钛铝基合金扁形冷坩埚定向凝固数值计算与组织研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文运用有限元数值计算与实验相结合的方法,研究了钛铝合金在宽厚比2.5:1电磁冷坩埚条件下的定向凝固。首先建立了空载坩埚三维简化与局部逼真模型,进行电磁特性分析。在此基础上,建立坩埚内钛铝熔体模型,对熔池内电磁场和流动场做了细致的研究。进而,在不同工艺条件下成功制备了钛铝合金扁锭试样,成分为Ti46Al0.5W0.5Si。结合有限元计算结果,借助高清数码相机、金相显微镜和扫描电镜等分析工具,对定向凝固组织进行了宏观和微观的分析研究。
     数值计算结果表明:空载坩埚内BBz从底至上变化规律为先增大再减小,并在线圈中部靠上位置出现峰值,靠近开缝处的磁场明显较高且径向磁场很大。电流频率从100kHz变化到10kHz时,坩埚内磁场增加至原来2~3倍,但开缝处变化不明显。钛铝合金熔池内的流动呈交错式的回漩循环状,处于拐角附近的熔体向前上方流动,经过复杂的循环路径后又集中回流,凝固界面存在水平局部强流区,电流140A、50kHz时达到0.15mm/s以上。驼峰顶端出现向上高速流动,这可能会使驼峰失稳。随着电流增大,熔池流动形态基本不变但其流速增大。随着频率的降低,熔池内回漩强流区向熔池内部扩展且范围不断变大。
     实验结果显示,试样凝固界面多呈“W”形,两侧的柱状晶组织较为平直,而中部组织呈“V”字形生长。综合计算结果分析表明:熔池内部热场分布不均匀,两边过热度较高而中部不足;凝固界面存在局部热流冲刷,大大降低了柱状晶生长前沿的形核率,使试样两边柱状晶可以持续生长;游离晶随热流漂移,集中分布在熔池中部,成为试样中部组织“V”字生长的原因之一。此外,试样侧面的表面质量明显优于正宽面,这也会对内部组织造成影响。对柱状晶的析出物分析发现,其富钨相和富硅相分别在晶内和晶界以不同的形式析出,富钨相沿晶界网状析出,而富硅相呈团簇状析出。
     通过本课题的研究可知,在此坩埚结构确定的情况下,结合数值计算获得的电磁场与流场分布规律,通过实验分析钛铝合金定向凝固过程中的各种因素影响规律,揭示影响机理,合理调整相关工艺参数,可以获得电磁冷坩埚条件下优异的钛铝合金定向凝固组织。
In this paper, based on the combination of finite element numerical calculation and experimental method, studied the directional solidification of the TiAl alloy under the condition of the width and thickness ratio 2.5:1 near-rectangular electromagnetic cold crucible. The electromagnetic characteristics of the empty crucible model was firstly analyzed. On this basis, TiAl melt model was established, the electromagnetic field and flow field distribution of the pool were studied in detail. Furthermore, we prepare TiAl alloy flat ingot successfully under the conditions of different processes with the components of Ti46Al0.5W0.5Si. Combined the results of finite element calculation, macro- and micro-organization of directional solidification have been analyzed with high-definition digital cameras, optical microscopy, scanning electron microscopy and other analytical machines.
     Numerical model results show that: from the bottom to the top of empty crucible, the internal axial magnetic field (BBz) increases to a maximum value at the position higher than the middle height of the coil, and then decreases with the increasing of the height, BzB which near slits is significantly higher and radial B is much more. When Current frequency changes from 100kHz to 10kHz, the inside magnetic field increases 2 to 3 times, but department does not change significantly in the slotted. The flow of TiAl alloy in the molten pool appears the swirling circular shape, the melt near the corner of the crucible mobilizes upwardly, then focus on the return flow through complex cycle path. There exists horizontal local strong current area. With the current increased, the mobility patterns will basically constant but its flow rate increases. Local velocity reached 0.15mm/s and above under 140A Current with 50kHz. Strong swirling flowing in pool extended to internal part and the scope enlarged gradually with the reduction of frequency.
     After the specimen cut along the axial line of width surface, grinding, polishing and corrosion, it is found that solidification interface mostly present "W" shape, and the grains are is much straight on both sides, the central organization growth with "V" shape. With the combination of computation, the results show: the heat distribution is varying in melt pool, overheating is higher on both sides and lower in midst; local heat flow scouring exist on solidification interface which greatly reduces the nucleation rate in front of columnar crystal, so that columnar crystal is sustainable of growth on both sides of the sample; free crystal drifts with the flux and concentrated in the central pool, becoming one of the reasons of the "V" growth in central organization. In addition, the quality of sample surface in side is better than the front wide side, which will has impact on the internal structures.
