圆弧青霉脂肪酶的异源表达、耐热性改造及底物专一性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脂肪酶(EC3.1.1.3)是能够将长链脂酰甘油酯水解的一类酰基水解酶,不仅能在油水界面催化水解反应,还可以在疏水介质中催化转酯、酯化、酯交换等反应。根据脂肪酶的底物专一性,可以将其分为三脂酰甘油脂肪酶和单双脂酰甘油脂肪酶等。三脂酰甘油脂肪酶能将三脂酰甘油酯水解为脂肪酸和甘油,而单双脂酰甘油脂肪酶只能水解单脂酰甘油酯和二脂酰甘油酯。圆弧青霉(Penicillium cyclopium) PG37可产三脂酰甘油脂肪酶(PcLipI),也能产单双脂酰甘油脂肪酶(PcMdl)。为了更好地利用这些脂肪酶资源,首先克隆了它们的cDNA序列,并实现了在毕赤酵母(Pichia pastoris) GS115中的异源表达。根据对重组酶酶学性质研究,发现它们的耐热性较差,通过基因工程手段改造了PcLipI以提高其热稳定性。PcMdl的底物专一性不同于PcLipI,通过实验验证其底物专一性后,运用计算机模拟分析了其底物专一性的分子基础。三脂酰甘油酯属于小分子化合物,但是它的水解在rePcLipC(重组热稳定性提高的改造PcLipI)和rePcMdl (重组PcMdl)共同作用时有更好的效果。
     通过RT–PCR技术获得了PcLipI成熟肽的cDNA序列,其长度为777bp,共编码258个氨基酸。PclipI在毕赤酵母GS115中实现了高效的异源表达。重组毕赤酵母GSL4-7高效表达rePcLipI的培养基初始pH为9.0,甲醇添加量为1.0%,诱导温度为26℃,在此条件下诱导108h产酶水平可达407.3U mL-1。rePcLipI被证实为糖基化蛋白,其表观分子量为31.5kDa。Hg2+、Fe2+和Cu2+抑制rePcLipI的酶活性。rePcLipI的最适pH为10.5,最适温度为25℃,在温度低于30℃和pH7.0~10.5范围内稳定,表明rePcLipI属低温碱性三脂酰甘油脂肪酶,且热稳定性差。rePcLipI的比酶活性为5,300U mg-1。
     借助同源建模、二硫键预测和分子动力学模拟的方法,预测出能提高PcLipI热稳定性的二硫键。通过定点突变技术获得突变的PcLipI基因,并将其在大肠杆菌BL21(DE3)和毕赤酵母GS115中表达。酶学特性分析的结果表明,大肠杆菌重组突变酶reE-PcLipV248C-T251C和毕赤酵母重组突变酶reP-PcLipV248C-T251C(即为rePcLipC)在35℃下的t1/2分别是对应重组酶reE-PcLip和reP-PcLip的4.5倍和12.8倍。同时,reE-PcLipV248C-T251C和reP-PcLipV248C-T251C比相应reE-PcLip和reP-PcLip的最适温度分别都提高了5℃。
     通过RT–PCR技术获得了PcMdl完整cDNA序列,提交至GenBank后获得的登陆号为:HM135194。成熟肽cDNA基因Pcmdl在毕赤酵母GS115中实现了异源表达。rePcMdl的表观分子量为39.0kDa。重组毕赤酵母GSM4-2高效表达rePcMdl的条件为:初始pH6.5、甲醇添加量1.5%、诱导温度28℃、诱导时间120h,在此条件下GSM4-2的产酶水平可达215.2U mL-1。rePcMdl经过了糖基化修饰。rePcMdl的最适反应温度为35℃,最适反应pH值为7.5,在35℃以下及pH6.5~9.5之间具有较好的稳定性。Fe3+和Hg2+抑制rePcMdl的酶活性。rePcMdl能催化1-单丁酰甘油酯和1,2-二丁酰甘油酯的水解,不能催化三丁酰甘油酯的水解。rePcMdl水解1-单丁酰甘油酯和1,2-二丁酰甘油酯的Vmax值分别为189.3U mg-1和344.9U mg-1,Km分别为29.1mmol L-1和42.6mmol L-1。
     借助同源建模、分子对接及分子动力学模拟等方法,对PcMdl底物专一性进行了分析。同源建模构建的活性状态PcMdl,其催化三联体Ser145-Asp199-His259暴露于溶剂中;同时Ser83和Ser145构成氧离子洞,能够稳定催化反应时形成的四面体中间产物。催化口袋由下列氨基酸构成:Tyr21、Phe112、Leu146、Pro174、Val201、Phe256、Val266和Asp267。活性状态下,催化口袋的口部不被盖子覆盖,暴露于溶剂中并有利于底物的进入。利用分子对接及分子动力学模拟,构建了PcMdl与三脂酰甘油酯类似物或二脂酰甘油酯类似物的对接模型。PcMdl中的Phe256将其残基侧链伸向底物结合沟,使得三脂酰甘油酯的sn-1部分进入困难,进而阻碍sn-1的羰基碳原子接近催化三联体中Ser145的Oγ;相反,二脂酰甘油酯能够顺利进入PcMdl底物结合沟并被催化水解。
     研究了rePcLipC和rePcMdl共同水解油脂的影响因素,同时考察了它们对橄榄油和三丁酰甘油酯的共同水解,并利用HPLC对部分水解产物进行了分析。通过单因素实验确定rePcLipC和rePcMdl共同水解三丁酰甘油酯的最佳温度为30℃,最佳初始pH10.5,最佳酶活性比例为3:1。在最佳温度30℃和恒定pH8.5下,用酶活性比例为3:1的rePcLipC和rePcMdl共同水解橄榄油,水解速度加快,rePcMdl同样能与南极假丝酵母脂肪酶B(CALB)共同水解橄榄油。rePcLipC和rePcMdl共同水解三丁酰甘油酯,相对于rePcLipC单独作用,随着酶解时间的延长,三丁酰甘油酯逐渐减少,单丁酰甘油酯和二丁酰甘油酯相对含量增加,但增加较少,说明rePcMdl加速了rePcLipC催化的水解产物的水解。
