大豆两个MYB转录因子基因的克隆及其功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大豆不仅可提供优质丰富的蛋白质和油脂,更是具有多种生物活性的异黄酮类化合物的重要来源。异黄酮被认为在植物-微生物互作系统中发挥着多种多样的作用,在人类的营养及健康方面也具有重大的潜力。大豆异黄酮是一类次级代谢产物,它们是由苯丙烷类代谢途径的一个分支所合成的,这个途径在整个植物界普遍存在。研究发现,大多数MYB转录因子对植物类黄酮的代谢均有调控作用。MYB是植物中数量最多,功能最多样化的一类转录因子,参与对植物次生代谢的调控、激素和环境因子的应答,并对细胞分化、细胞周期以及植物叶片等器官的形态建成具有重要的调节作用。因此,对大豆MYB转录因子进行研究,明确其在大豆类黄酮代谢中的地位和作用,阐明其功能,将有助于揭示大豆异黄酮的调控机理。本研究利用PCR技术首次从大豆品种吉林32中克隆了一个新的MYB基因(基因银行注册号码为JF510467),命名为GmMYB12B2,同时克隆了GmMYB12a基因,并对它们的功能做了初步分析。主要研究结果如下:
     1.利用RT-PCR技术从大豆品种(吉林32)中首次克隆了GmMYB12B2基因,全长783bp,编码260个氨基酸;通过氨基酸序列比对分析发现,它含有两个MYB结构域,属于典型的R2R3-MYB转录因子。同时克隆了GmMYB12a基因。
     2.构建GmMYB12a与GmMYB12B2基因的原核表达载体pET-28a-GmMYB12a及pET-28a-GmMYB12B2,分别转入大肠杆菌Rosetta(DE3)中,在28℃、1.2 mMIPTG诱导6h后,可以获得纯度较高的目的蛋白。
     3.利用半定量RT-PCR分析了GmMYB12a与GmMYB12B2基因对各种胁迫的应答情况。结果显示,在紫外辐射、高盐胁迫下,随着处理时间的延长,两基因的表达量逐渐增加,而GmMYB12B2的表达量升高的较GmMYB12a显著。两基因对低温、干旱、ABA响应不明显。
     4.构建酵母效应质粒pGBK7-GmMYB12a及pGBK7-GmMYB12B2,转入酵母菌株AH109中,在营养缺陷型培养基SD/-Trp/-Ade/-His+3-AT上筛选阳性转化子。酵母表达结果显示,GmMYB12B2具有明显的转录激活活性,β-半乳糖苷酶显色反应呈现出明显的蓝色;转入GmMYB12a的酵母菌不能在营养缺陷型培养基上生长,表明其不具转录激活功能或具有极微弱的转录激活活性。
     5.构建绿色荧光蛋白融合表达载体pBI121-GFP-GmMYB12a及pBI121-GFP-GmMYB12B2,农杆菌介导法转化洋葱表皮细胞进行瞬时表达,结果表明,两基因均定位于细胞核中,与亚细胞定位预测一致。
     6.利用定量PCR技术对GmMYB12a与GmMYB12B2基因的组织特异性表达情况进行了检测,结果表明,GmMYB12B2在根及成熟的种子中表达量较高,随着种子逐渐发育成熟,其表达量也随之升高;GmMYB12a与GmMYB12B2的表达模式基本一致,只是其表达量相对较低。
     7.利用HPLC法测定了大豆不同组织中异黄酮的含量,结果表明,大豆各组织的异黄酮含量情况为:大豆籽粒>60d胚>50d胚>40d胚>花>荚>20d胚>30d胚>叶>根>茎。未成熟胚中大豆异黄酮的积累基本符合随着成长天数的增加而增加的规律,只是在30天胚中有所下降,这一积累规律与GmMYB12a和GmMYB12B2基因在这些时期的表达规律基本一致。
     8.构建植物表达载体pCAMBIA1301-CHS8P、PPZP-GmMYB 12a及PPZP-GmMYB12B2,按照不同组合在大豆愈伤组织中进行瞬时表达。CHS8是植物类黄酮合成途径中的关键酶,通过分析MYB转录因子是否与其相互作用可以鉴定MYB是否参与了类黄酮的生物合成。实验结果表明,共侵染pCAMBIA1301-CHS8P与PPZP-GmMYB 12B2质粒载体的大豆愈伤组织的GUS荧光值最高。这就表明,转入GmMYB12B2基因确实对CHS8基因有调控作用,使共转化的大豆愈伤组织GUS荧光活性升高。GmMYB12a的作用不明显。
     9.构建植物表达载体PPZP-GmMYB 12a及PPZP-GmMYB 12B2,利用农杆菌介导法转化拟南芥。对转基因拟南芥T3代植株中类黄酮合成途径中各关键酶的表达情况进行检测,结果表明:在转GmMYB12B2的株系中,PALI、CHS、FLS的表达明显较野生型及转入空载体的拟南芥株系的表达量要高,而CHL、F3H、F3’H的表达在各株系中变化不明显,DFR的表达量在转GmMYB12B2的株系中稍有下降。GmMYB12a与GmMYB12B2的表达模式基本一致,只是其表达量相对较低。这说明GmMYB12B2与GmMYB12a均可调控植物的类黄酮的生物合成。对转基因拟南芥的抗性分析显示,两基因均可提高转基因拟南芥的盐及紫外辐射耐受能力,只是GmMYB12a的作用较GmMYB12B2弱。
Soybean can provide abundant protein and oil, it also act as the main source of varies isofalvone compounds. Isoflavones are considered to play diverse roles in plant-microbe interaction and also have great potential to human nutrition and health. Soybean isoflavones are a class of secondary metabolites of the phenylpropanoid pathway which exists throughout the whole plant system. Many researches have approved that lots of MYB transcription factors could regulate the biosynthesis of isofalvones in plants. MYB transcription factors are the largest transcription factor family in plant, their functions in secondary metabolism, environmental stress, cell differentiation, cell cycle and morphogenesis of organs are all well known now. To further confirm the function of MYB transcription factors in the regulation of isofalvone biosynthesis, we cloned and characterized two MYB transcription factors in soybean.
