动态传感器网络节点定位技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
动态传感器网络作为无线传感器网络的一种,近年来被广泛的应用于许多领域中,如环境监测、动物跟踪、医疗健康、井下人员搜救等都依赖于传感器节点的移动性。移动的节点不仅提高了事件监测的灵活性,而且增强了无线传感器网络的自组织性和适应性。对于动态传感器网络而言,节点的位置信息是其各种应用的前提。节点的移动性使动态传感器网络的节点定位比静态传感器网络的节点定位更复杂。如何在动态条件下,对节点实现低功耗、低复杂度和高精度的定位是无线传感器网络定位面临的挑战之一。
     本文以动态传感器网络节点定位技术为主要研究内容,分析并仿真研究了不同网络模型下的动态传感器网络节点定位问题,以及节点移动模型对定位算法的影响。本文的主要工作和创新点如下:
     首先,本文针对未知节点静止、锚节点移动的动态传感器网络模型的定位问题展开了研究,提出了一种基于虚拟信标选择的移动锚节点定位算法。该算法从几何学的角度,对在测距误差存在的情况下,如何减少误差积累和确保定位误差最小的问题进行了研究,定量的分析了由节点间相对位置所引入的误差,并通过数学证明了当参与定位的三个虚拟信标的位置成等边三角形时定位误差最小的定理。依据这一定理,未知节点在定位过程中对虚拟信标进行合适的选取,获得了更准确的位置信息。
     接着,本文研究并探讨了移动锚节点定位算法中的锚节点路径规划问题,提出了一种能自适应网络拓扑的动态路径规划方法。为使移动锚节点能根据网络中节点的分布情况进行移动,该算法对锚节点的移动方向进行了划分,并利用锚节点与未知节点之间的信息交互,获取锚节点当前通信范围内的节点的邻居节点数,使锚节点的移动路径尽量规划在邻居节点数最多的区域内,以此确定锚节点的移动方向。仿真结果显示,本文提出的动态路径规划方法能有效的避免无节点区域的遍历,特别适用于网络节点非均匀分布的应用场景。
     其次,本文针对未知节点和锚节点均移动的动态传感器网络模型的定位问题进行了研究。蒙特卡洛定位算法是解决这类定位问题的重要方法,但蒙特卡洛定位算法为实现定位而进行的大量采样不仅降低了算法的执行效率,而且消耗了传感器节点的大量能量。针对这些缺点,本文提出了一种自适应采样的改进的蒙特卡洛定位算法。该算法首先使用未知节点接收到的一跳和二跳锚节点建立采样区,然后采用Kullback-Leibler距离作为衡量节点位置的后验概率密度分布的真值与估计值之间的误差限,依据采样区的大小计算出基于此误差限的最大采样次数,在采样区域内进行均匀的采样和过滤,最后利用未知节点的一跳邻居节点对样本的权值进行区分,计算出节点的估计位置。仿真结果显示,该算法能在保证节点定位精度的情况下,有效降低采样次数,减少计算开销。
     由于受到网络规模和成本的限制,以及难以从实际场景中获得节点的移动轨迹,目前针对动态传感器网络节点定位算法的研究仍以仿真研究为主。节点移动模型作为动态传感器网络节点定位算法仿真研究的基础,对定位算法的性能分析具有重要的影响。通过研究发现,节点移动模型的参数设置及许多与时间相关的特性是造成定位算法性能评估不一致的主要原因。因此,本文最后研究并分析了节点移动模型对动态传感器网络节点定位算法性能的影响,提出了为了能准确衡量算法的性能,在定位算法的仿真研究中必须综合考虑定位算法的应用场景和节点移动模型的基本特性的观点,并举例加以了分析和说明。
Dynamic sensor networks as a kind of wireless sensor networks, in recent years have been widely used in many fields, such as environmental monitoring, animal tracking, health, mine rescue, all of these applications are dependent on the mobility of the nodes. The mobile node can not only improve the event monitoring, but also enhance the flexibility, self-organization and adaptability in wireless sensor networks. For the dynamic sensor networks, the node location information is the premise of its application. Compared with node localization in static sensor networks, the node localization in dynamic sensor networks is more complicated due to the mobility of nodes. How to achieve the localization with low power consumption, low complexity and high precision in dynamic conditions is one of the challenges facing the localization in wireless sensor networks.