Lipases (EC3.1.1.3) catalyze the hydrolysis of long-chain acylglycerols at the oil–waterinterface, as well as the esterification, transesterification and interesterification in organicsolvents. According to the substrate specificity, they consist of triacylglycerol hydrolases,mono-and diacylglycerol hydrolases, and so on. Triacylglycerol hydrolases catalyze thehydrolysis of triacylglycerol, while mono-and diacylglycerol hydrolases catalyze thehydrolysis of mono-and diacylglycerol but not triacylglycerol. Penicillium cyclopium PG37strain can produce a triacylglycerol lipase (PcLipI) together with a mono-and diacylglycerollipase (PcMdl). In order to widen the application fields of PcLipI and PcMdl, the expressionsof PclipI and Pcmdl in Pichia pastoris GS115were firstly carried out. The recombinantPcLipI (rePcLipI) showed low thermostability. It is urgent to enhance the thermostability ofPcLipI by genetic engineering. The PcLipI and PcMdl showed different substrate specificities,it is necessary to understand these specificities especially in PcMdl substrate specificity. Inthis work, the synegistic reaction of rePcLipC(recombinant engineered thermostable PcLipI)and re (recombinant PcMdl) toward lipid was also investigated. The PG37strain is poor inproductive level, meanwhile the PcLipI has low thermostability.
     A777-bp cDNA fragment encoding a258-aa mature PcLipI from P. cyclopium PG37was amplified by RT–PCR, and expressed in P. pastoris GS115. One transformant resistant to4.0mg mL-1of G418, numbered as P. pastoris GSL4-7, expressing the highest rePcLipIactivity. When the P. pastoris GSL4-7was cultured under the optimized conditions, initial pH9.0, adding methanol of1.0%, inductive temperature26°C, the expressed rePcLipI activitywas up to407.3U mL-1. The rePcLipI was verified as a glycosylated protein with an apparentmolecular weight of about31.5kDa. The rePcLipI activity was significantly inhibited by Hg2+,Fe3+and Cu2+. The rePcLipI showed the highest activity at pH10.5and25°C, and was stableat a broad pH range of7.0–10.5and at a temperature of30°C or below. The rePcLipI belongsto an alkaline cold-active lipase and shows low thermostability. The specific activity ofrePcLipI was5,300U mg-1.