     In this study, we cloned a novel MYB transcription factor from soybean (Jilin 32) and named GmMYB12B2 (GenBank accession number:JF510467). We also cloned the GmMYB12a. The function of them in regulation of isoflavone biosynthesis was discussed. The main results are as follow:
     1. We cloned the GmMYB12B2 transcription factor using Reverse Transcript-PCR method from soybean (Jilin32). It contains 783 nucleotides and encodes 260 amino acids, it contains two MYB domains according to sequence alignment and belongs to typical R2R3-MYB transcription factor. We also cloned the GmMYB12a.
     2. We constructed the pET28-GmMYB12a and pET28-GmMYB12B2 plasmids and transformed them into E. coli Rosetta (DE3). The proteins were induced in 28℃for 6 hours by 1.2 mMIPTG..
     3. We analysised the expression levels of GmMYB12a and Gm MYB12B2 under salt, low temperature, drought, ABA and UV radiation treatments using semi-quantitative RT-PCR. The expression of GmMYB12a and Gm MYB12B2 are all induced by UV radiation and salt treatment dramatically, especially GmMYB12B2. They are not induced by low temperature, drought and ABA treatment.
     4. We constructed yeast effect plasmids pGBK7-GmMYB12a and pGBK7-GmMYB12B2, and then they were transformed into the yeast strain AH 109. The positive transformants were selected using nutrient-deficient medium SD/-Trp/-Ade /-His with 3-AT. The result showed that GmMYB12B2 have transcriptional activation, GmMYB12a have no or weak transcriptional activation.
     5. We constructed pBI121-GFP-GmMYB12a and pBI121-GFP-GmMYB12B2 plasmids, and then they were transformed into onion epidermal cells using Agrobacterium-mediated method. The subcellular location showed that they are all located in the nucleus.
     6. Real-time RT-PCR was carrying out to analyze the tissue-specific expression of GmMYB12B2 and GmMYB12a in soybean. The GmMYB12B2 transcripts were higher in root and mature seed than other organs. GmMYB12a have the same expression pattern as GmMYB12B2, but its expression levels were lower than GmMYB12B2.
     7. The contents of isoflavones were detected in different tissues using HPLC method. The results showed that the isoflavones contents in following organs were:soybean seed> 60d embryo> 50d embryo> 40d embryo> flower> pod> 20d embryo> 30d embryo> leaf> root> stem. The accumulation of isoflavones in immature embryos increased during plant growth. This result is consistent with the genes expression levels.
     8. pCAMBIA1301-CHS8P. PPZP-GmMYB12a and PPZP-GmMYB12B2 plasmids were constructed and transformed into soybean callus cells. CHS8 is the key enzyme in plant flavonoid biosynthesis, the cotransformation of MYBs and CHS8 will confirm the interaction of them. The results showed that the cells that cotransformed of pCAMBIA1301-CHS8P and PPZP-GmMYB12B2 have the highest GUS flurescence. It proved that GmMYB12B2 could regulate CHS8 to produces more fluorescence.
     9. We constructed PPZP-GmMYB12a and PPZP-GmMYB12B2 plasmids, and then they were transformed into Arabidopsis thaliana. The expression levels of some key enzymes in flavonid biosynthesis were dectected in T3 progeny. The results showed that:the expression levels of PALI, CHS and FLS were significantly higher than wild-type and vector in GmMYB12B2 transgenic lines, while the expression levels of CHI. F3H and F3'H is same in all lines. The expression level of DFR is lower than WT and vector in GmMYB12B2 transgenic lines. GmMYB12a have the same expression pattern as GmMYB12B2 in GmMYB12a transgenic lines, but its expression levels were lower than GmMYB12B2. These results proved that GmMYB12B2 and GmMYB12a are all regulate the flavonid biosynthesis. The transgenic lines of them have more tolerance during salt and UV radiation treatment.
引文
[1]刘强,张贵友,陈受宜.植物转录因子的结构与调控作用[J].科学通报,2000,45(14):1465-1474.
    [2]Riechmann J L, Heard J, Martin G, et al. Arabidopsis transcription factors:genome-wide comparative analysis among eukaryotes[J].Science,2000,290(5499):2105-2110.
    [3]Martin C, Paz-Ares J. MYB transcription factors in plants [J].Trends Genet,1997,13(2): 67-73.
    [4]Rabinowicz P D, Braun E L, Wolfe A D, et al. Maize R2R3 Myb genes:Sequence analysis reveals amplification in the higher plants [J].Genetics,1999,153(1):427-444.
    [5]刘翔,左开井,张飞等.MYB类转录因子在植物腺毛发育中的作用研究进展[J].上海交通大学学报,2010.28(2):188-194.
    [6]Cedroni M L, Cronn R C, Adams K L, et al. Evolution and expression of MYB genes in diploid and polyploid cotton [J]. Plant Mol Biol,2003,51(3):313-325.
    [7]Thompson M A, Ramsayr G. MYB:an old oncoprotein with new roles[J].BioEssays,1995,17: 341-350.