     It has been found from the precipitation of columnar crystals that the tungsten-rich phases and silicon-rich phases precipitate in grains and grain boundaries in different forms, W-rich phases precipitate reticular along the boundaries while the silicon-rich phases are cluster-like precipitates.
     It can be seen from this subject that once the structure of this crucible was defined, through combining the distribution rules of the electromagnetic and flow field which obtained by numerical calculation, analyzing various influent factors through the experimental process of TiAl alloy directional solidification, revealing the influencing mechanism, adjusting process parameters reasonably, ideal TiAl-based alloy directionally solidified structures can be obtained under the conditions of electromagnetic cold crucible.
引文
1 Schafrik R E. A perspective on intermetallic commercialization for aero-turbine applications. Structural Intermetallics. Wyoming:TMS,2001
    2李成功,傅恒志,于翘.航空航天材料.北京:国防工业出版社,2002,16
    3 Loria E A. Gamma titanium aluminides as prospective structural materials[J ]. Intermetallics, 2000 , 8: 1339-1345
    4黄伯云.钛铝基金属件化合物.长沙:中南工业大学出版社,1999:288~314
    5 Choudhury A, Blum M. Economical production of titanium-aluminide automotive valves using cold wall induction melting and centrifugal casting in a permanent mold. Vacuum, 1996, 47:829~831
    6 Chen RR, Ding HS, Bi WS, et al. Electromagnetic cold crucible technology and its application. Rare Metal Materials and Engineering. 2005, 34(4):511~514
    7 Makino H, Kuwabara M, Asai S. Process analysis of non-contact continuous casting of materials using cold crucible. ISIJ International. 1996, 36(4):380~387
    8 Durand F. The electromagnetic cold crucible as a tool for melt preparation and continuous casting. International Journal Of Cast Metals Research. 2005, 18(2):93~107
    9王艳丽.钛基合金近距形冷坩埚连续熔铸与定向凝固工艺基础研究.哈尔滨工业大学博士学位论文. 2007
    10 (俄)库兹明诺夫,洛曼诺娃,奥西科.冷坩埚法制取难熔材料.北京:冶金工业出版社, 2006
    11 Umbrashko A, Baake E, Nacke B, et al. Experimental investigations and numerical Modeling of the melting process in the cold crucible. Compel-The International Journal For Computation And Mathematics In Electrical And Electronic Engineering. 2005, 24(1):314~323
    12 Westphal E, Muhlbauer A, Muiznieks A. Calculation of electromagnetic fields in cylindrical induction systems with slitted metallic walls. Electrical Engineering. 1996, 79(4):251~263
    13 Gombert D, Richardson JR. Cold-crucible induction melter design and development. Nuclear Technology. 2003, 141(3):301~308
    14 Sugilal G. Experimental study of natural convection in a glass pool inside a coldcrucible induction melter. International Journal Of Thermal Sciences. 2008, 47(7):918~925
    15 Shi G, Atkinson HV, Sellars CM, et al. Application of the Generalized Pareto Distribution to the estimation of the size of the maximum inclusion in clean steels. Acta Materialia. 1999, 47(5): 1455~1468
    16 Toh T, Yamamura H, Kondoh H, et al. Inclusions behavior analysis during levitation melting of steel in cold crucible for application to cleanliness assessment. ISIJ International. 2005, 45(7):984~990
    17 Takaki S, Abiko K. Ultra-purification of electrolytic iron by cold-crucible induction melting and induction-heating floating-zone melting in ultra-high vacuum. Materials Transactions JIM. 2000, 41(1):2~6
    18 Boudaden J, Loghmarti M, Ballutaud D, et al. Electrical properties of multicrystalline silicon produced by electromagnetic casting process: Degradation and improvement. Solar Energy Materials And Solar Cells. 2001, 65(1-4):517~523
    19 Durand F. Electromagnetic continuous pulling process compared to current casting processes with respect to solidification characteristics. Solar Energy Materials And Solar Cells. 2002, 72(1-4):125~132
