丹参酮生物合成途径相关酶基因的克隆和特征分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
丹参始载于《神农本草经》,为我国传统名贵中药材,具有祛瘀止痛、活血调经、养心除烦等功效。丹参主要成分包括脂溶性的二萜醌类化合物(丹参酮类成分)和水溶性的酚酸类化合物,二者均具有较强的药理活性,其中以丹参酮IIA为代表的二萜醌类化合物在抑菌、消炎、抗氧化及抗癌等方面有着广泛的应用,临床需求巨大。但是,由于丹参生长周期长(2年以上),在传统的栽培模式下,面临着品质严重退化、生产成本相对过高等诸多弊端;通过化学合成的方法,其过程十分的繁琐,成本极高且易造成环境污染;在离体条件下的细胞培养方法获得的细胞其活性成分积累量很低而且稳定性很差。因此,利用现代基因工程技术将丹参药用活性成分生物合成途径中的关键酶基因导入到丹参中,获得转基因的发根、细胞系或再生植株,并进行大规模的培养,是提高丹参药用活性成分的含量和解决丹参药源问题的最佳途径。而有关丹参次生代谢产物生物合成途径方面的研究报道较少,因此本实验以丹参为材料,以cDNA末端快速扩增(Rapid amplification of cDNA ends, RACE)为技术平台,以同源克隆为基本思路,首次克隆得到了三个与丹参酮类成分次生代谢相关的基因:(1-deoxy-d-xylulose 5-phosphate synthase I)1-脱氧木酮糖-5-磷酸合成酶I,(1-deoxy-d-xylulose 5-phosphate synthase II)1-脱氧木酮糖-5-磷酸合成酶II和(3-hydroxy-3-methylglutaryl-CoA synthase)3-羟基-3-甲基戊二酰辅酶A合成酶的全长cDNA序列,并从其序列特征分析、表达分析、诱导调控等方面开展了一系列的工作,并取得了以下成果:
     1、成功地从丹参中克隆出了SmDXSI基因,该基因全长2519 bp,包含一个完整的2145 bp的开放阅读框(Open reading frame, ORF),编码714个氨基酸残基。根据蛋白比对的结果,SmDXSI基因编码的氨基酸序列与其它物种中报道的已知DXSI蛋白序列具有高度的同源性。序列分析发现该蛋白含有一个硫胺素焦磷酸盐绑定区域(thiamin pyrophosphate binding domain),一个保守的嘧啶绑定区域(DRAG domain),和一个保守的组氨酸残基。组织特异性表达分析结果表明,SmDXSI基因在丹参中为组成型表达,且叶中的表达比茎和根高,根里表达很弱。丹参毛状根诱导处理结果表明,诱导子处理对SmDXSI基因的表达基本上没有影响,为非诱导应答型基因。
     2、成功地从丹参中克隆出了SmDXSII基因,该基因全长2522 bp,包含一个完整的2175 bp的开放阅读框,编码724个氨基酸残基。根据蛋白比对的结果,SmDXSII基因编码的氨基酸序列与其它物种中报道的已知DXSII蛋白序列具有高度的同源性。序列分析发现该蛋白含有一个硫胺素焦磷酸盐绑定区域(thiamin pyrophosphate binding domain),一个保守的嘧啶绑定区域(DRAG domain),和一个保守的组氨酸残基。组织特异表达分析结果表明,SmDXSII基因不是一个组成型表达的基因,SmDXSII基因在根里表达量最高,在茎和叶里几乎检测不到表达。丹参毛状根诱导处理结果表明,SmDXSII基因至少在转录水平上受到诱导调控,是一个诱导应答型的基因,MJ、Ag+均能非常有效地诱导SmDXSII基因表达水平的上调。其中MJ的诱导效应相对显著。
     3、成功地从丹参中克隆出了SmHMGS基因,该基因全长1655 bp,包含一个完整的1383 bp的ORF,编码460个氨基酸残基。根据蛋白比对的结果,SmHMGS基因编码的氨基酸序列与其它物种中报道的已知HMGS蛋白序列具有高度的同源性。组织特异性表达分析结果表明,该基因在丹参中为组成性表达,在叶片中的表达最为强烈,在茎部的表达次之,在根里的表达最弱。丹参毛状根诱导处理结果表明,SmHMGS基因至少在转录水平上受到诱导调控,也是一个诱导应答型的基因,MJ、YE均能诱导SmHMGS基因表达水平的上调。
     本文系统地从丹参中克隆到了三个与丹参酮生物合成相关的基因,为今后利用基因工程技术改良丹参、提高丹参酮类次生代谢产物含量打下了坚实的基础;分析了丹参酮生物合成途径中的三个相关酶基因在丹参不同部位的组织特异表达特征,为深入了解丹参酮类成分在不同部位的含量差异的遗传基础提供了初步的分子证据;比较分析了MJ、YE和Ag+三种诱导子对丹参酮生物合成途径的调控效应,从基因表达水平上探讨了这些诱导子对丹参酮生物合成途径可能的分子调控机制,具有十分重要的理论和现实意义。
Danshen, first recorded in the Shen long’s herbal classic, was a famous traditional Chinese medicinal herb, which has effects such as dissolving stasis and odynolysis, blood-activating and regulating of the menstrual function, nourishing the heart and relieving restlessness. The active ingredients of S.miltiorrhiza were fat-soluble diterpene quinine compounds and water-soluble phenolic acid ones, both of which had strong pharmacological activity. The diterpene quinine compounds, such as Tanshinone IIA, were widely applied in bacteriostasis, diminishing inflammation, oxidation resistance and anticancer et al, so the clinical requirement is tremendous.