    [8]Ogata K, Hojo H, Aimoto S, et al. Solution structure of a DNA-binding unit of Myb:a helix-turn-helix-related motif with conserved tryptophans forming a hydrophobic core [J]. PNAS, 1992,89(14):6428-6432.
    [9]Ogata K. Morikawa S. Nakamura H, et al. Solution structure of a specific DNA complex of the Myb DNA-binding domain with cooperative recognition helices [J].Cell,1994,79(4):639-648.
    [10]BiIaud T, Koering C E, Binet-Brasselet E, et al. The telobox,a myb related tellomeric DNA binding motif found in proteins from yeast, plants and human [J].Nucleic Acid Res,1996.24: 1294-1303.
    [11]Ito M. Factors controlling cyelin B expression [J]. Plant Mol Biol.2000,43:677-690.
    [12]Straeke I L, Werber M, Weisshaar B. The R2R3-MYB gene family in Arabidopsis thaliana. [J].Curt Opin Plant Biol.2001,4(5):447-456.
    [13]Klempnauer K H, Gonda T J, Bishop J M. Nucleotide sequence of the retroviral leukemia gene v-myb and its cellular progenitor c-myb:the architecture of a transduced oncogene[J].Cell, 1982.31 (2):453-463.
    [14]Paz-Ares J, Ghosal D, Wienand U. Peterson PA, Saedler H. The regulatory cl loeus of Zea mays encodes a protein with homology to myb proto-oneogene products and with structural similarities to transcriptional activators [J]. EMBO J,1987,6(12):3553-3558.
    [15]Lipsick J S.One billion years of MYB[J].Oncogene,1996,13:223-235.
    [16]Jin H, Martin C. Multifunctionality and diversity within the plant MYB gene family[J].Plant Mol Biol,1999,41:577-585.
    [17]Cizhong J, Jianying G. Surinder C, et al. Ordered origin of the typical two-and three-repeat MYB genes[J].Gene,2004,326:13-22.
    [18]张扬.水稻MYB家族转录因子OsMYB2的功能研究[D].扬州:扬州大学.2008.
    [19]Conek C, Burr F A. Burr B. Molecular analysis of the maize anthocyanin in regulatory locus Cl [J]. PNAS.1986.83:9631-9635.
    [20]Allan A C. Hellens R P. Laing W A.MYB transcription factors that colour our fruit [J].Trends Plant Sci,1998.13:99-102.
    [21]Tohge T. Nishiyama Y. Hirai MY. et al. Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor [J].Plant J,2005,42:218-235.
    [22]Kobayashi S, Ishimaru M, Hiraoka K, Honda C.Myb-related genes of the Kyoho grape (Vitis labruscana) regulate anthocyanin biosynthesis [J].Planta,2002,215:924-933.
    [23]Walker A R, Lee E, Bogs J, et al. White grapes arose through the mutation of two similar and adjacent regulatory genes [J]. Plant J,2007,49:772-785.
    [24]Yossapol P, Saichol K, Kui L W, et al. A MYB transcription factor regulates anthocyanin biosynthesis in mangosteen (Garcinia mangostana L.) fruit during ripening[J].Planta,2009, 229:1323-1334.
    [25]Ban Y, Honda C, Hatsuyama Y, et al. Isolation and functional analysis of a MYB transcription factor gene that is a key regulator for the development of red coloration in apple skin [J]. Plant Cell Physiol,2007,48:958-970.
    [26]Takos A M, Jave F W, Jacob S R, et al. Light-induced expression of a MYB gene regulates anthocyanin biosynthesis in red apples [J].Plant Physiol,2006,142:1216-1232.
    [27]Espley R V, Hellens R P, Putterill J, et al. Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYBIO [J]. Plant J,2007,49:414-427.
    [28]谢吉容,熊运海,程在全等.月季MYB基因cDNA全长克隆和表达分析[J].中国农业科学,2008,41(12):4173-4179.
    [29]Moyano E, Martinez-Garcia J F, Martin C. Apparent redundancy in MYB gene function provides gearing for the control of flavonoid biosynthsis in Antirrhinum Flowers[J].Plant cell,1996,8:1519-1532.
    [30]Frank M, Harald K, Pawel B, et al. The Arabidopsis transcription factor MYB12 is a flavonol specific regulator of phenylpropanoid biosynthesis [J]. Plant Physiol,2005,138:1083-1096.
    [31]Kristine M O, Rune S, Unni S. L, et al. Temperature and nitrogen effects on regulators and products of the flavonoid pathway:experimental and kinetic model studies [J]. Plant Cell Environ, 2009,32:286-299.
    [32]Jie L, Eugenio Bi, Lionel H, et al. AtMYB12 regulates caffeoyl quinic acid and flavonol synthesis in tomato:expression in fruit results in very high levels of both types of polyphenol [J]. Plant J,2008,56:316-326.
    [33]Ralf S, Hirofumi I, Gunnar H, et al. Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling [J]. Plant J,2007,50:660-677.
    [34]Jose T M, Rodrigo L, Andrea V, et al. Post-veraison sunlight exposure induces MYB-mediated transcriptional regulation of anthocyanin and flavonol synthesis in berry skins of Vitis vinifera [J]. J Exp Bot,2009,60(3):853-867.
    [35]Nodak B J, Glower P L, Marti N C. Flower color intensit y depends on specialized cell shape controlled by Myb-related transcription factor[J]. Nature,1994,369:661-664.
    [36]段瑞君,熊辉岩.拟南芥表皮毛发育的分子调控研究进展[J].青海大学学报,2005,23(5):9-12.
    [37]Lee M M, Schiefelbein J, Werewolf A. MYB-related protein in Arabidopsis is a position dependent regulator of epidermal cell patterning [J].Cell,1999,99(5):473-483.
