基于无线传感器网络的空间坐标测量技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在大型机械装备制造及装配过程中,工件的几何尺寸和形位误差测量,是保证整套设备质量的关键因素。在《国家中长期科学和技术发展规划纲要》中,将“极端制造技术”列入了“先进制造技术”领域的“前沿技术”,明确提出要重点研究与“巨系统制造”相关的设计方法、制造工艺和检测技术。随着巨系统的产业化发展,“高效快速”测量方法及测量系统成为巨系统研究领域急于解决的课题。
     本学位论文选题来源于国家自然科学基金资助项目——基于无线传感网络引导的高精度超大空间坐标测量网络关键技术(51275149),该项目研究的高精度超大空间坐标测量网络由两个网络构成:多边激光测距网络用于尺寸为数十米的重大装备几何参量的精密测量;无线传感空间定位网络实现标靶节点空间粗定位,引导激光测距仪自动瞄准,整个测量过程自动完成。由于多边激光测距网络中激光器瞄准的靶镜直径最大为7cm,因此要求实现测量引导的空间无线定位网络的定位精度必须优于7cm,而目前市场上有售的无线定位系统难以满足课题研制的需求。
     因此本论文围绕高精度空间无线定位技术开展了深入的研究,主要的研究工作和创新点如下:
     (1)提出了基于复合到达时间差测量的空间无线定位技术
     该技术利用“单信标节点不同(传播速度)脉冲信号测距”及“双信标节点相同(传播速度)脉冲信号测距”得到的冗余测量结果,由加权极大似然法对移动节点进行定位,从而将空间定位重复性提高到毫米量级。
     (2)提出了基于空间定位误差分析的无线定位网络优化构建方法
     深入研究了无线定位网络结构参量(信标节点数量及布局)与定位空间内各点定位精度间的关系及精度空间分布模型,提出了定位网络构建时,根据被测对象立体尺寸及测量精度要求(整体精度要求、局部精度要求),科学构建非规则测量网络的方法。由于无线定位网络与后续的激光坐标测量系统均基于测长多边形法,因此该优化设计方法也适用于激光坐标测量网络的构建。
     (3)研制了基于复合到达时间差的空间无线定位网络
     基于复合到达时间差的空间无线定位网络,由信标节点系统、移动节点系统及定位控制系统所组成,其中信标节点系统主要实现不同信号的发射;移动节点主要实现到达时间差的测量:定位控制系统主要实现定位过程控制及测量信息处理。本文完成了上述各类系统的硬件及软件研制。
     (4)完成了若干研究实验和标定实验
     实验研究了传播距离、发射角度以及环境温度对超声波测距精度的影响特性,确定了测距误差修正模型;同时研究了超声波传播距离、发射角度对测距可靠性的影响,确定了测距权值模型;对基于复合到达时间差的无线定位网络的定位精度进行了标定实验,检验了该定位网络、权值模型的正确性,以及误差修正模型的有效性。实验结果表明,该定位网络的空间定位重复性达到毫米量级,实现了目标要求。
In the process of manufacture and assembling of large mechanical equipments, precision measurement of workpiece's physical dimension and shape and position error is a key factor for ensuring high manufacturing quality of the whole equipment. In "National Medium-term and Long-term Planning Brief for Development of Science and Technology", extreme manufacturing technology is seemed to be the cutting-edge technology of advanced manufacturing technology, and design method, manufacturing technology and measurement technology for huge system should be researched specially. With the development of huge system's industrialization, high-efficiency measurement method and system has become an urgent issue in the field of research of huge system.
     The dissertation was based on a research project of "key technologies of3D coordinate measuring network with high precision for extra-large space based on wireless sensor network" sponsored by the National Natural Science Foundation. The3D coordinate measuring network with high precision for extra-large space in the project, consists of two network components:laser measurement network based on multi-lateration ranging to acquire high measuring precision for geometric parameters of major equipment with dimensions of tens of meters, and wireless sensor network to achieve coarse positioning of spatial targets and offer the high-precision laser spatial coordinate measuring system measuring guide and measure automatically. Because of peak diameter of target mirror in the laser spatial coordinate measuring system is7cm, positioning accuracy of wireless positioning system for measuring guide must be better than7cm. But the wireless positioning systems currently supplied in market cannot meet the demands of the subject.
     In this dissertation, a systematic study in depth about high-precision spatial wireless positioning technology was carried out. The main works and its originality of this dissertation are as follows:
     (1)The design of a spatial wireless positioning method based on compound time-difference of arrival
     The method combined arriving time-difference of different (spread velocity) pulse signals simultaneously transmitted from one known position node (a beacon node) to a unknown position node (a mobile node) for ranging with arriving time-difference of same (spread velocity) pulse signals transmitted one after another at a certain interval from dual beacon nodes to the mobile node for range difference measurement, and then calculated estimated spatial positions of the mobile node by redundant measurement data and the maximum likelihood method algorithm, which can acquire positioning repeatability of millimeter.