     However, because of the long growth cycle(more than two years), there were many defects in the S.miltiorrhiza’s traditional culture, such as the degeneration of quality, and the relative large cost of production;there were also many defects in the chemosynthesis, such as the complicated course, the huge cost, the environment pollution; the active ingredients production were very low and unstable in cell culture. The modern genetic engineering technologies were used to put the key-enzyme of the metabolic pathway into the S.miltiorrhiza’s genome and then the transgenetic hairy root, transgenetic cell line and the regeneration plant were gained and to be cultivated on a large scale. These methods can provide us a new way to produce tanshinones and this way can be considered as an optimal path to resolve the problem such as the low production of tanshinones and the the shortage of the S.miltiorrhiza’s resources.
     Until now, there are few researches and reports of the molecular biology about the biosynthesis of S.miltiorrhiza’s secondary metabolites. So the S.miltiorrhiza was used as experimental material, RACE was used as technology platform and the homologous clone used as experimental considerations in this experiment. Three genes, involved the tanshinones’biosynthesis, were first cloned and characterized, including: 1-deoxy-d-xylulose 5-phosphate synthaseI, 1-deoxy-d-xylulose 5-phosphate synthaseII, 3-hydroxy-3-methylglutaryl-coenzyme A. The Tissue expression profile analysis and the expression profile analysis treated with the elicitors were also tested in this experiment.
     The results obtained were showed as below.
     1. A new full-length cDNA (2519bp) encoding 1-deoxy-d-xylulose 5-phosphate synthase I (designated as SmDXS I) was successfully isolated from S.miltiorrhiza by rapid amplification of cDNA ends (RACE). The full-length cDNA containd a 2145bp ORF (Open Reading Frame), encoding a deduced protein of 714 amino acid residues. Amino acid sequence comparison analysis showed that SmDXS I had high similarity with DXSI from other reported plants. Squence analysis showed that this protein contained a TPP banding domain(thiamin pyrophosphate binding domain), a conserved (DRAG domain)and a conserved His. Tissue expression profile analysis showed that SmDXS1 was detected in all tested tissues but at different levels with the highest expression in leaves, followed by in stems and roots, so it was considered to be a constitutively expressing gene. The Profile of SmDXSI under induction of elicitors showed that the elicitors treatments had few effect on the expression of SmDXSI which was not an elicitors-responsive gene.