     The node localization technologies in dynamic sensor networks are the main topic in this dissertation. The dissertation explores the localization technologies in different dynamic sensor networks models and proposes some localization schemes. And then the dissertation presents a comparative simulation study of node mobility models in the performance evaluation of localization. The main work and innovation are as follows:
     Firstly, aiming at the network model which consists of static unknown nodes and mobile anchors, the dissertation presents a localization scheme with mobile anchors based on virtual beacon selection. How to reduce the error accumulation and minimize localization error in the presence of ranging error is considered in the scheme. The scheme gives the quantitative analysis on the error introduced by the relative position between the nodes from the perspective of geometry. The theorem is proved which the localization error is minimal when the position of the three virtual beacons into an equilateral triangle. In order to obtain more accurate location information, the unknown node chooses the appropriate virtual beacons to compute its estimated position according to this theorem.
     Secondly, the dissertation focuses on the path planning of mobile anchor and proposes a dynamic path planning method which is adaptive for network topologies. In order to make the mobile anchor moves according to the distribution of nodes in the networks, the moving direction of anchor is divided. The unknown nodes communicate with the anchor to obtain the number of the neighbor nodes. The anchor chooses the direction who owns the maximum number of neighbor nodes and moves. The simulation results show that the dynamic path planning method proposed in the dissertation can effectively avoid traversing the region without any node, particularly suitable for the networks with the non-uniformly distributed nodes.
     Thirdly, the dissertation explores the localization technologies aiming at the network model which consists of mobile nodes and anchors. Monte Carlo localization algorithm is an important method to solve this kind of problem. However, a large number of samples are sampled to achieve the positioning. This not only reduced the efficiency of the algorithm, but also consumed a great deal of energy of nodes. Aiming at these shortcomings, the dissertation proposes an adaptive sampling improved Monte Carlo algorithm. In the algorithm, the sample area is built on the one-hop and two-hop anchors of the nodes. And then the Kullback-Leibler distance as error limits is adopted to measure the error between the true value and estimation of the posterior probability density distribution of the node position. According to the sampling area size, the maximum sampling attempts based on the error limit is calculated. After uniformly sampling and filtering in sample area, the weights are given to the samples according to the one-hop neighbors of the nodes, and the estimated position is the weighted means of the samples. The simulation results show that the algorithm can reduce the number of sampling and the computational expense in case of ensuring the accuracy.
     Due to the network size and cost constraints, it is difficult to obtain the moving tracks of the nodes from the actual scene. Thus, at present the research on the node localization algorithm in dynamic sensor networks still adopts the simulation technologies. The node mobility model is the basis for simulation on node localization algorithm in dynamic sensor networks. Lastly, the dissertation presents a comparative simulation study of node mobility models in the performance evaluation of localization, and puts forward the viewpoint that the application scenarios of the localization and the basic characteristics of node mobility models should be taken into account in the simulation research of the node localization in order to accurately evaluate the performance of the algorithm. Moreover, the dissertation gives the analysis and explanation by examples.
引文
[1]孙利民,李建中,陈渝等.无线传感器网络[M].北京:清华大学出版社,2005:5.
    [2]Chong, Chee-Yee, Kumar, Srikanta P. Sensor Networks:Evolution, Opportunities, and Challenges[C].Proceedings of the IEEE, Vol.91, No.8,1247-1256,2003.
    [3]William J. Kaiser. Low Power Wireless Integrated Microsensors. http://www.janet.ucla.edu/WINS/lwin-innovative.htm.
    [4]G. J. Pottie. Wireless Sensor Networks[C]. In:IEEE Information Theory Workshop,1998,139-140.
    [5]朱红松,孙利民.中兴通讯技术[J].2009,15(5):1-5.
    [6]中华人民共和国国务院.国家中长期科学与技术发展规划纲要(2006-2020年).]http://www.most.gov.cn/mostinfo/xinxifenlei/gjkjgh/200811/t20081129_657 74.htm.
    [7]刘俊,杨全胜.一种基于定位应用的无线传感器网络MAC层方案[J].计算机技术与发展,2009,19(01):204-206.
    [8]Niculescu D. Communication paradigms for sensor networks[J]. IEEE Communications Magazine,2005,43(3):116-122.