     (2)The design of an optimization method based on spatial positioning error analysis for wireless positioning network
     By deep research on relation between structure parameters (number and layout of beacon nodes) of wireless positioning network and positioning precision of space nodes and spatial distribution model of positioning precision, a method which selected appropriate structure parameters according to3D dimension and measurement accuracy requirements (overall accuracy and local accuracy) of measured objects, can provide scientific basis for building appropriate irregular positioning network. The optimization method can be suitable for space laser coordinate measuring system, which is also based on multi-lateration ranging.
     (3)The construction of space wireless positioning network based on compound time-difference of arrival
     Space wireless positioning network, which is based on compound time-difference of arrival, included beacon node system, mobile node system and positioning control system. The beacon node system primarily achieved emission of radio frequency signal and ultrasonic signal, the mobile node system mainly achieved time-difference measurement of arrival, and the positioning control system primarily achieved positioning process control and measurement information processing. The hardware and software of above systems were designed in the dissertation.
     (4)The completion of some research experiments and calibration experiments
     Experimental studies the relation between analyzed propagation distance and beam angle of ultrasonic and ambient temperature with ranging accuracy, which determined ranging error correction model, and relation between propagation distance and beam angle of ultrasonic with ranging reliability, which determined ranging weights model. The positioning accuracy of the wireless positioning network based on compound time-difference of arrival has been calibrated, and ranging error correction model and ranging weights model testified. The experimental results showed that the wireless positioning network can acquire positioning repeatability of millimeter and meet measuring guide demands of high-precision laser spatial coordinate measuring system.
引文
[1]Dai Lei.Wang Peter,Bosnick Ken,Joumal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films [J],Large-scale production and metrology of vertically aligned carbon nanotube films,2009,27(4):1071-1075
    [2]杨凌辉.基于光电扫描的大尺度空间坐标测量定位技术研究[D],天津大学博士论文,2010
    [3]叶声华,邾继贵,张滋黎等.大空间坐标尺寸测量研究的现状与发展[J],计量学报,2008,4A:1-6
    [4]http://vmt-gmbh.de/607.html?&L=3
    [5]http://www.nikonmetrology.com/large_volume_metrology/laser_radar
    [6]邾继贵,叶声华.基于近景数字摄影的坐标精密测量关键技术研究[J],计量学报,2005,26(3):207-211
    [7]http://www.geodetic.com/v-stars.aspx
    [8]http://www.senztech.cn/showpros.aspx?proid=87
    [9]张国雄.坐标测量技术新进展[J],航空精密制造技术,2008,44(3):16-19
    [10]曲兴华,戴建芳,张福民.基于激光测距的大尺寸测量应用研究[J],仪器仪表学报,2009,30(3):481-485
    [11]王婷,裘祖荣,李杏华.四路激光跟踪柔性坐标系统绝对零位标定[J],中国机械工程,2008,19(9):1051-1054
    [12]邾继贵,郭磊,叶声华.现场条件下大空间三维精密定位原理与方法[J],光学学报,2009,29(7):1872-1876
    [13]张滋黎,邾继贵,周虎,耿娜,叶声华.一种新型自动激光经纬仪引导跟踪方法[J],光学工程,2010,37(4):1-7
    [14]武强,杨善勃,劳达宝,邾继贵.wMPS测量模型及仿真分析[J],现代科学仪器,20()8,05:100-102
    [15]刘长英,高乐,高印寒,车仁生.单目视觉坐标测量方法[J],吉林大学学报(工学版),2010,40(5):1278-1282
    [16]孙利民,李建中,陈渝等.无线传感器网络[M],清华大学,2005:141-42
    [17]Seung-Hwan Jin,Sang-Jo Yoo,Improved positioning scheme based on DV-hop for Wireless sensor network[C],International Symposium on Communications and Information Technology,2009:69-74
    [18]Yong Zhou, Xin Ao,Shixiong Xia. An improved APIT node self-localization algorithm in WSN[C],7th World Congress on Intelligent Control and Automation,2008:7582-7586
    [19]Gholami M.R.,Wymeersch H,.etc,Rydstrom M.Robust distributed positioning algorithms for cooperative networks[C], International Workshop on Signal Processing Advances in Wireless Communications,2011:156-160
    [20]STOLERU R,HE T,STANKOVIC J,et al.A high-accuracy,low-cost localization system forwireless sensor networks[C],Proceedings of the 3rd international conference on Embedded networked sensor systems.SanDiego,CA,USA:ACM,2005,13-26
    [21]Jiawen Hu,Xiaofen Yu,Biao Wang.Zhiqiang Li.Localization Accuracy Improved Methods for Range-Free Localization Schemes in Wireless Sensor Network[J].Key Engineering Materials,2010,437:462-466.