     By the methods of homologously modeling, disulfide bridge prediction, and moleculardynamics simulation, cysteine mutants of PcLipI predicted to have better thermostabilitiesthan the wild-type. The mutants were first expressed in Escherichia coli BL21(DE3) and then,for further investigation, in P. pastoris GS115. Based on the analysis of recombinant mutantPcLipIs, reE-PcLipV248C-T251C(expressed in E. coli) and reP-PcLipV248C-T251C(expressed in P.pastoris) both had enhanced thermostabilities with half-lives at35°C about4.5-and12.8-foldlonger than that of the parent PcLipI expressed in E. coli and P. pastoris, respectively. Thetemperature optima of reE-PcLipV248C-T251Cand reP-PcLipV248C-T251Cwere each5°C higherthan those of the parent PcLipI expressed in E. coli and P. pastoris.
     A full cDNA gene which encodes the mono-and diacylglycerol lipase from P. cyclopiumPG37was cloned, then the sequence was submitted to GenBank under the accession numberof HM135194. Based on the principle of the nest PCR, a cDNA gene, Pcmdl, encoding themature peptide of the mono-and diacylglycerol lipase from P. cyclopium PG37was cloned, then expressed in P. pastoris GS115. One transformant resistant to4.0mg mL-1of G418,numbered as P. pastoris GSM4-2, expressed the highest recombinant PcMdl (rePcMdl)activity. When the P. pastoris GSM4-2was cultured under the optimized conditions, initial pH6.5, adding methanol of1.5%, inductive temperature28°C, the expressed rePcLipI activitywas up to215.2U mL-1. The rePcMdl was also verified as a glycosylated protein with anapparent molecular weight of39.0kDa. The rePcMdl showed the highest activity at pH7.5and35°C, and was stable at pH range of6.5–9.5and the temperature below35°C. TherePcMdl activity was significantly inhibited by Hg2+and Fe3+. The rePcMdl was confirmed tobe strictly specific for1-monobutyrin (189.3U mg-1) and1,2-dibutyrin (344.9U mg-1), butnot tributyrin (0U mg-1).
     Using the methods of homology modeling, molecular docking, and molecular dynamicssimulation, the substrate specificity of PcMdl were investigated. The α-helix form lid in openconformation uncovers the catalytic center and leads to the catalytic triad Ser145-Asp199-His259exposing to solvent. The residue Ser83, together with the Ser145, constitutes the oxyanion holewhich stabilizes the tetrahedral intermediates. The catalytic pocket in open conformation,organized by residues Tyr21, Phe112, Leu146, Pro174, Val201, Phe256, Val266, and Asp267, exposesto solvent. Stereographic view of PcMdl docked with substrate (tri-or diacylglycerol)analogue indicated that the residue Phe256played an important role in conferring the substrateselectivity. The Phe256projected its side chain towards the substrate binding groove and madethe sn-1moiety difficult to insert in. On the contrary, sn-1moiety hampered the phosphorusatom (taking the place of carboxyl carbon) from getting to the Oγof Ser145and caused thefailure of triacylglycerol hydrolysis.
     The factors affecting lipid hydrolysis by rePcLipC(reP-PcLipV248C-T251C) and rePcMdlwere determined. The hydrolysis of olive oil and tributyrin was investigated, meanwhile partof the hydrolysis products were analyzed by HPLC. The rePcLipCand rePcMdl have optimalsynergistic initial pH10.5, temperature30°C, and dosage ratio3:1by the active unit.Comparing with the hydrolysis by CALB or rePcLipCalone, rePcMdl could increase thehydrolysis rate by synergy with CALB or rePcLipC. With the addition of rePcMdl, there weremore monobutyrin and dibutyrin released from tributyrin than that by rePcLipCalone. Theresult demonstrates there is synergistic interaction between rePcMdl and rePcLipCwhichaccelerates the hydrolyzing of tributyrin.