    [9]He T., Stankovic J.A., Lu C., et al. SPEED: A Stateless Protocol for Real-Time Communication in Sensor Networks[C].In:Proceedings of IEEE ICDCS'03. Providence, RI,2003.
    [10]Ko Young-Bae, Vaidya Nitin H. Location-Aided Routing(LAR) in Mobile Ad Hoc Networks[J]. Wireless Networks,2000,6(4),307-321.
    [ll]Xu Y, Heideman J., Estrin D. Geography-informed Energy Conservation for Ad Hoc Routing[C]. In:Proceedings of MOBICOM'01. Rome, Italy:ACM Press, 2001.70-84.
    [12]Alberto Cerpa, Deborah Estrin. Ascent:Adaptive self-configuring sensor network topologies[C]. ACM SIGCOMM Computer Communication Review,2002, 32(1):62.
    [13]Lowell J R. Military applications of localization, tracking, and targeting[J]. IEEE Wireless Communications,2011,18(2):60-65.
    [14]Kumar S, Shepherd D. SensIT:Sensor Information Technology for the Warfighter[C]. In Proceedings of the 4th International Conference on Information Fusion.2001.
    [15]Vincent Sabio. Wide Area Network Detection (WAND). [2011-08-13]. http://www.darpa.mil/Our_Work/I2O/Programs/Wide_Area_Network_Detection_(WAND).aspx.
    [16]Mittal R, Bhatia M P S. Wireless sensor networks for monitoring the environmental activities[C]. In:IEEE ICCIC, Coimbatore,2010.1-5.
    [17]Main waring, J. Polastre, R.Szewczyk, D. Culler, J. Anderson. Wireless Sensor Networks for Habit Monitoring[C]. In:Proceedings of 1st ACM international workshop on Wireless sensor networks and applications,2002,89-97.
    [18]K. martninez, R. ong, j. K Hart, J. Stefanov. GLACSWEB:A Sensor Web for Glaciers[C]. In:Proc. European Workshop on Sensor Networks (EWSN'04), Berlin, Germany, Jan.2004.
    [19]Alemdar H, Ersoy C. Wireless sensor networks for healthcare:A survey [J]. Computer Networks,2010,54(15):2688-2710.
    [20]Aleksandar M, Chris O, Emil J. Wireless sensor networks for personal health monitoring:Issues and an implementation[J]. Computer Communications,2006, 29(13-14):2521-2533.
    [21]Tia Gao, Dan Greenspan, Matt Welsh, Radford R. Juang, Alex Aim. Vital Signs Monitoring and Patient Tracking Over a Wireless network[C]. In:Proceedings of the 27th IEEE EMBS Annual International Conference, September 2005.
    [22]Anu Bhargava, Mike Zoltowski. Sensors and Wirleless Communication for Medical Care[C]. International Workshop on Database and Expert Systems Applications (DEXA'03),2003,950-960.
    [23]Kristof Van Laerhoven et al. Medical Healthcare Monitoring with Wearable and Implantable Sensor[C]. In:Proceeding of the UbiComp 2004.
    [24]Kevin A. Delin. The Sensor Web:A Distributed, Wireless Monitoring System[J]. Sensors (Peterborough, NH),2004,21(4):20-25.
    [25]Wilson J, Bhargava V, Redfern A, et al. A wireless sensor network and incident command interface for urban firefighting[C]. Proc of the 4th Annual Int Conf on Mobile and Ubiquitous Systems:Networking & Services (Mobiquitous 2007). Piscataway, NJ:IEEE,2001:1-7.
    [26]Huanjia Yang, Lili Yang, Shuang-Hua Yang. Hybrid Zigbee RFID sensor network for humanitarian logistics centre management [J]. Journal of Network and Computer Applications,2011,34(3):938-948.
    [27]乔钢柱.基于无线传感器网络的煤矿安全综合监控系统设计与关键技术研究[D].甘肃:兰州理工大学,2012.
    [28]Khanafer M, Guennoun M, Mouftah H T. Intrusion Detection System for WSN-Based Intelligent Transportation Systems[C]. In:IEEE GLOBECOM Miami, FL,2010.1-6.