     2. A new full-length cDNA (2522bp) encoding 1-deoxy-d-xylulose 5-phosphate synthase I (designated as SmDXSII) was successfully isolated from S.miltiorrhiza by rapid amplification of cDNA ends (RACE). The full-length cDNA containd a 2175bp ORF (Open Reading Frame), encoding a deduced protein of 724 amino acid residues. Amino acid sequence comparison analysis showed that SmDXSII had high similarity with DXSII from other reported plants. Squence analysis showed that this protein contained a TPP banding domain(thiamin pyrophosphate binding domain), a conserved (DRAG domain)and a conserved His. Tissue expression profile analysis showed that SmDXSII expression was weakly detected in roots and barely in stems and leaves, so it was considered to a non-constitutively expressing gene. The Profile of SmDXSII under induction of elicitors showed that SmDXSII was regulated in the transcription level at least; it was an elicitors-responsive gene, methyl jasmonate (MJ) and silver ion (Ag+) both can effectively up-regulated the expression of SmDXSII, but MJ’s effects was better than Ag+.
     3. A new full-length cDNA (1655bp) encoding 3-hydroxy-3-methylglutaryl-CoA synthase (designated as SmHMGS) was successfully isolated from S.miltiorrhiza by rapid amplification of cDNA ends (RACE). The full-length cDNA containd a 1383bp ORF (Open Reading Frame), encoding a deduced protein of 460 amino acid residues. Amino acid sequence comparison analysis showed that SmHMGS had high similarity with HMGS from other reported plants. Tissue expression profile analysis showed that SmHMGS expression was detected in all tested tissues but at different levels with the highest expression in leaves, followed by in stems and roots, so it was considered to be a constitutively expressing gene. The profile of SmHMGS under induction of elicitors showed that SmHMGS was regulated in the transcription level at least; it was an elicitors-responsive gene, methyl jasmonate (MJ) and Yeast Extract (YE) both can effectively regulated the expression of SmHMGS.
     In this experiment, three genes involved in the tanshinones biosynthesis were isolated from S.miltiorrhiza, which can be very helpful for inhancing the tanshinones’production and S.miltiorrhiza’s genetic improvement; Tissue expression pattern analyses of these cloned genes provides primary molecular evidence for further understanding of the genetic basis of tanshinones content diversity in different parts; expression profile analyses treated with the elicitors were carried out to provide useful information to further understand induction expression and molecular regulation mechanism of genes encoding related enzymes involved in tanshinones’biosynthesis.
引文
[1]赵寿经.生物技术在药用植物中的应用前景[J].特产研究, 1999,(02).
    [2]肖春桥,张华香,高洪,等.促进植物细胞培养生产次生代谢物的几种途径[J].武汉化工学院学报,2005,27(1):28-31.
    [3] S. Ramachandra Rao and G.A. Ravishankar, Plant cell cultures: chemical factories of secondary metabolites [J]. Biotechnol. Adv. 2002, 20:101–153.
    [4]欧阳静,韩轶,王治海.中国药用植物资源可持续发展的非持续因素分析[J].中国农村卫生事业管理,2008,(02).
    [5]王丹,王振月,王宗权,等.药用植物次生代谢产物生产途径的研究概述[J].中医药信息;2008, (01).
    [6]梁文,裕曹雯,王俊,等.生物技术在我国药用植物研究中的应用[J].宁夏农学学院,2003,24(4):92-100.
    [7]国家药典委员会编.中华人民共和国药典(2005年版一部)[M].北京:化学工业出版社,2005.
    [8]徐任生.丹参——生物学和应用.北京:科学出版社,1990.
    [9]中尾万三,福岛忠腾.汉药丹参的成分研究(第一报)[J].药学杂志,1934,54(9):844.