    [22]王福豹,史龙,任丰原.无线传感器网络中的自身定位系统和算法,软件学报,2005,16(5):857-868
    [23]Bahl P, Padmanabhan VN. RADAR:An in-building RF-based user location and trackingsystem[C]. In:Proc. of the IEEE INFOCOM 2000. Vol.2, IEEE Computer and Commu nications Societies,2000:775-784
    [24]Lorincz K, Welsh M. Mote Track:A robust, decentralized approach to RF-based location tracking[C]. Proceedings of the International Workshop on Location and Context-Awareness.2005:63-82
    [25]http://www.c51 rf.com/pro/show.aspx?id=3
    [26]http://www.pinpointco.com
    [27]Woodman.J. Harle R.K.Concurrent scheduling in the Active Bat location system[C],IEEE national Conference on Pervasive Computing and Communications Workshops,2010:431-437
    [28]Haryong Song.Shin, V.Moongu Jeon.Mobile Node Localization Using Fusion Prediction-Based Interacting Multiple Model in Cricket Sensor Network[C],IEEE Transactions on Industrial Electronics,2012:4349-4359
    [29]刘赓.基于TDOA的空间定位算法[J].计算机工程与设计,2008.29(15):3892-3894
    [30]曾毅.无源雷达时差定位方法研究[J].重庆科技学院学报,2009,11(4):140-142
    [31]袁正午,杨青宏.基于TDOA的微小区射线跟踪定位研究[J],计算机工程与设计.2012,33(5):1700-1705
    [32]王敬东,贲伟,马骏,温家旺.无线传感器网络混合定位技术[J].研究现代电子技术现代电子技术.2012,35(18):60-63
    [33]http://www.hexamite.com
    [34]Cameron Dean Whitehouse. The design of calamari an Ad-hoc localization system for sensing Networks[J].Master's Thesis. University of California at Berkeley.2002
    [35]http://www.donntech.com/Products/Ubisense
    [36]孟东阳,何秀凤,桑文刚.基于无线网络传感器的定位技术研究[J].电子测量技术.2012,35(9):4-9
    [37]张凡,陈典铖等.室内定位技术及系统比较研究[J].广东通信技术.2012,11:73-79
    [38]王鲁佳,田龙强,胡超.无线定位技术综述[J].先进技术研究通报2010,4(3):2-7
    [39]赵海,张宽,朱剑,李大舟.基于TDOA的超声波测距误差分析与改进[J].东北大学学报(自然科学版).2011,32(6):802-805
    [40]费业泰.误差理论与数据处理[M],机械工出版社,2004.6:55-70
    [41]章坚武,唐兵,秦峰. Chan定位算法在三维空间定位中的应用[J].计算机仿真.2009,26(1):323-326
    [42]陈德章,唐皓,吴季达.基于Chan和Taylor的TDOA协同定位算法研究[J].计算机科学,2011,38(10A):406-411
    [43]Hu jiawen,Yu xiaofen,Miu Juntong,Zhu Ming.An Analysis Model for Structural Optimization of Polygon Ranging-based Space Coordinate Measurement Network.[J]. Applied Mechanics and Materials,2012,239-240:760-768
    [44]方正超,姚善学.基于CX20106A的超声波测距设计[J],电子设计工程处2012,20(15):151-53
    [45]http://www.ayxsj.com/j05u.htm
    [46]刘德.基于CC2530的ZigBee无线组网[J],可编程控制器与工厂自动化2012,6:93-95
    [47]http://www.altera.com.cn/devices/fpga/fpga-index.html
    [48]http://www.acam.de/fileadmin/Download/pdf/TDC/Chinese/DB_GP1_cn.pdf
    [49]康乐俊,黎敏,阳建宏等.基于超声波和TDOA的无线传感器网络高精度定位方法[J],微计算机信息,2010,10:79-84
    [50]肖顺文.基FPGA的超声波小型空间定位系统设计[J],实验科学与技术2006,8(4):29-31
    [51]韩霜,罗海勇,陈颖等.基于TDOA的超声波室内定位系统的设计与实现[J],传感技术学报,2010,23(3):347-353
    [52]蒋林,闫继宏,朱延河等.基于冗余超声波信息融合的绝对定位研究[J],华中科技大学学报(自然科学版),2008,36(5):63-66
    [53]可方玲,黄晓利,段渭军等.无线传感器网络TDOA定位系统的设计与实现[J],计算机测量与控制,2008,16(2):221-224
    [54]赵军,李鸿斌,王智.无线网络室内定位系统研究[J],信息与控制,2008,37(4):466-471
    [55]蒋林,闫继宏,臧希喆等.一种新的超声波绝对定位方法[J],吉林大学学报(工学版),2009,39(1):188-193
    [56]刘增力,徐双,全海燕等.基于EMD自适应滤波的谱分析方法研究[J],昆明 理工大学学报(理工版),2009,34(5):22-25