    [29]Delen D, Sharda R, Hardgrave B C. The promise of RFID-based sensors in the perishables supply chain[J]. IEEE Wireless Communications,2011,18(2): 82-88.
    [30]Peng Mingsheng. Smart Planet.2009. [2011-8-13]. http://www.enet.com.cn/article/2009/0211/A20090211426610.shtml.
    [31]Bianchi G. Performance analysis of the IEEE 802.11 distributed coordination fun ction[J]. IEEE Journal on Selected Areas in Communications,2000,18(3): 535-574.
    [32]Huan P, Sanjay J. Addressing mobility in wireless sensor media access protocol[J]. International journal of distributed sensor networks,2005,1(2), 269-280.
    [33]Sung-Chan C, Jang-Won L,Yeonsoo K. An adaptive mobility-supporting MAC protocol for mobile sensor networks [C]. Vehicular technology conference.Singapore:IEEE press,2008:168-172.
    [34]Raviraj P, Sharif H, Hempel M, Ci S, Ali HH, Youn J. A mobility based link layer approach for mobile wireless sensor networks[C]. IEEE international conference on electro information technology.Lincoln:IEEE press,2005.
    [35]陈晨,高新波.一种无线传感器网络移动性支持自适应MAC协议[J].西安电子科技,2010,37(02):279-284.
    [36]Johnson P, et al. Remote continuous physiological monitoring in the home [J] Journal of Telemedicine and Telecare.1996,2 (2):107-113.
    [37]Harter A, Hopper A, Steggles P et al. The anatomy of a context-aware application[C]. In:Proc. of the 5th Annual ACM/IEEE Int'l Conf. on Mobile Computing and Networking. Seattle:ACM Press,1999.59-68.
    [38]Want R, Hopper A, Falcao V, Gibbons J. The active badge location system[J]. ACM Trans. or Information Systems, Vol 10 Issue 1, Jan.1992:p91-102.
    [39]Harter A, Hopper A. A distributed location system for the active office[J]. IEEE Network,1994:p62-70.
    [40]http://www.directionsmag.com/press.releases/index.php?duty=Sho w&id=383. 1999.
    [41]Harter A, Jones A, Hooper A. A new location technique for the active office [J]. IEEE Personal Communications, Oct,1997:v4, n5, p42-47.
    [42]Steve Shafer, John Krumm, Barry Brumitt, et al. The New EasyLiving Project at Microsoft Research. Microsoft Research.2001. [2011-8-30] http://research.microsoft.com/en-us/um/people/jckrumm/old%20(2001)/backup % 20all/papers/easyliving/smart%20spaces.pdf.
    [43]Jeffrey Hightower, Roy Want, and Gaetano Borriello. SpotON:An Indoor 3D Location Sensing Technology Based on RF Signal Strength. UW CSE 2000-02-02, University of Washington, Seattle, WA, Feb.2000.
    [44]Welch G, Bishop G, Vicci L, Brumback S, Keller K, Colucci D. HiBall tracker: High-Performance wide-area tracking for virtual and augmented environments[C]. In:Proc. of the ACM Symp. on Virtual Reality Software and Technology. London:ACM Press,1999, p1-10.
    [45]Want R, Schilit BN, Adams NI, Gold R, Petersen K, Goldberg D, Ellis JR, Weiser M. An overview of the ParcTab ubiquitous computing experiment[J]. IEEE Personal Communications, Dec 1995:v2, n6, p28-43.
    [46]Orr RJ, Abowd GD. The smart floor: A mechanism for natural user identification and tracking[C]. In:Proc. of the 2000 Conference on Human Factors in Computing Systems-Proceedings,2000:275-276.
    [47]Pentland A. Machine understanding of human action[C]. In:Proc. of the 7th Int'1 Forum on Frontier of Telecommunication Technology. Tokyo, Japan,1995: 757-764.
    [48]Jay Werb, Colin Lanzl. Designing a positioning system for finding things and people indoors[J]. IEEE Spectrum,1998:v35, n9, p71-78.
    [49]WhereNet技术.Zebra Technology. [2011-8-30]. http://www.zebra.com/cn/zh/solutions/technology-need/wherenet.html.
    [50]N.B.Priyantha, A.Chakraborty, H.Balakrishnan. The cricket location-support system[C].In Proceedings of the 6th Annual International Conference on Mobile Computing and Networking,2000:32-43.
