测表面倾斜影响研究.计量技术,1996(2):2-4.
    [25]张文伟,庄葆华,刘迈等.飞机表面划痕非接触测量仪的研究.计量学报,1998,19(4):264-269.
    [26]庄葆华,张文伟,刘迈等.飞机表面划痕的非接触测量.应用激光,1997,17(2):49-53.
    [27]李兰君,喻寿益.单点激光三角法测距及其标定.研究与开发,2003(10):49,51.
    [28]林小倩,林斌,潘泰才.基于CMOS单点激光三角法测距系统设计.光学仪器,2006,28(2):27-30.
    [29]冯俊艳,冯其波,匡萃方.高精度激光三角位移传感器的技术现状.应用光学,2004,25(3):33-36.
    [30]林小倩.基于CMOS单点激光三角法测距系统研究:(硕士学位论文).杭州:浙江大学,2006.
    [31]宋开臣,张国雄.激光三角法扫描测头特性的研究.中国机械工程,2000,11(4):385-388.
    [32]贾永红.数字图像处理.武汉:武汉大学出版社,2003.
    [33]徐亚明,邢诚,刘冠兰等.几种激光光斑中心检测方法的比较.海洋测绘,2007,27(2):74-76.
    [34]杨耀权,施仁,于希宁等.用Hough变换提高激光光斑中心定位精度的算法.光学学报,1999,19(12):1655-1660.
    [35]王芳荣,赵丁选,廖宗建等.激光光斑中心空间定位方法的研究.激光技术,2005,29(1):87-89.
    [36]孔兵,王昭,谭玉山.基于圆拟合的激光光斑中心检测算法.红外与激光工程,2002,31(3):275-279.
    [37]富容国,常本康,刘淑荣.1.06μm激光光斑中心的计算机分析.光电子技术与信息,2004,17(2):26-29.
    [38]黄浩,詹玲.一种光斑中心定位算法的研究与实现.小型微型计算机系统,2005,26(7):1196-1199.
    [39]陈家凤,彭其圣.图像采集卡开发库函数调用及二次开发探讨.计算机应用与软件,2005,22(6):84-86.
    [40]闫晓霞,程荫杭.基于DH-CG300图像采集卡的图像采集平台的开发.交通与计算机,2005,23(5):49-52.
    [41]孙玉杰,汪岳峰,凌军.图像采集卡对光学仪器性能数字化检测的影响研究.光学仪器,2003,25(2):8-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700