    [57]张健,李鸥.改进的无线传感器网络TDOA定位算法[J],计算机工程与应用201(),46(16):117-120
    [58]吴燕红,关维国,王艳峰.基于Elman神经网络的TDOA定位算法[J],计算机应用,2011,31(3):629-642
    [59]尹成友,徐善驾,王东进.基于TDOA的多传感器在非对称域内的优化布局[J],电子学报,1998,26(12):21-24
    [60]王玲,魏星,万建伟等.基于TDOA定位算法的模糊解消除方法[J],计算机工程与科学,2006,28(3):74-75
    [61]樊晓翔,王福豹,严国强.基于TDoA技术的自适应定位系统研究[J] 计算机测量与控制,2009,17(4):727-731
    [62]周康磊,毛永毅.基于残差加权的Taylor级数展开TDOA无线定位算法[J],西安邮电学院学报,2010,15(3):10-13
    [63]张琳.基于测距技术的无线传感节点定位技术研究[D],西安工业大学硕士学位论文,2010
    [64]史洪宇,贺前华,魏晓慧.基于遗传-拟牛顿混合算法的到达时间差定位[J],计算机工程,2011,37(11):220-222
    [65]汪波,薛磊.基于TDOA/AOA遗传算法的定位系统的最优布站算法[J],计算机工程与应用,2009,45(24):219-221
    [66]Lim H, Kung L C. Hou J C, et al. Zero-configuration, robust in-door localization:Theory and experimentation[C]. Proceedings of the 25th IEEE International Conference on Computer Communications. Piscataway. NJ.USA.EEE.2006:1633-1644
    [67]Ji Y M. Biaz S. Pandey S.et al. ARIADNE:A dynamic indoor sig-nal map construction and localization system[C]. Proceedings ofthe 4th International Conference on Mobile Systems. Applications and Services. New York. NJ. USA:ACM.2006:151-164
    [68]Lionel M N. Liu Y H. Lau Y C.et al. LANDMARC:Indoor loca-tion sensing using active RFID[J]. Wireless Networks.2004.10(6):701-710
    [69]Li H B, Shen X F, Zhao J, et al. INEMO:Distributed RF-based in-door location determination with confidence indicator[J]. Eurasip Journal on Advances in Signal Processing,2008
    [70]Abdul-Latif,O., Shepherd, P. ect. TDOA/AOA Data Fusion for Enhancing Positioning in an Ultra Wideband System[C]. IEEE International Conference on Signal Processing and Communications,2007:1531-1534
    [71]束锋,朱伟强,陆锦辉等.基于最大比合并的最大似然TDOA/FDOA联合定位方法[J],宇航学报,2010,31(4):1143-1148
    [72]戴家佳,杨爱军,杨振海.极大似然估计算法研究[J],高校应用数学学报2009,24(3):275-289
    [73]黄晓利,王福豹,段渭军等.无线传感器网络TDOA测距误差分析与校正[J],计算机测量与控制,2008,16(7):1053-1056
    [74]张祺.无线传感器网络定位技术研究与应用[D],合肥工业大学硕士学位论文,2007
    [75]袁荣超.无线传感器网络目标定位技术研究[D],南京邮电大学硕士学位论文,2010
    [76]龚福祥,王庆,张小国.非视距环境下的最速下降混合定位算法[J],仪器仪表学报,2011,32(7):1500-1506
    [77]龚福祥,王庆,张小国.非视距环境下的最速下降混合定位算法[J],仪器仪表学报,2011,32(7):1500-1506
    [78]李志强.基于无线传感器网络的大尺寸坐标测量技术研究[D],合肥工业大学硕士学位论文,2010
    [79]同济大学数学系.工程数学线性代数[M],高等教育出版社,2007
    [80]Schroeder, J., Galler. S. ect. A low-cost experimental ultra-wideband positioningsystem[C]. IEEE International Conference on Ultra-Wideband,2005:632-637
    [81]Robert J. Fontana.etc.,Ultra-wideband precision asset locationsystem[C], IEEE Conference on Ultra Wideband Systems and Technologies.2002
    [82]Robert J. Fontana, Edward Richley and JoAnn Barney,Commercialization of An Ultra Wideband Precision Asset Location System[C]. IEEE Conference on Ultra Wideband Systems and Technologies.2003
    [83]Woo-Chool Park.Myung-Hyun Yoon.The Implementation of Indoor Location System to Control ZigBee Home Network[C],International Joint Conference on SICE-ICASE.2006:2158-2161
    [84]丁宏毅,柳其许,王巍.Chan定位算法与TDOA估计精度的关系[J].通信技术.2010,43(3):134-136

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700