    [51]L.Doherty, K.S.J. Pister, L. El Ghaoui.Convex position estimation in wireless sensornetworks[C]. In INFOCOM 2001.Twentieth Annual Joint Conference of the IEEE Computer and Communications Societies.Proceedings. IEEE, 2001:1655-1663.
    [52]S.Capkun, M.Hamdi, J.Hubaux. GPS-free positioning in mobile ad-hoc networks[C]. In Proceedings of the Hawaii International Conference on System Sciences, Maui, HI, United states,2001:255.
    [53]D.Niculescu, B.Nath.Ad hoc positioning system(APS)[C].In EEE Global Telecommunications Conference,San Antonio,TX,United states,2001:2926-2931.
    [54]C.Savarese, J.Rabaey, and J. Beutel. Locationing in Distributed Ad-hoc Wireless Sensor Networks[C]. IEEE International Conference on Acoustics, Speech,and Signal Processing(ICASSP), pages 2037-2040, Salt Lake City, UT, May 2001.
    [55]Savarese, C.; Rabaey, J.; Langendoen, K. Robust positioning algorithms for distributed ad hoc wireless sensor networks[C].in:Proceedings of General Track:2002.USENIX Annual Technical Conference,2002,317-327.
    [56]A.Sawides, C.C.Han, M.B.Srivastava. Dynamic fine-grained localization in ad-hoc networks of sensors[C].In Proceedings of 7th Annual International Conference on Mobile Computing and Networking,2001:166-179.
    [57]Avvides A, Park H, Srivastava MB. The bits and flops of the N-hop multilateration primitive for node localization problems[C]. In:Proceeding of the 1st ACM International Workshop on Wireless Sensor Networks and Applications, Atlanta,2002,112-121.
    [58]S. Meguerdichian, S. Slijepcevic, V. Karayan, and M. Potkonjak. Localized algorithms in wireless ad-hoc networks:location discovery and sensor exposure[C]. In Proceedings of the 2nd ACM international symposium on Mobile adhoc networking&computing,pages 106-116. ACM,2001.
    [59]Zheng J, Guo S J, Qu Y G. Energy equalizing routing for fast date gathering in wireless sensor networks[J]. The Journal of China Universities of Posts and Telecommunications,2007,14(4):13-21.
    [60]A.M.C.So, Y.Y.Ye. Theory of semidefinite programming for sensor network localization[C]. Mathematical Programming.2007,109(2):367-384.
    [61]Bulusu Nirupama, Heidemann John, Estrin Deborah. GPS-less low-cost outdoor localization for very small devices[J]. IEEE Personal Communications,2000:v7, n5, p28-34.
    [62]N. Bulusu, J. Heidemann, D. Esttin. Density Adaptive for Beacon Placement in Wireless Sensor Networks. Technical Report ULCA-CS-010013,2001:489-498.
    [63]Hongyang Chen. Novel centroid localization algorithm for three-dimensional wireless sensor networks[C]. In Proc of 4th International Conference on IEEE WiCOM'08[C].2008:1-4.
    [64]赖旭芝,王金鑫,曾桂秀等.基于三维体质心的无线传感器网络节点定位算法[J].系统仿真学报,2008,20(15).
    [65]He T, Huang CD, Blum BM, Stankovic JA, Abdelzaher T. Range-Free localization schemes in large scale sensor networks[C]. In:Proc. of the 9th Annual Int'l Conf. on Mobile Computing and Networking. San Diego:ACM Press,2003.81-95.
    [66]王继春,黄刘生,徐宏力.基于Voronoi图的无需测距的无线传感器网络定位算法[J].计算机研究与发展,2008,45(1):119-125.
    [67]刘克中,喻钦,王殊,胡富平.无线传感网络中多能量级质心定位方法[J].华中科技大学学报,2009,37(8),pp.61-64.
    [68]Shang Y., Ruml W., Zhang, K., Fromherz M. Localization from mere connectivity [C]. In ACM MobiHoc 2003, Annapolis, MD, June 2003,201-212.
    [69]彭保.无线传感器网络移动节点定位及安全定位技术研究[D].哈尔滨:哈尔滨工业大学,2009.