    [38]Payne CY, Zhang F, Lloud AM.GL3 encodes a bHLH protein that regulates trichome evekioment in Arabidopsis through interaction with GL1 and TTG[J].Genetics.2000.156: 1349-1362
    [39]Shin B, Choi G. Yil H, et al. AtMYB21, a gene encoding a flower-specific transcription factor. is regulated by COP1 [J]. Plant J,2002,30(1):23-32.
    [40]Schmitz G,LTillmann E.Carriero F.The tomato Blind gene encodes a MYB transcription factor that controls the formation of lateral meristem [J].PNAS,2002,99(2):1064-1069.
    [41]Penfild S, Messner R C, Shoue D A, et al. MYB61 is required for mucilage deposition and extrusion in the Arabidopsis seed coat [J]. Plant Cell,2001,13(12):2777-2791.
    [42]Steiner-Lange S, Unte U S, Eckstein L, et al. Disruption of Arabidopsis thaliana MYB26 results in male sterility due to non-dehiscent anthers [J]. Plant J.2003,34(4):519-528.
    [43]Koes R E, Quattrocchio F, Mol J N M. The flavonoid biosynthetic pathway in plants:function and evolution [J].BioEssays,1994,16:123-132.
    [44]Yang Y, Klessing D F. Isolation and characterization of a tobaccomosaic virus-inducible Myb oncogene homolog from tobacco[J]. PNAS,1996,93:4972-4977.
    [45]Vailleau F, Daniel X, Tronchet M, et al. A R2R3-MYB gene, AtMYB30, acts as a positive regulator of the hypersensitive cell death program in plants in response to pathogen attack. [J]. PNAS,2002,99(15):10179-10184.
    [46]乔孟,于延冲,向凤宁.拟南芥R2R3-MYB类转录因子在环境胁迫中的作用[J].生命科学,2009,21(1):145-150.
    [47]刘蕾,杜海,唐晓凤等.MYB转录因子在植物抗逆胁迫中的作用及其分子机理[J].遗传.2008,30(10):1265-1271.
    [48]陈俊,王宗阳.植物MYB类转录因子研究进展[J].植物生理与分子生物学学报,2002,28(2):81-88.
    [49]Abe H K, Yamaguchi-Shinozaki K, Urao T, et al. Role of Arabidopsis MYC and MYB homologs in drought and abscisic acid regulated gene expression[J].Plant Cell,1997,9:1859-1868.
    [50]Abe H K, Urao T, Ito T. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling [J]. Plant Cell,2003.15:63-78.
    [51]Murray F, Kalla R, Jacobsen J. et al. A role for HvGAMYB in anther development[J].Plant J, 2003,33:481-491.
    [52]Gubler F, Chandler PM, White RG, et al. Cloning of a rice DNA encoding a trancription factor homologous to barley GAMYB [J].Plant Cell Physiol,1997,38(3):362-365.
    [53]Meissner R C. Jin H, Cominelli E, et al. Function search in a large transcription factor gene family in Arabidopsis:Assessing the potential of reverse genetics to identify insertional mutations in R2R3MYB genes [J].Plant Cell,1999,11:1827-1840.
    [54]王丽侠,常汝镇,邱丽娟.大豆基因组计划研究进展[J].中国油料作物学报.2003,25,(4):129-133.
    [55]Yong L, Hong-Feng Z, Hui-Wen W, et al. Soybean GmMYB76, GmMYB92.and GmMYB177 genes confer stress tolerance in transgenic Arabidopsis plants[J].Cell Res,2008,18:1047-1060.
    [56]杨文杰.大豆MYB转录因子基因的克隆及其表达研究[D].成都:四川农业大学.2007.
    [57]Jinxin Y, Michael R, Xuyan L, et al. A single-repeat MYB transcription factor, GmMYB176, regulates CHS8 gene expression and affecs isoflavonoid biosynthesis in soybean[J].Plant J,2010, 62:1019-1034.
    [58]刘强,赵南明,Yamaguchi-Shinozaki K等DREB转录因子在提高植物抗逆性中的作用[J].科学通报,2000,45:11-16.
    [59]黄泽军,黄荣峰.黄大昉.植物转录因子功能分析方法[J].农业生物技术学报.2002,10(3):295-300.
    [60]Park J M. Park C J. Lee S B. et al. Overexpression of the tobacco Tsil gene encoding an EREBP/AP2-type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco[J].Plant Cell,2001,13:1035-1046.
    [61]Sablowski R W M, Meyerowitz E M. A homolog of NO APICAL MERISTEM is an immediate target of the floral homeotic genes APETALA3/PISTILLATA[J].Cell,1998,92:93-103.
    [62]Yang Y, Li R, Qi M.In vivo analysis of plant promoters and transcription factors by agroinfiltration of tobacco leaves[J].Plant J,2000,22:543-551.
    [63]Ito M, Araki S, Matsunaga S, et al. G2/M-phase-specific transcription during the plant cell cycle is mediated by c-Myb-like transcription factors[J].Plant Cell,2001,13:1891-1905.
    [64]Yanagisawa S.The transcriptional activation domain of the plant-specific Dofl factor functions in plant, animal, and yeast cells[J].Plant Cell Physiol,2001,42:813-822.
    [65]Uno Y, Furihata T, Abe H, et al. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid dependent signal transduction pathway under drought and high-salinity conditions[J].PNAS.2000,97:11632-11637.
    [66]Ponticelli A S, Pardee T S, Struhl K. The glutamine-rich activation domains of human Spl do not stimulate transcription in Saccharomyces cerevisiae[J].Mol Cell Biol,1995,15:983-988.