    [10]泷浦洁.丹参的成分研究(第二报)Kryptotanshinone[J].药学杂志,1941,61:482.
    [11]泷浦洁.丹参的成分研究(第三报)Tanshinone构造[J].药学杂志,1943,63(1):40.
    [12] Kakisawa H. Structures of isotanshinones [J].Tetranedron Letters, 1969, 3(5):301-304.
    [13] Kakisawa H. Isolation and structures of new tanshinone [J].Tetranedron Letters, 1968, 25(28):3231-3234.
    [14] Hayashi T. The structure of salvoil, a new phenolic diterpene [J]. Chemical Communications, 1971, 5(23):541.
    [15]郭济贤,施仲安.丹参的研究与临床应用[M].北京:中国医药科技出版社,1992,39.
    [16]房其年,张佩玲,徐宗沛.丹参抗菌有效成分的研究[J].化学学报,1976,34(3):197-208.
    [17]钱名坤,杨保津,顾文华,等.丹参有效成分的研究[J].化学学报,1978,36(3):199.
    [18]冯宝树,李淑蓉.丹参化学成分的研究[J].药学通报,1980,16(8):489.
    [19] Nakanishi T, Miyasaka H, Nasu M, et al. Production of crytotanshinone and ferruginol in cultured cells of Salvia miltiorrhiza [J]. Phytochemistry, 1983, 22:721–722.
    [20] Onitsuka M, Fujiu M, Shinma N, et al. New platelet aggregation inhibitors fromTan-Shen: radix of Salvia miltiorrhiza Bunge [J].Chemical and Pharmaceutical Bulletin, 1983, 31(5):1670-1675.
    [21] Luo Hou-Wei. Pigments from Salvia miltiorrhiza [J].Phytochemistry, 1985, 24(4): 815.
    [22] Luo Hou-Wei. Tanshinlactone,a novel secoabietanoid from Salvia miltiorrhiza[J].Chemical and Pharmaceutical Bulletin, 1986, 34(8):3166.
    [23] Li LianNiang. Salvianolic acid A, a new deposide from roots of Salvia miltiorrhiza [J].Planta Medica.1984, (50):227-230.
    [24] Zhang HJ, LiLianniang. Salvianolic acid I: a new from Salvia cavaleriei [J].Planta, Medica, 1994, (60):70-75.
    [25] Liang Y,Yang Y,Yuan SL,et al. Acute promyelocytic leukemia cell differentiation induced by tanshinoneⅡA and its molecular mechanism[J].Chinese Journal of Hematology, 2000, 21(1):23-25.
    [26]黄韧敏,袁淑兰,宋琦,等.丹参酮诱导HL-60细胞分化及凋亡的流式细胞术分析[J].中国肿瘤临床,1997,24(7):500-503.
    [27]房其年,张佩玲,徐宗沛.丹参抗菌有效成分的研究[J].化学学报,1976,34(3):197-208.
    [28]高玉桂,宋玉梅,杨友义,等.丹参酮的药理[J].药学学报,1979,14:75.
    [29]陶军,王舟琪,刘桥义,等.丹参酮防治心肌再灌注损伤的实验研究[J].中华麻醉学杂志,1996,16:202-204.
    [30]藤艳芬,王峥涛,余国奠.丹参的药用资源研究进展[J].中国野生植物资源,2001,20(2):1-3.
    [31]于海波,徐长庆,单宏丽,等.丹参酮Ⅱ-A对大鼠心室肌细胞膜钾电流的影响[J].哈尔滨医科大学学报,2002,36(2):112-114.
    [32]徐长庆,王孝铭,范劲松,等.丹参酮Ⅱ-A对豚鼠单个心室细胞跨膜电位及L-型钙电流的影响[J].中国病理生理杂志,1997,13(1):43-47.