    [70]M. L. Sichitiu and V. Ramadurai. Localization of wireless sensor networks with a mobile beacon[C]. In Proceedings of the 1st IEEE International Conference on Mobile Ad Hoc and Sensor Systems (MASS 2004), FL, pp.174-183.
    [71]L Q Zahng, X B Zhou and Q Cheng. Landscape-3D:a robust localization scheme for sensor networks over complex 3D terrains[C]. In Proc of 31st IEEE Conference,2006:239-246.
    [72]任丽婕.无线传感器网络中节点部署优化算法研究[D].青岛:中国海洋大学,2009.
    [73]K. F. Ssu, C. H. Ou, H. C. Jiau. Localization with mobile anchor points in wireless sensor networks[J]. IEEE Transactions on Vehicular Technology, May 2005:vol.54, no.3, p1187-1197.
    [74]E. Guerrero, H. G. Xiong, Q. Gao, G. Cova, R. Ricardo and J. Estevez. ADAL:A Distributed Range-Free Localization Algorithm Based on a Mobile Beacon for Wireless Sensor Networks [C]. ICUMT'09. Ultra Modern Telecommunications & Workshops,2009:1-7.
    [75]张正勇,孙智,王刚.基于移动锚节点的无线传感器网络节点定位[J].清华大学学报,2007:21-26.
    [76]汪炀.无线传感器网络定位技术研究[D].安徽:中国科学技术大学,2007.
    [77]赵欢,冯颖,罗娟,杨科华.无线传感器网络的移动节点定位算法研究[J].湖南大学学报(自然科学版),2007,34(8),74-77.
    [78]王能超编著.数值分析简明教程[M].高等教育出版社,2003,19-20.
    [79]于浩.基于能量的声源目标定位与跟踪[D].上海:复旦大学,2008.
    [80]L.X.Hu, D.Evans. Localization for mobile sensor networks[C]. In Proceeding of the 10th anual International Conference on Mobile Computing and Networking, 2004:45-57.
    [81]Baggio A G, Langendoen K. Monte Carlo Localization for Mobile Wireless Sensor Networks[C]. The Second International Conference on Mobile Sensor Networks, Hong Kong, China,2006:317-328.
    [82]Jiyoung Yi, Sungwon Yang, Hojung Cha. Multi-hop-based Monte Carlo Localization for Mobile Sensor Networks[C].The Fourth Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks, SECON, June 2007:163-171.
    [83]Enrique Stevens-Navarro, Vijayanth Vivekanandan, Vincent W.S. Wong. Dual and mixture Monte Carlo Localization algorithms for mobile wireless sensor networks[C]. In Proc. of IEEE Wireless Communications and Networking Conference (WCNC07), Hong Kong, China, March 2007:4027-4031.
    [84]Rudafshani M, Datta S. Localization in wireless sensor networks[C]. In:Proc. of the 6th International Symposium on Information Processing in Sensor Networks. Massachusetts,2007:51-60.
    [85]S.-H.Shee, K.-C.Wang, I.-L.Hsieh. Color-theory-based Dynamic Localization in Mobile Wireless Sensor Networks[C]. In Proceedings of Workshop on Wireless Ad Hoc Sensor Networks, Aug 2005.
    [86]Tzu-Chien Chang,Kuochen Wang,Yi-Ling Hsieh.Enhanced Color-theory-based Dynamic Localization in Mobile Wireless Sensor Networks[C].IEEE Wireless Communications and Networking Conference, WCNC 2007:3066-3071.
    [87]C.R.B.Li, A.Dempster, J.Barnes. Hybrid method for localization using wlan[C]. In Proceedings of Spatial Sciences Institute Biennial Conference,2005.
    [88]华东师范大学数学系.数学分析[M].北京:高等教育出版社,2004:148-151.
    [89]季素月,朱家生,陈鼎.初等代数研究[M].上海:上海科技教育出版社,1994:222-223.
    [90]邓波.三角形内的点到三顶点距离和的上界[J].安顺师专学报,2001,03.
    [91]李晓维.无线传感器网络技术[M].北京:北京理工大学出版社,2007:191-219.
    [92]D. Koutsonikolas, S. M. Das, Y. C. Hu. Path Planning of Mobile Landmarks for Localization in Wireless Sensor Networks[C]. In Proc. Of IEEE Distributed Computing Systems Workshops,2006:86-86.