引文
1肖付刚,刘钟栋.具有保健功能的甘油脂肪酸酯[J].中国食品添加剂,2003(4):55–60,35
    2滕霞,孙曼霁.羧酸酯酶研究进展[J].中国食品添加剂,2003,15(1):31–35
    3Jaeger K E, Eggert T. Lipases for biotechnology[J]. Curr Opin Biotechnol,2002,13(4):390–397
    4Hasan F, Shah A A, Hameed A. Industrial applications of microbial lipases[J]. Enzyme MicrobTechnol,2006,39(2):235–251
    5Yamaguchi S, Mase T. Purification and characterization of mono-and diacylglycerol lipase isolatedfrom Penicillium camembertii U-150[J]. Appl Microbiol Biotechnol,1991,34(6):720–725
    6Yamaguchi S, Mase T, Takeuchi K. Secretion of mono-and diacylglycerol lipase from Penicilliumcamembertii U-150by Saccharomyces cerevisiae and site-directed mutagenesis of the putativecatalytic sites of the lipase[J]. Biosci Biotechnol Biochem,1992,56(2):315–319
    7Basheer S M, Chellappan S, Beena P S, et al. Lipase from marine Aspergillus awamori BTMFW032:production, partial purification and application in oil effluent treatment[J]. N Biotechnol,2011,28(6):627–638
    8Kaushik R, Saran S, Isar J, et al. Statistical optimization of medium components and growthconditions by response surface methodology to enhance lipase production by Aspergillus carneus[J].J Mol Catal B-Enzym:Enzymatic,2006,40(3):121–126
    9Kim B S, Hou C T. Production of lipase by high cell density fed-batch culture of Candidacylindracea[J]. Bioprocess Biosyst Eng,2006,29(1):59–64
    10Brozzoli V, Crognale S, Sampedro I, et al. Assessment of olive-mill wastewater as a growth mediumfor lipase production by Candida cylindracea in bench-top reactor[J]. Bioresour Technol,2009,100(13):3395–3402
    11Rajendran A, Palanisamy A, Thangavelu V. Evaluation of medium components by Plackett–Burmanstatistical design for lipase production by Candida rugosa and kinetic modeling[J]. Chinese JBiotechnol,2008,24(3):436–444
    12Maia M M, Heasley A, Camargo de Morais M M, et al. Effect of culture conditions on lipaseproduction by Fusarium solani in batch fermentation[J]. Bioresour Technol,2001,76(1):23–27
    13Burkert J F, Maugeri F, Rodrigues M I. Optimization of extracellular lipase production by Geotrichumsp. using factorial design[J]. Bioresour Technol,2004,91(1):77–84
    14Kumar S, Katiyar N, Ingle P, et al. Use of evolutionary operation (EVOP) factorial design technique todevelop a bioprocess using grease waste as a substrate for lipase production[J]. Bioresour Technol,2011,102(7):4909–4912
    15Lima V M G, Krieger N, Sarquis M I M, et al. Effect of nitrogen and carbon sources on lipaseproduction by Penicillium aurantiogriseum[J]. Food Technol Biotechnol,2003,41(2):105–110
    16Gombert A, Pinto A, Castilho L, et al. Lipase by Penicillium restrictum in solid-state fermentationusing babassu oil cake as substrate[J]. Process Biochem,1999,35(1–2):85–90
    17Gutarra M L E, Godoy M G, Castilho L R, et al. Inoculum strategies for Penicillium simplicissimumlipase production by solid-state fermentation using a residue from the babassu oil industry[J]. J ChemTechnol Biotechnol,2007,82(3):313–318