    [33] E. Cao, X. Liu, J. Wang, et al. Effect of natural antioxidant tanshinone II-A on DNA damage by lipid peroxidation [J]. Free Radical Biology and Medicine, 1996, 20:801–806.
    [34]顾克显.丹参酮的药理及其在皮肤科临床的应用[J].皮肤病与性病,1994,16(3):11-13.
    [35]陈文武,彭兰华.药用植物的组织培养的应用[J].陕西农业科学,2006(05).
    [36] P. M. Kierana,P. F. MacLoughlinb,D. M. Maloneb. Plant cell suspension cultures: some engineering considerations [J]. Journal of Biotechnology, 1997, (59): 39-52.
    [37]王建英,刘涤.丹参的器官发生[J].植物生理学通讯,1987,(6):46.
    [38]蔡朝辉,高山林,徐德然.丹参组织培养快速繁殖技术的研究[J].中国药科大学学报1991,22(2):653.
    [39]赵洁,陈志胜,万钧.丹参叶片无性系快速繁殖及植株再生研究[J].华中师范大学学报(自然科学版),1999,(33):109-111.
    [40]张爱民,常莉,薛建平.药用植物多倍体诱导研究进展[J].中国中药杂志, 2005, 30(9):645-649.
    [41]高山林,朱丹妮,蔡朝晖,等.丹参多倍体性状和药材质量的关系[J].植物资源与环境,1996,5 (2):1.3.
    [42]朱丹妮,高山林,蔡朝辉,等.丹参多倍体株系中三种丹参酮含量的比较[J].药物生物技术,1996, 3(1):22.
    [43]段英姿,客绍英,曹静,等.秋水仙碱诱导南丹参多倍体的研究[J].中国中药杂志, 2006, 31(6): 445-448.开国银,曼地亚红豆杉紫杉醇生物合成相关基因的克隆与表达分析[D].上海交通大学博士学位论文, 2005.
    [44]晏琼,提高丹参毛状根生产丹参酮的诱导和过程策略研究[D] .天津大学博士学位论文,2005.
    [45]陶璐璐,袁静明.丹参愈伤组织细胞固定化及其转化产物的特征[J].生物工程学报,1990,6(3): 218.
    [46]胡月红,张瑞,胡之壁,等.丹参愈伤组织的培养及其有效成分[J].植物生理学讯, 1992,28(6):42 42.
    [47]王康才,罗庆云,陈红霞.丹参愈伤组织中次生代谢产物形成的研究[J].中国中药杂志, 1998,23 (10):592~594.
    [48]黄炼栋,周吉燕,刘,等.丹参组织培养研究及其水溶性有效成分──迷迭香酸的含量测定[J].上海中医药大学学报,1999,(04) .
    [49]黄炼栋,刘涤,胡之壁.植物激素对丹参悬浮培养细胞生长和酚酸类化合物含量的影响[J].中药材,2000,23(1):56-59.
    [50] Hu ZB, Alfermann AW. Diterpenoid production in hairy root cultures of Salvia miltiorrhiza [J]. Phytochemistry1993, 2:699–703.
    [51]张荫麟,宋经元.丹参毛状根培养的建立和丹参酮的产生[J].中国中药杂志,1995,(20):5.
    [52]黄炼栋,胡之壁,刘涤.丹参发状根再生植株的研究[J].上海中医药杂志,1996,(10):40.
    [53] Chen H, Chen F, Zhang Y.L, et al. Production of lithospermic acid B and rosmarinic acid in hairy root cultures of Salvia miltiorrhiza [J]. J Ind Microbiol Biot, 1999, 22:133~138.
    [54] Chen H, Chen F. The effect of yeast elicitor on the growth and secondary metabolism of hairyroot cultures of Salvia miltiorrhiza [J]. Enzyme Microb Tech, 2001, 28:100~105.
    [55] Ge X, Wu J. Induction and potentiation of diterpenoid tanshinone accumulation in SaIvia miltiorrhiza hairy roots by beta-aminobutyric acid [J]. Appl MicrobioI Biotechnol, 2005, 68:183-188.