    [67]Schmidt R J, Ketudat M, Aukerman M J, et al. Opaque-2 is a transcriptional activator that recognizes a specific target site in 22-kD zein genes[J].Plant Cell,1992,3:689-700.
    [68]Xie Q, Frugis G, Colgan D, et al. Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development[J].Genes Dev,2000,14:3024-3036.
    [69]Gatz C. Chemical control of gene expression.[J].Annu Rev Plant Physiol Plant Mol Biol, 1997,48:89-108.
    [70]Aoyama T, Chua N H. A glucocorticoid-mediated transcriptional induction system in transgenic plants[J].Plant J,1997,11:605-612.
    [71]Lloyd A M, Schena M, Walbot V, et al.Epidermal cellfate determination in Arabidopsis: patterns defined by a steroid-inducible regulator[J].Science,1994.266:436-439.
    [72]Simon R, lgeno M 1, Coupland G. Activation of floral meristem identity genes in Arabidopsis [J].Nature,1996,384:59-62.
    [73]Lee H, Xiong L, Gong Z, et al. The Arabidopsis HOS1 gene negatively regulates cold signal transduction and encodes a RING figer protein that display cold-regulated nucleo-cytoplasmic partitioning[j].Genes Dev,2001,15:912-924.
    [74]Cannon M, Platz J, O'Leary M, et al. Organ-specific modulation of gene expression in transgenic plants using antisense[J].Plant Mol Biol,1990.15:39-47.
    [75]Matzke M A, Matzke A J M, Pruss G J, et al. RNA-based silencing strategies in plants[J].Curr Opin Genet Dev,2001,11:221-227.
    [76]Vance V, Vaucheret H. RNA silencing in plants-defense and counterdefense[J].Science.2001, 292:2277-2280.
    [77]Waterhouse P M, Graham M W, Wang M B.Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA[J].PNAS,1998,95: 13959-13964.
    [78]Somerville C. Somerville S. Plant functional genomics[J].Science,1999,285:380-383.
    [79]孙君明,丁安林,张艳等.大豆异黄酮研究概况[J].大豆科学,1995,14(2):160-166.
    [80]Kudou S, Feary Y, Welti D. et al. Malonyl isoflavone glucosides in soybean seeds(Glycine max Merri) [J].J Agr Food Chem,1991.55(9):2227-2233.
    [81]Hosny M H. Rosazza P N. Novel isoflavone. cinnamic acid and triterpenoid glycosides in soybean molasses [J].J Natr Prod,1999,62:853-858.
    [82]王海涛.大豆异黄酮的抑菌活性及其机制的研究[D].大连:辽宁师范大学,2009.
    [83]梁慧珍,李卫东,方宣钧等..大豆异黄酮及其组分含量的配合力和杂种优势[J].中国农业科学.2005.38(10):2147-2152.
    [84]杨镇洲,糜漫天.大豆异黄酮的抗癌效应研究进展[J].国外医学(肿瘤分册),2001,28(2):107.
    [85]KurzerM S. Hormonal effects of soy in premenopausal women and man[J].J Nutr,2002,132 (3):570-573.
    [86]马君兰,李成,魏颖等.异黄酮的生物合成途径及其调控[J].东北农业大学学报,2007,38(5):692-696.
    [87]Dixon R A. Ferreira D. Genistein [J]. Phytochemistry,2002,60:205-211.
    [88]Tian L, Dixon R A. Engineering isoflavone metabolism with an artificial bifunctional enzyme [J].Planta,2006,224:496-507.
    [89]Jung W, Yu O, Lau S C, et al. Identification and expression of isoflavone synthase,the key enzyme for biosynthesis of isoflavones in legumes [J].Nat Biotechnol.2000,18:208-212.
    [90]Akashi T, Aoki T, Ayabe S. Cloning and functional expression of a cytochrome P450 cDNA encoding 2-hydroxyisoflavanone synthase involved in biosynthesis of the isoflavonoid skeleton in licorice[J].Plant Physiol,1999,121:821-828.
    [91]Steele C L, Gijzen M, Qutob D. et al. Molecular characterization of the enzyme catalyzing the arylmigration reaction of isoflavonoid biosynthesis in soybean[J].Arch Biochem Biophys, 1999,367:146-150.
    [92]Yu O, Jung W, Shi J. et al. Production of the isoflavones genistein and daidzein in non-legume dicot and monocot tissues[J].Plant Physiol,2000,124:781-794.
    [93]Frank R L, Vodkin L O. Sequence and structure of a phenylalanine ammonialyase gene from Glycine max[J]. DNA Seq,1991.1 (5):335-346.
    [94]张大勇,李文滨,李冬梅等.大豆叶片异黄酮含量与PAL基因相对表达量的关系[J].大豆科学.2009.28(4):670-673.
    [95]王婵婵,王安娜,吴蕾等.大豆PAL2基因的克隆与分析[J].大豆科学.2010.29(1):13-17.
    [96]Dhaubhadel S, Gijzen M. Moy P, et al. Transcriptome Analysis Reveals a Critical Role of CHS7 and CHS8 Genes for Isoflavonoid Synthesis in Soybean Seeds [J]. Plant Physiol,2007,143: 326-338.
    [97]易金鑫,徐照龙,王峻峰等GmCHS8和GmIFS2基因共同决定大豆中异黄酮的积累[J].作物学报,2011年2月24日网络优先出版.
    [98]周发俊,王逸群,陈由强.植物查尔酮异构酶分子生物学研究进展[J].河北科技师范学院学报,2008,22(1):73-75.
    [99]张党权,谭晓风,王晓红.查尔酮合酶与查尔酮异构酶基因特征及转基因应用[J].中南林业科技大学学报,2007,2:87-91.