    20 Li YX, Hao YM, Wang BM, et al. Growth and magneto striction of oriented polycrystalline Pr0.15TbxDy0.85-xFe2 (x=0-0.85). IEEE Transactions On Magnetics. 2001, 37(4): 2696~2698,子辑: Part 1
    21 Kobelev AP, Stefanovskii SV, Lebedev VV, et al. Vitrification of a simulator of Savannah River site (USA) wastes with high iron and aluminum content on bench and commercial facilities with a cold crucible. Atomic Energy. 2008, 104(5):381~386
    22 Gordin DM, Delvat E, Chelariu R, et al. Characterization of Ti-Ta alloys synthesized by cold crucible levitation melting. Advanced Engineering Materials. 2008, 10(8):714~719
    23 Grossmann C, Frenzel J, Sampath V, et al. Processing and property assessment of NiTi and NiTiCu shape memory actuator springs. Materialwissenschaft Und Werkstofftechnik. 2008, 39(8):499~510
    24 Grossmann R, Maier HJ, Szerypo J, et al. Preparation of Pa-231 targets. Nuclear Instruments & Methods In Physics Research Section A-Accelerators Spectrometers Detectors And Associated Equipment. 2008, 590(1-3):122~125
    25 Osono H, Maeta H, Matsusaka K, et al. Preparation of highly perfect aluminum crystal by cold-crucible induction melting in ultra-high vacuum. Materials Transactions. 2002, 43(2):121~124
    26 Zhou ZL, Song YQ, Cui S, et al. Effects of heat treatment on the hydrogen storage properties of La-Mg-Ni-system electrode alloys - Microstructure and phase analysis. Rare Metal Materials And Engineering. 2008, 37(7):1188~1192
    27 Kawarada C, Harima N, Takaki S, et al. Purification of Ti-Al alloy by cold-crucible induction melting in ultrahigh vacuum. Physic Status Solidi A-Applied Research. 2002, 189(1):139~148
    28 Das J, Kim KB, Baier F, et al. Bulk ultra-fine eutectic structure in Ti-Fe-base alloys. Journal Of Alloys And Compounds. 2007, 434: 28-31,特刊: Sp. Iss. SI
    29 Ding HS, Chen RR, Guo JJ, et al. Directional solidification of titanium alloys by electromagnetic confinement in cold crucible. Materials Letters. 2005, 59(7):741~745
    30 Duffar T, Dusserre P, Picca F, et al. Bridgman growth without crucible contact using the dewetting phenomenon. Journal Of Crystal Growth. 2000, 211(1-4):434~440
    31 Hong SW, Min BT, Song JH, et al. Application of cold crucible for melting of UO2/ZrO2 mixture. Materials Science And Engineering A-Structural Materials Properties Microstructure And Processing. 2003, 357(1-2):297~303
    32 Ujihara T, Maekawa R, Tanaka R, et al. Solution growth of high-quality 3C-SiC crystals. Journal Of Crystal Growth. 2008, 310(7-9): 1438-1442,特刊: Sp. Iss. SI
    33王勖成.有限单元法.北京:清华大学出版社. 2003, 7
    34曾攀.有限元分析及应用.北京:清华大学出版社. 2004, 6
    35孙明礼. ANSYS 10.0电磁学有限元分析实例指导教程.北京:机械工业出版社. 2007, 4
    36 Moaveni,S著,王崧等译.有限元分析——ANSYS理论与应用(第三版).电子工业出版社. 2008, 1
    37许洋. ANSYS 11.0/FLOTRAN流场分析实例指导教程.北京:机械工业出版社. 2009, 1
    38 Connor J.J, Brebbia C.A,吴望一(译). Finite element techniques for fluid flow.北京:科学出版社. 1981
    39 Cho YW, Oh YJ, Yi KW, et al. Numerical analysis of molten metal shape in cold crucibles by 3D FEM. Modeling And Simulation In Materials Science AndEngineering. 1996, 4(1):11~22
    40 Westphal E, Muiznieks A, Muhlbauer A. Electromagnetic field distribution in an induction furnace with cold crucible. IEEE Transactions On Magnetics. 1996, 32(3):1601~1604
    41 Cha PR, Hwang YS, Nam HS, et al. 3D numerical analysis on electromagnetic and fluid dynamic phenomena in a soft contact electromagnetic slab caster. ISIJ International. 1998, 38(5):403~410
    42 Gross C, Assmus W, Muiznieks A, et al. Power consumption of skull melting, part I: Analytical aspects and experiments. Crystal Research And Technology. 1999, 34(3):319~328