    [56] Ge X,Wu J. Tanshinone production and isoprenoid pathways in Salvia miltiorrhiza hairy roots induced by Ag+ and yeast elicitor [J]. Plant Sci, 2004, 168:487–491.
    [57] Qiong Yan, Ming Shi, Janet Ng, et al. Elicitor-induced rosmarinic acid accumulation and secondary metabolism enzyme activities in Salvia miltiorrhiza hairy roots[J]. Plant Science, 2006, (170):853-858.
    [58]晏琼,胡宗定,吴建勇.生物和非生物诱导子对丹参毛状根培养生产丹参酮的影响[J].中草药, 2006,(2) .
    [59]王学勇,崔光红,黄璐琦,等.茉莉酸甲酯对丹参毛状根中丹参酮类成分积累和释放的影响[J].中国中药杂志,2007,(32):4.
    [60] Dubey V S, Bhalla R, Luthra R. An overview of the non-mevalonate pathway for terpenoid biosynthesis in plants [J] J.Biosci, 2003, 28:637–646.
    [61] Gual JC, González-Bosch C, Dopazo J, Phylogenetic analysis of the thiolase family. Implications for the evolutionary origin of peroxisomes [J]. Journal of Molecular Evolution, 1992, 35:147–155.
    [62] Luskey, K. L., and B. Stevens. 1985. Human 3-hydroxy-3-methylglutaryl coenzyme A reductase. Conserved domains responsible for catalytic activity and sterol-regulated degradation [J]. J. Biol. Chem. 260: 10271–10277.
    [63] M E Basson, M Thorsness, J Finer-Moore, et al. Structural and functional conservation between yeast and human 3-hydroxy-3-methylglutaryl coenzyme A reductases, the rate-limiting enzyme of sterol biosynthesis [J].Mol Cell Biol. 1988, 8(9): 3797–3808.
    [64] Lluch MA, Masferrer A, Arro M, et al. Molecular cloning and expression analysis of the mevalonate kinase gene from Arabidopsis thaliana[J]. Plant Mol Biol, 2000; 42:365–376.
    [65] Dhe-Paganon S, Magrath J, Abeles R H. Mechanism of Mevalonate Pyrophosphate Decarboxylase: Evidence for a Carbocationic Transition State [J]. Biochemistry, 1994, 33 (45): 13355–13362.
    [66] Wouters J, Oudjama Y, Ghosh S, et al. Droogmans L, Oldfield E. Structure and mechanism of action of isopentenylpyrophosphate-dimethylallylpyrophosphate isomerase[J]. J. Am. Chem. Soc, 2003, 125 (11):3198–3199.
    [67] G.A. Sprenger, U. Sch?rken, T. Wiegert, et al. Identification of a thiamin-dependent synthase in Escherichia coli required for the formation of the 1-deoxy- -xylulose 5-phosphate precursor to isoprenoids, thiamin, and pyridoxol [J]. Proc Natl Acad Sci USA 1997, 94:12857–12862.
    [68] Estévez J M, Cantero A, Reindl A, et al. 1-Deoxy-D-xylulose-5-phosphate Synthase, a Limiting Enzyme for Plastidic Isoprenoid Biosynthesis in Plants[J]. J. Biol.Chem. 2001, 276:22901–22909.
    [69] Takahashi S, Kuzuyama T, Watanabe H, et al. 1-deoxy-d-xylulose 5-phosphate reductoisomerase catalyzing the formation of 2-C-methyl-d-erythritol 4-phosphate in an alternative nonmevalonate pathway for terpenoid biosynthesis[J]. The Proceedings of the National Academy of Sciences of the United States of Amercican, 1998, 95:9879.