    [100]刘洪禹,王丕武,付永平等.大豆查尔酮异构酶基因的克隆及乳酸菌表达载体的构建[J].安徽农业科学,2010,38(19):9995-9997.
    [101]Kim H K, Jang Y H, BaeksII, et al. Polymorphism and expression of isoflavone synthase genes from soybean cultivars [J]. Mol Cells.2004.19(1):67-73.
    [102]Dhaubhadel S. McGarvey B D, Williams R, et al. Isoflavoid biosynthesis and accumulation in developing soybean seeds [J]. Plant Mol Biol.2003.53:733-743.
    [103]Subramanian S, Hu X. Lu G H, et al. The promoters of two isoflavone synthase genes respond differentially to nodulation and defense signals in transgenic soybean roots [J]. Plant Mol Biol,2004,54:623-639.
    [104]段小瑜,马兵钢,牛建新.大豆异黄酮合酶基因的克隆及序列分析[J].生物技术,2007,17(2):3-6.
    [105]郝佳,马会勤,陈尚武.利用SMART方法快速克隆异黄酮代谢途径多基因的研究[J].中国生物工程杂志,2007,27(6):66-70.
    [106]Subramanian S, Graham M Y, Yu O, et al. RNA interference of soybean isoflavone synthase genes leads to silencing in tissues distal to the transformation site and to enhanced susceptibility to Phytophthora sojae[J]. Plant Physiol,2005,137(4):1345-1353.
    [107]Endt D V, Kijne J W, Memelink J. Transcription factors controlling plant secondary metabolism:What regulates the regulators? [J].Phytochemistry,2002,61:107-114.
    [108]Mol J, Grotewold E, Koes R. How genes paint flowers and seeds? [J].Trends Plant Sci,1998, 3:212-217.
    [109]Bruce W, Folkerts O, Garnaat C, et al. Expression profiling of the maize flavonoid pathway genes controlled by estradiol-inducible transcription factors CRC and P[J].Plant cell,2000,12: 65-79.
    [110]Lloyd A M, Walbot V, Davis R W. Arabidopsis and Nicotiana anthocyanin production actived by maize regulators R and C1[J].Science,1992,258:1773-1775.
    [111]Bovy A, Vos R, Kemper M, et al. High-flavonol tomatoes resulting from the heterologous expression of the maize transcription factor genes Lc and C1 [J].Plant Cell,2002,14:2509-2526.
    [112]De M J, Tanner G J, Joseph R G, et al. Transient expression of maize anthocyanin regulatory genes influences anthocyanin production in white clover and peas[J].Plant Physiol,1998,25: 335-343.
    [113]Grotewold E, Chamberlin M, Snook M, et al.Engineering Secondary metabolism in maize cells by ectopic expression of transcription factors[J].Plant Cell,1998,10:721-740.
    [114]Gantet P, Memelink J. Transcription factors:tools to engineer the production of pharmacolo-gically active plant metabolites[J].Trends Pharmacol Sci,2002,23:563-569.
    [115]Vom-Endt D, Kijne J W, Memelink J. Transcription factors controlling plant secondary metabolism:what regulates the regulators? [J].Phytochemistry,2002,61:107-114.
    [116]Borevitz J O, Xia Y, Blount J, et al. Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis[J].Plant Cell,2000,12:2383-2394.
    [117]Aharoni A, Wein M, Sun Z, et al. The strawberry FaMYB1 transcription factor suppresses anthocyanin and flavonol accumulation in transgenic tobacco[J]. Plant J,2001,28:319-332.
    [118]Yu O, Shi J, Hession A O, Maxwell C A, et al. Metabolic engineering to increase isoflavone biosynthesis in soybean seed[J].Phytochemistry,2003,63:753-763.
    [119]Kreuzaler F, Ragg H, Fautz E, et al. UV induction of chalcone synthase mRNA in cell suspension cultures of Petroselimum hortense [J].PNAS,1983,84:7428-7432.
    [120]谢灵玲,赵武玲,沈黎明.光照对大豆叶片苯丙氨酸裂解酶(PAL)基因表达及异黄酮合成的调节[J].植物学通报,2000,17(5):443-449.
    [121]Creelman R A, Tierney M L, Mullet J E. Jasmonic acidmethyl jasmonate accumulate in wounded soybean hypocotyls and modulate wound gene expression[J].PNAS,1992,89:4938-4941.
    [122]Lou Y, Baldwin I T. Nitrogen supply influences herbivoreinduced direct and indirect defenses and transcriptional responses in Nicotiana attenuate[J].Plant Physiol,2004,135:496-506.
    [123]孙君明.韩粉霞.植物次生代谢产物异黄酮的调控机理[J].南农业学报.2005. 18(5):663-667.
    [124]崔学平,斯大勇,崔扬健.大豆异黄酮的生理功能[J].饲料与畜牧,2009,2:17-19.
    [125]Jurgen F L, Thomas R R, Christian M, et al. Reliable in vitro measurement of nitric oxide released from endothelial cells using low concentrations of the (?)uorescent probe 4,5-diaminot-uorescein[J].FEBS,2001,1:131-134.
    [126]刘英华,黄国伟,常红等.大豆异黄酮对氧化损伤血管内皮细胞的抗氧化作用[J].中国临床康复,2006,10(11):170-172.
    [127]庄颖,赵红,张玉媛等.大豆异黄酮对大鼠血脂和抗脂质过氧化作用的探讨[J].蚌埠医学院学报,2004,29(2):113-115.
    [128]郑灵芝,李素霞.大豆异黄酮抗氧化性质的研究[J].食品与药品,2006,8(2);48-50.