    [93]Xiao. B., Chen. H.K., Zhou. S.G. A walking beacon-assisted localization in wireless sensor networks[C]. In International Conference on Communications, Glasgow, Scotland,2007:3070-3075.
    [94]R. Huang and G. V. Zaruba. Static path planning for mobile beacons to localize sensor networks[C]. In Proc. IEEE Int. Conf. Pervas. Comput. Commun. Workshops, Mar.2007:323-330.
    [95]李石坚,徐从富,杨肠等.面向传感器节点定位的移动信标路径获取[J].软件学报,2008,19(2):455-467.
    [96]Jacques M., Abdallah Makhoul, Mostefaoui Ahmed. A Mobile Beacon Based Approach for Sensor Network Localization.3rd IEEE International Conference on Wireless and Mobile Computing, Networking and Communications, WiMob 2007:44-51.
    [97]Hongjun Li, Jianwen Wang, Xun Li, Hongxu Ma. Real-time path planning of mobile anchor node in localization for wireless sensor networks[C]. Proceedings of the 2008 IEEE International Conference on Information and Automation, ICIA 2008:384-389.
    [98]Li Xu, Mitton Nathalie, Ryl Isabelle, Simplot David. A Novel Sensor Localization Scheme by Mobile Actors [C]. Proceedings of the International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc),2009: 339-340.
    [99]H. Wang, W. Qi, K. Wang, P. Liu, L. Wei, and Y. Zhu. Mobile-assisted localization by stitching in wireless sensor networks. In Proc. IEEE Int. Conf. Commun., Jun.2011:1-5.
    [100]M.S.Arulampalam, S.Maskell, N.Gordon, T.Clapp. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J]. IEEE Proceedings on Signal Processing,2002:vol.50,no.2, p174-188.
    [101]Djuric, P.M, Kotecha, J.H, Jianqui Zhang, Yufei Huang, Ghirmai, T, Bugallo, M.F, Miguez, J. Particle filtering[J]. IEEE Signal Processing Magazine,2003, Vol.20(No.5):19-38.
    [102]Dieter Fox. Adapting the Sample Size in Particle Filters through KLD-Sampling[J]. Intl. Journal of RoboticsResearch,2003,22 (12):985-1003.
    [103]武爱文,冯卫国,卫淑芝等编.概率论与数理统计[M].上海:上海交通大学出版社,2011.
    [104]N. Johnson, S. Kotz, and N. Balakrishnan. Continuous univariate distributions, volume 1[M]. John Wiley & Sons, New York,1994:415-493.
    [105]Camp T, Boleng J, DaviesV. A survey of mobility models for ad hoc network research[J]. Wireless Communications and Mobile Computing,2002,2(5): 483-502.
    [106]Fan Bai, Narayanan Sadagopan, Ahmed Helmy. The Important framework for analyzing the Impact of mobility on performance Of Routing Protocols for Adhoc Networks[J]. Elsevier Journal of Ad Hoc Networks,2003, pp.383-403.
    [107]Johnson D B, Maltz D A. Dynamic source routing in ad hoc wireless networks [A]. Imielinski, Korth Mobile Computing [C]. New York:Kluwer Academic Publishers,1996:153-181.
    [108]B. Liang and Z. Haas. Predictive Distance-based Mobility Management for PCS Networks[C]. Proceedings of the IEEE INFOCOM 1999. March 1999. Vol.3. 1377-1384.
    [109]Tolety V. Load reduction in Ad hoc networks using mobile servers[D] Colorado School of Mines,1999.
    [110]X. Hong, M. Gerla,, G. Pei, and C. Chiang. A group mobility model for Ad Hoc wireless networks[J]. In Proceedings of the ACM International Workshop on Modeling and Simulation of Wireless and Mobile Systems (MSWiM), August 1999.
    [111]Mousavi, S.M., Rabiee, H.R., Moshref, M., Dabirmoghaddam, A., MobiSim:A Framework for Simulation of Mobility Models in Mobile Ad-Hoc Networks[C]. In Proceedings of the 3rd IEEE International Conference on Wireless and Mobile Computing, Networking and Communications(WiMob), October 2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700