    [70] Rohdich F, Wungsintaweekul J, Lüttgen H, et al. Biosynthesis of terpenoids: 4-Diphosphocytidyl-2-C-methyl-d-erythritol kinase from tomato [J]. The Proceedings of the National Academy of Sciences of the United States of Amercican, 2000, 97:8251.
    [71] Steinbacher S, Kaiser J, Eisenreich W, et al. Structural Basis of Fosmidomycin Action Revealed by the Complex with 2-C-Methyl-D-erythritol 4-phosphate Synthase (IspC). Implications for the catalytic mechanism and anti-malaria drug development [J]. The Journal of Biological Chemistry, 2003, 278:18401.
    [72] Herz S, Wungsintaweekul J, Schuhr C.A, et al. Biosynthesis of terpenoids: YgbB protein converts 4-diphosphocytidyl-2C-methyl-d-erythritol 2-phosphate to 2C-methyl-d-erythritol 2, 4-cyclodiphosphate [J]. The Proceedings of the National Academy of Sciences of the United States of Amercican, 2000, 97:2486.
    [73] Baker J, Franklin D.B, Parker J. Sequence and characterization of the gcpE gene of Escherichia coli [J]. FEMS Microbiology Letters, 1992, 73:175.
    [74] Cunning F.X, Lafond T.P, Gantt E. Evidence of a role for LytB in the nonmevalonate pathway of isoprenoid biosynthesis[J].Journal of Bacteriology,2000,182:5481.
    [75] Wu SJ, Shi M, Wu JY. Cloning and characterization of the 1-deoxy-D-xylulose 5-phosphate reductoisomerase gene for diterpenoid tanshinone biosynthesis in Salvia miltiorrhiza (Chinese sage) hairy roots [J]. Biotechnol Appl Biochem, 2009, 52:89-95.
    [76]王学勇,崔光红,黄璐琦,丹参4-(5’-二磷酸胞苷)-2-C-甲基-D-赤藓醇激酶的cDNA全长克隆及其诱导表达分析[J].药学学报, 2008,43卷12期.
    [77]谢伟伟,王凭青,杨青川.植物差异表达基因克隆技术及研究进展[J].重庆大学学报:自然科学版,2005, 28(12): 96-100.
    [78]徐德全,熊远著.差异表达基因克隆技术的研究进展[J].中国畜牧兽医, 2004, 31(3):31-34.
    [79]沈法富,尹承佾.植物基因克隆的方法和策略[J].大自然探索, 1997,16(1):42-47.
    [80]开国银,曼地亚红豆杉紫杉醇生物合成相关基因的克隆与表达分析[D].上海交通大学博士学位论文, 2005.
    [81] Walter M.H, Hans J, Strack D. Two distantly related genes encoding 1-deoxy-d-xylulose 5-phosphate synthases: differential regulation in shoots and apocarotenoid-accumulating mycorrhizal roots [J].JOURNAL Plant J, 2002, 31(3):243-254.
    [82] Seetang-Nun Y, Sharkey TD, Suvachittanont W. Isolation and characterizeation of two distinct classes of DXS genes in Hevea brasiliensis[J]. DNA Seq, 2008 Jun; 19(3):291-300.
    [83] Gong YF, Liao ZH, Guo BH, Molecular cloning and expression profile analysis of Ginkgo biloba DXS gene encoding 1-deoxy-D-xylulose 5-phosphate synthase, the first committed enzyme of the 2-C-methyl-D-erythritol 4-phosphate pathway [J]. Planta-Med, 2006, 72(4):329-335.
    [84] Kim SM,Kuzuyama T,Chang YJ,et al. Identification of class 2 1-deoxy-D-xylulose 5-phosphate synthase and 1-deoxy-D-xylulose 5-phosphate reductoisomerase genes from Ginkgo biloba and their transcription in embryo culture with respect to ginkgolide biosynthesis[J]. Planta-Med, 2006, 72(3):234-240.
    [85] Thompson JD, Higgins DG, Gibson TJ, et al. Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice[J]. Nucl Acids Res, 1994, 22: 4673-4680.