    [129]蔡兴怀,许杰,高琪等.大豆异黄酮对小鼠抗氧化能力的影响[J].安徽农学通报,2007,13(12):44-45.
    [130]韩立明,蒋宗勇,周桂莲等.大豆异黄酮对畜禽抗氧化机能的影响及其作用机制研究进展[J].中国畜牧杂志,2008,44(7):60-64.
    [131]李宁,郝再彬.物理条件对大豆异黄酮抗氧化性能的影响[J].东北农业大学学报.2008,39(5):66-70.
    [132]谢明杰,陆敏.邹翠霞等.大豆异黄酮的抑菌作用[J].大豆科学,2004,23(2):101-105.
    [133]张凤光.大豆植物提取物的抗炎与镇痛作用的研究[J].食品科学,,2007.28(11):533-536.
    [134]吴定,江汉湖.发酵大豆制品中异黄酮形成及其功能[J].中国调味品,2001,6:3-6.
    [135]Hyunki H, Michael R, Landauer M, et al. Antibacterial activity of the soy isoflavone genistein[J].J Basic Microbiol.2006,46 (4):329-335.
    [136]Messina M. Soyfoods and soybean phytooestrogens (isoflavones) as possible alternatives to hormone replaement therapy (HRT) [J]. Eur J Cancer,2000,36:71-77.
    [137]Rang H J, Ansbacher R. Hammoud M M. Use of alternative and comp lementarymedicine in menopause International [J].Am J Obstet Gynecol,2002.79:195-207.
    [138]Nagata C, Takatsuka N, Kawakami N, et al. Soy product intake and hot flashes in Japanese women:results from a community based prospective study [J]. Am J Epidemiol,2001,15,153 (8):790-793.
    [139]殷丽君,李里特,李再贵.大豆异黄酮的研究近况与展望[J].食品科学,2002,23(4):152-154.
    [140]Horn-Ross P L, Barnes S. Lee M, et al. Assessing phytoeatrogen exposure in epidimiologic studies development of a database [J]. Cancer Causes Control,2000,11 (4):280-290.
    [141]Sarkar F H. Mechanisms of cancer chemoprevention by soy isoflavone genistein [J].Cancer Metastasis Rev.2002.21(3-4):265-280.
    [142]Hesso F, Kristiina W, Herman A, et al. Isoflavonoids inhibit catabolism of viamin D in prostate cancer ceIls[J]. J Chromat B,2002, (777):261-268.
    [143]Guo Y, Wang S, Hoot D R, et al. Suppression of VEGF-mediated autocrine and paracrine interactions between prostate cancer cells and vascular endothelial cells by soy isoflavones [J].Nutr Biochem,2007,18(6):408-417.
    [144]刘春龙,李忠秋,孙海霞等.大豆异黄酮的生理作用及其在医学方面的研究进展[J].大豆科学.2008,27(4):693-696.
    [145]Messina M J, Persky V. Setchell K D R, et al. Soyintake and cancer risk:a review of the in vitro and in vivo data [J].Nutr Cancer.1994.21:113-131.
    [146]马吉祥,苏军英,马金姝等.大豆异黄酮诱导食管癌细胞凋亡作用研究[J].中华流行病学杂志,2003.24(11):1040-1043.
    [147]刘颖,张牧,王小雪等.染料木黄酮对人胃癌细胞生长抑制作用研究[J].营养学报,2001,23(1):62.
    [148]Teruki 0, Yoshihiro S, Tohru H, et al.Genistein induces Gadd45 gene and G2/M cell cycle arrest in the DU145 human prostate cancer cell line[J].FEBS Letters,2004,577:55-59.
    [149]File S E, Jarrett N, Fluck E, et al. Eating soya improves human memory[J].J Psychopharmaco,2001,157(4):430-436.
    [150]White L R, Petrovitch H, Ross G W, et al. Brain aging and midlife tofu consumption [J].J Am Coll Nutr,2000,19(2):242-255.
    [151]Mcelwee K J, Niiyama S, Freyschmidt-Paul P, et al. Dietary soy oil content and soyderived phytoestrogen genistein increase resistance to alopecia areata onset in C3H/HeJ mice [J]. Exp Dermatol,2003,12 (1):30-36.
    [152]Rivas M, Garay R P, Escanero J F. Soymilk lowers blood pressure in men and women with mild to moderate essential hypertension [J]. J Nutr,2002,132(7):1900-1902.
    [153]张春霆.生物信息学的现状与展望[J].世界科技研究与发展,2000,22(6):17-20.
    [154]Sharp P M, Devine K M. Codon usage and gene expression level in Dictyostelium discoid-eum:highly expressed genes do prefer optimal codons[J].Nucleic Acids Res,1989,17 (13): 5029-5039.
    [155]Robinson M, Lilley R, Little S, et al. Codon usage can affect efficiency of translation of genes in Escherichia coli[J].Nuc\e\c Acids Res,1984,12 (17):6663-6671.
    [156]Roy P, Richard T. A sensitive method for the determination of protein-DNA binding specificities[J].Nucleic Acids Res,1990,18(21):6197-6204.
    [157]Adam C J, Lena G, David G, et al. Transcriptional analysis of the jamaicamide gene cluster from the marine cyanobacterium Lyngbya majuscula and identification of possible regulatory proteins[J].BMC Microbiol.2009,9:247.
    [158]Das P M. Ramac H K, Vanwert J, et al.Chromatin immunoprecipitation assay[J]. Biotechniques,2004,37 (6):961-969.
    [159]马守东,洪源,成军.酵母单杂交技术的原理及应用[J].世界华人消化杂志,2003,11(4):450-451.