    18Di Luccio M, Capra F, Ribeiro N P, et al. Effect of temperature, moisture, and carbon supplementationon lipase production by solid-state fermentation of soy cake by Penicillium simplicissimum[J]. ApplBiochem Biotechnol,2004,113–116:173–180
    19Kempka A P, Lipke N R, da Luz Fontoura Pinheiro T, et al. Response surface method to optimize theproduction and characterization of lipase from Penicillium verrucosum in solid-state fermentation[J].Bioprocess Biosyst Eng,2008,31(2):119–125
    20Rodriguez J A, Mateos J C, Nungaray J, et al. Improving lipase production by nutrient sourcemodification using Rhizopus homothallicus cultured in solid state fermentation[J]. Process Biochem,2006,41(11):2264–2269
    21Awan U, Shafiq K, Mirza S, et al. Mineral constituents of culture medium for lipase production byRhizopus oligosporous fermentation[J]. Asian J Plant Sci,2003,2(12):913–915
    22Iftikhar T, Hussain A. Effects of nutrients on the extracellular lipase production by mutant strain ofRhizopus oligosporous TUV-31[J]. Biotechnol,2002,1(1):15–20
    23Córdova J, Nemmaoui M, Ismaili-Alaoui M, et al. Lipase production by solid state fermentation ofolive cake and sugar cane bagasse[J]. J Mol Catal B-Enzym,1998,5(1–4):75–78
    24陈贵元,魏云林.低温脂肪酶的研究现状与应用前景[J].生物技术通报,2006(2):29–32
    25陈晟,陈坚,吴敬.微生物脂肪酶的结构与功能研究进展[J].工业微生物,2009,39(5):53–58
    26Nardini M, Dijkstra B W. Alpha/beta-hydrolase fold enzymes: the family keeps growing[J]. Curr OpinStruct Biol,1999,9(6):732–737
    27Reis P, Holmberg K, Watzke H, et al. Lipases at interfaces: A review[J]. Adv Colloid Interface Sci,2009,147–148:237–250
    28Vakhlu J, Kour A. Yeast lipases: enzyme purification, biochemical properties and gene cloning[J].Electron J Biotechnol,2006,9(1):69–85
    29Nagodawithana T, Reed G. Enzymes in food processing[M]. San Diego: Academic Press,1993
    30Farahat S M, Rabie A M, Faras A A. Evaluation of the proteolytic and lipolytic activity of differentPenicillium roqueforti strains[J]. Food Chem,1990,36:169–180
    31Pandey A, Benjamin S, Soccol C R, et al. The realm of microbial lipases in biotechnology[J].Biotechnol Appl Bioc,1999,29(2):119–131
    32Sharma R, Chisti Y, Banerjee U C. Production, purification, characterization, and applications oflipases[J]. Biotechnol Adv,2001,19(8):627–662
    33Jaeger K E, Reetz M T. Microbial lipases form versatile tools for biotechnology[J]. Trends Biotechnol,1998,16(9):396–403
    34Seitz E W. Industrial application of microbial lipases: A review[J]. J Am Oil Chem Soc,1974,51(2):12–16
    35吴若娜,李诚,付刚等.外源脂肪酶对腊鸭腿品质的影响.食品工业科技,2013,34(19):161–164,168
    36杨华,张琳,马俪珍.外源酶在羊肉发酵香肠的应用研究[J].农产品加工,2010(6):28–31
    37谭汝成,曾令,熊善柏等.外源脂肪酶对腌腊鱼品质的影响[J].食品与发酵工业,2007,33(5):68–71
    38Akabar K, Mohammad M, Hossein T, et al. Effects of enzymatic hydrolysis on drawn polyesterfilament yarns[J]. Iran Polym J (English Edition),2001,10(6):363–370
    39Gulrajani M L, Grover A, Suri M, et al. Degumming of silk with lipase and protease[J]. Indian J FibreTextile Research,2000,25(1):69–74
    40EI-Sayed H, Hamed R R, Kantouch A, et al. Enzyme-based felt proofing of wool[J]. AATCC Review,2002,2(1):25–28
    41Saphir J. Permanent hair waving. West Germany Patent,1967, no.1,242,794