    43 Kawase Y, Yoshida T. 3-D finite element analysis of molten metal shape in rectangular cold crucible system. IEEE Transactions On Magnetics. 1999, 35(3): 1889~1892,子辑: Part 1
    44 Baake E, Nacke B, Bernier F, et al. Experimental and numerical investigations of the temperature field and melt flow in the induction furnace with cold crucible. Compel-The International Journal For Computation And Mathematics In Electrical And Electronic Engineering. 2003, 22(1):88~97
    45 Umbrasko A, Baake E, Nacke B, et al. Numerical studies of the melting process in the induction furnace with cold crucible. Compel-The International Journal For Computation And Mathematics In Electrical And Electronic Engineering. 2008, 27(2):359~368
    46 Pericleous K, Bojarevics V, Djambazov G, et al. Experimental and numerical study of the cold crucible melting process. Applied Mathematics Modeling. 2006, 30(11): 1262-1280
    47 Tanaka T, Yashiro N, Shirai Y, et al. LPE growth of AlN single crystal using cold crucible under atmospheric nitrogen gas pressure. Physical Status Solid C - Current Topics in Solid State Physics. 2007, 4(7):2227~2230
    48 Wu SP, Liu DR, Su YQ, et al. Modeling of microstructure formation of Ti-6Al-4V alloy in a cold crucible under electromagnetic field. Journal Of Alloys And Compounds. 2008, 456(1-2):85~95
    49 Fort J, Garnich M, Klymyshyn N. Electromagnetic and thermal-flow modeling of a cold-wall crucible induction melter. Metallurgical And Materials Transactions B-Process Metallurgy And Materials Processing Science. 2005, 36(1):141~152
    50 Jacoutot L, Fautrelle Y, Gagnoud A, et al. Numerical modeling of coupled phenomena in a mechanically stirred molten-glass bath heated by induction. Chemical Engineering Science. 2008, 63(9): 2391~2401
    51汤国兴,毛卫民,刘永峰.定向凝固技术的发展与应用.中国铸造装备与技术. 2007, 2:11~16
    52傅恒志,郭景杰,刘林,李金山.先进材料定向凝固.北京:科学出版社. 2008: 4~14
    53崔忠圻.金属学与热处理.北京:机械工业出版社. 2004, 7
    54胡汉起.金属凝固原理.北京:机械工业出版社. 2007, 1
    55 Palm M, Inden G. Partial phase diagram of the Ti-Al binary system. Journal Of Phase Equilbria. 1996, 17(4):275~276
    56张成军.定向凝固γ-TiAl基合金片层取向控制.哈尔滨工业大学博士学位论文. 2008:2
    57孔凡涛,陈玉勇,田竞等. TiAl基金属间化合物研究进展[J].材料科学与工艺. 2003, 11(4):441~444
    58 Muto S, Yamanaka T, Johnson D.R, Inui H, Yamaguchi M. Effects of Tefractory Metals on Microstructure and Mechanical Properties of Directionally-solidified TiAl Alloys. Materials Science and Engineering. 2002, A329–331: 424~429
    59 Dimiduk D M. Mater Science Engineering. 1999, A263:281~288
    60 Fox A G. Tabbernor M A. Acta Metall Mater. 1991, 37:669~678
    61 Kishida K, Johnson DR, Shimada Y, et al. Characteristics, benefits and applications of PST TiAl crystal. Gamma Titanium Aluminides. 1995, 219~229
    62 Keller MM, Jones PE, Porter WJ, et al. Effects of processing variables on the creep behavior of investment cast Ti-48Al-2Nb-2Cr. Gamma Titanium Aluminides. 1995, 441~450
    63 Blum M, Jarczyk G, Scholz H, et al. Prototype plant for the economical mass production of TiAl-valves. Materials Science And Engineering A-Structural Materials Properties Microstrucrure And Processing. 2002, 329:616~620,特刊: Sp. Iss. SI
    64 Liu K, Ma YC, Gao M, et al. Single step centrifugal casting TiAl automotive valves. Intermetallics. 2005, 13(9):925~928,特刊: Sp. Iss. SI
    65罗亮.冷坩埚定向凝固Ti46Al0.5Si0.5W扁坯的组织与性能.哈尔滨工业大学硕士论文. 2007
    66 http://baike.baidu.com/view/70776.htm
    67阎昭文. ANSYS 10.0工程电磁分析技术与实例详解.北京:水利水电出版社. 2006, 11
    68 http://pera.e-works.net.cn/document/200711/article2666.htm
    69白云峰.钛合金冷铜坩埚电磁定向凝固传输过程耦合模型与数值计算.哈尔滨工业大学博士论文. 2006
    70陈瑞润.钛基合金电磁冷坩埚连续熔铸与定向凝固.哈尔滨工业大学博士论文. 2005
    71大野笃美著,邢建东译.金属的凝固——理论、实践及应用[M].北京:机械工业出版社, 1980:141~148

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700