    [160]吴玉,杨迎伍,邓伟等.番茄ERF2基因的克隆、亚细胞定位与遗传转化[J].核农学报,2010,24(3):490-494.
    [161]祁碧菽,李春光,陈叶苗等.水稻Ca2+/H+反向转运体OsCAX3的功能分析和亚细胞定位研究[J].生物化学与生物物理进展,2005,32(9):876-882.
    [162]张付云,陈士云,赵小明等NtSKP12GFP植物表达载体的构建及亚细胞定位[J].西北农业学报,2009,18(4):144-148.
    [163]季芳芳AIRGSI蛋白的定位及其在拟南芥种子萌发与幼苗早期生长过程中的作用研究[D].扬州:扬州大学,2006.
    [164]夏玉凤.用于蛋白亚细胞定位研究的烟草愈伤组织培养条件优化[J].河北师范大学学报,2006,30(3):343-345.
    [165]徐冉,汤雪燕,缪旻珉等.黄瓜酸性α-半乳糖苷酶1的亚细胞定位[J].江苏农业科学,2010,(6):208-210.
    [166]周雪莉,王园,刘菊华等.香蕉MuMADSl基因表达产物的亚细胞定位[J].生命科学研究,2009,13(5):418-421.
    [167]高世庆.大豆、小麦抗逆相关Gm/TaAREB转录因子基因、启动子克隆及功能鉴定[D].北京:中国农业科学院,2007.
    [168]刘肖飞,梁卫红.根癌农杆菌介导的GFP在洋葱表皮细胞定位研究[J].河南师范大学学报,2009,37(1):123-150.
    [169]刘海燕,冯冬茹,刘兵等.农杆菌介导的MpASR蛋白在洋葱表皮细胞的定位研究[J].热带亚热带植物学报,2009,17(3):218-222.
    [170]张俊莲,王蒂,张金文等.用绿色荧光蛋白和洋葱表皮细胞检测拟南芥rd29A基因启动子活性的方法[J].植物生理学通讯,2005,41(6):815-819.
    [171]徐碧玉.香蕉果实特异表达cDNA及果实特异表达启动子的分离鉴定[D].海口:华南热带农业大学.2005.
    [172]Jefferson R A, Kavanagh T A, Bevan M W. GUS fusions:β-Glucuronidase as a sensitive and versatile gene fusion marker in higher plants[J].EMBO J.1987.6:3901-3907.
    [173]蔡霞.定量PCR技术及其应用现状[J].现代诊断与治疗.2005,16(2):112-115.
    [174]Koes R E, Spelt C E, van den Elzen P J M, et al. Cloning and molecular characterization of the chalcone synthase multigene family of Petunia hybrida[J].Gene,1989,81:245-257.
    [175]Todd JJ, Vodkin L. Duplications that suppress and deletions that restore expression from a chalcone synthase multi gene family[J].Plant Cell.1996,8:687-699.
    [176]Tuteja J H, Vodkin L Q.Structural features of the endogenous CHS silencing and target loci in the soybean genome[J].Crop Sci,2008,48:S49-S68.
    [177]Dixon R A, Paiva N L.Stress-induced phenylpropanoid metabolism[J].Plant Cell,1995,7: 1085-1097.
    [178]van der Meer I M, Mol J N, Stuitje A R. Regulation of general phenylpropanoid and flavonoid gene expression. In:Pal DAV (ed) Control of gene expression[J].CRC Press, Boca Raton,1993:125-155.
    [179]Tuteja J H, Clough S J, Chan W C. et al. Tissue-specific gene silencing mediated by a naturally occurring chalcone synthase gene cluster in Glycine max[J].Plant Cell.2004,16:819-835.
    [180]Matsumura H, Watanabe S. Harada K. et al. Molecular linkage mapping and phylogeny of the chalcone synthase multigene family in soybean[J].Theor Appl Genet.2005.110:1203-1209.
    [181]党尉,卫志明.根癌农杆菌介导的高效大豆遗传转化体系的建立[J].分子细胞生物学报,2007,40(3):185-195.
    [182]Di R. Purcell V.Collins G B, et al. Production of transgenic soybean lines expressing the bean pod mottle virus coat protein precursor gene[J]. Plant Cell Rep.1996,15:746-750.
    [183]Hinchee M A W,Coanor-Ward D V.Newel C A. et al.Production of transgemc soybean plants using Agrobacteriummediated DNA transfer[J]. Biotechnol,1988.6:915-922.
    [184]Stewart C N Jr.Adang M J.A11 J N.et al. Genetic transformation, recovery and characterizationof fertile soybean[Glycine max(L.)Merr.] transgemc for a synthetic Bacillus thuringensis crylAc gene[J].Plant Physiol.1995.112:121-129.
    [185]de la Pena A, Lorz H, Schell J. Transgenic rye plant obtained by injecting DNA into young floral tillers[J].Nature.1987,325:274-276.
    [186]Janice M Z, Agarwal S. Loar S, et al. Evidence for stable transformation of wheat by floral dip in Agrobacterium tumefaciens [J]. Plant Cell Rep,2009.28:903-913.
    [187]Bartholmes C J, Pia N, Gunter T. Germline transformation of Shepherd's purse (Capsella bursa-pastoris) by the'floral dip'method as a tool for evolutionary and developmental biology[J]. Gene.2008.409:11-19.
    [188]王翠艳,丁东风,于小菊等Floral dip法在大豆遗传转化中的应用研究[J].南开大学学报.2010.43(1):34-38.
    [189]Harborne J B, Williams C A. Advances in flavonoid research since 1992[J]. Phytochemistry, 2000,55:481-504.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700