    [86] Thompson JD, Gibson TJ, Plewniak F, et al. The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools [J]. Nucl Acids Res, 1997, 25: 4876-4882.
    [87] Querol J, Rodriguez-Concepción M, Boronat A. Essential role of residue H49 for activity of Escherichia coli 1-deoxy-D-xylulose 5-phosphate synthase, the enzyme catalyzing the first step of the 2-C-methyl-D-erythritol 4-phosphate pathway for isoprenoid synthesis[J]. Biochem. Biophys. Res. Commun, 2001, 289: 155–160.
    [88] Schenk G, Layfield R, Candy JM, et al. Molecular evolutionary analysis of the thiamine-diphosphatedependent enzyme, transketolase [J]. J Mol Evol 1997, 44: 552–572.
    [89] Kumar S, Tamura K, Jakobsen IB, et al. MEGA2: molecular evolutionary genetics analysis software [J]. Bioinformatics, 2001, 12: 1244-1245.
    [90] H Hyungjin Eoh, Patrick J. Brennan, Dean C. Crick. The Mycobacterium tuberculosis MEP (2C-methyl-D-erythritol 4-phosphate) pathway as a new drug target [J]. Tuberculosis, 2009, (89):1-11.
    [91]杭亮,王俊儒,杨东风,等.紫花丹参和白花丹参不同部位有效成分的分布特征[J].西北农林科技大学学报, 2008,36(12):217-222.
    [92] W. Eisenreich, F. Rohdich, A. Bacher. Deoxyxylulose phosphate pathway to terpenoids [J]. Trends Plant Sci, 2001, 6:78–84.
    [93] M.H. Walter, J. Hans and D. Strack, Two distantly related genes encoding 1-deoxy-d-xylulose 5-phosphate synthases: differential regulation in shoots and apocarotenoid-accumulating mycorrhizal roots [J]. Plant J, 2002, (31):243–254.
    [94] Estevez J.M, Cantero A, Romero C, et al. Analysis of the expression of CLA1, a gene that encodes the 1-deoxy-Dxylulose 5-phosphate synthase of the 2-C-methyl-D -erythritol-4-phosphate pathway in Arabidopsis [J]. Plant Physiol, 2001, (24):95-103.
    [95] Lois L.M, Rodriguez-Concepcion M, Gallego F, et al. Carotenoid biosynthesis during tomato fruit development: regulatory role of 1-deoxy-D-xylulose 5-phosphate synthase [J]. Plant J, 2000, (22): 503-513.
    [96] Bouvier F, Harlingue A, Suire C, et al. Dedicated roles of plastid transketolases during the early onset of isoprenoid biogenesis in pepper fruits [J]. PlantPhysiol, 1998, 117:1423-1431.
    [97] Sirinupong N,Suwanmanee P,Doolittle RF, et al. Molecular cloning of a new cDNA and expression of 3-hydroxy-3-methylglutaryl-CoA synthase gene from Hevea brasiliensis[J].Planta,2005, 221(4):502-12.
    [98] Guoyin Kai, Zhiqi Miao, Lei Zhang, et al. Molecular cloning and expression analyses of a new gene encoding 3-hydroxy-3-methylglutaryl-CoA synthase from Taxus×media[J].Biol.Plant, 2006,50: 359-366.
    [99] Alex D, Bach TJ, Chye ML. Expression of Brassica juncea 3-hydroxy-3-methylglutaryl CoA synthase is developmentally regulated and stress-responsive [J]. Plant J.2000, 22(5):415-26.
    [100]何水林.参与植物次生代谢调控的转录因子及其在植物次生代谢遗传改良中的应用[J].热带亚热带植物学报, 2004, 12(4): 374-380.
    [101] Broun P. Transcription factors as tools for metabolic engineering in plants [J].Curr Opin in Plant Biol, 2004, 7: 202-209.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700