    42Marsza M P, Siódmiak T. Immobilization of Candida rugosa lipase onto magnetic beads for kineticresolution of (R,S)-ibuprofen[J]. Catal Commun,2012,24(5):80–84
    43Takac S, Mutlu D. A parametric study on biphasic medium conditions for the enantio-se1ectiveproduction of naproxen by Candida rugosa lipase[J]. Appl Biochem Biotechnol,2007,141(1):15–26
    44Mauvernay R Y, Laboreur P, Labrousse M. Lipase composition and its products. United States Patent,1970, no.3,513,073
    45Kato K, Nakamura S, Sakugi T, et al. Tumor necrosis factor and its activators for the treatment ofmalignant tumors. Japanese Patent,1989, no.1,186,820
    46Lott J A, Lu C J. Lipase isoforms and amylase isoenzymes: assays and application in the diagnosis ofacute pancreatitis[J]. Clin Chem,1991,37(3):361–368
    47Gwozdz G P, Zuobi K, Bravdo T. Lipase-catalyzed preparation of optically active γ-butyrolactones inorganic solvents[J]. J Org Chem,1990,55:3546–3552
    48Schnatz J D, Ormsby J W, Williams R H. Lipoprotein lipase activity in human heart[J]. Am J Physiol,1963,205(2):401–404
    49Anderson R E, Hedlund C B, Jonsson U. Thermal inactivation of a heat-resistant lipase produced bythe psychrotrophic bacterium Pseudomonas fluorescens[J]. J Dairy Sci,1979,62(3):361–367
    50Metzger J O, Bornscheuer U. Lipids as renewable resources: current state of chemical andbiotechnological conversion and diversification[J]. Appl Microbiol Biotechnol,2006,71(1):13–22
    51李俐林,杜伟,刘德华等.乙酸甲酯萃取菜籽油制备生物柴油的研究[J].食品与发酵工业,2006,32(5):5–8
    52吴华昌,邓静.酶催化餐饮业废油脂生产生物柴油的研究[J].化学与生物工程,2008,25(1):24–26
    53蔡志强,邬国英,林平西等.固定化脂酶催化合成生物柴油的研究[J].中国油脂,2004,29(8):29–32
    54聂开立,王芳,谭天伟.固定酶法生产生物柴油[J].现代化工,2003,23(9):35–39
    55吴虹,宗敏华,娄文勇.无溶剂系统中固定化脂肪酶催化废油脂转酯生产生物柴油[J].催化学报,2004,25:903–908
    56K se O, Tüter M, Ay e Aksoy H. Immobilized Candida antarctica lipase-catalyzed alcoholysis ofcotton seed oil in a solvent-free medium[J]. Bioresour Technol,2002,83(2):125–129
    57盛梅,杨文伟,郭登峰.固定化脂肪酶催化合成生物柴油[J].应用化学,2005,22(7):788–791
    58Brusamarelo C Z, Rosset E, Cesaro A. Kinetics of lipase-catalyzed synthesis of soybean fatty acidethyl esters in pressurized propane[J]. J Biotechnol,2010,147(2):108–115
    59Huang D, Han S, Han Z, et al. Biodiesel production catalyzed by Rhizomucor miehei lipase-displayingPichia pastoris whole cells in an isooctane system[J]. Biochem Eng J.2012,63:10–14
    60Kaieda M, Samukawa T, Matsumoto T, et al. Biodiesel fuel production from plant oil catalyzed byRhizopus oryzae lipase in a water-containing system without an organic solvent[J]. J Biosci Bioeng,1999,88(6):627–631
    61Soetaert W, Vandamme E J. Biofuels[M]. Hoboken, NJ, USA: John Wiley&Sons,2009
    62Pandey A. Handbook of plant-based biofuels[M]. Boca Raton, Fla, USA: CRC Press,2009
    63魏冬,郭佳荣,于开华等.脂肪酶YMD在绵羊皮脱脂中的应用研究[J].皮革科学与工程,2014,24(1):31–34
    64Ramarethinam S, Latha K, Rajalakshmi N. Use of a fungal lipase for enhancement of aroma in blacktea[J]. Food Sci Technol Res,2002,8(4):328–332
    65Eijsink V G, Gaseidnes S, Borchert T V, et al. Directed evolution of enzyme stability[J]. Biomol Eng,2005,22(1–3):21–30
    66冯蔚宗,林俊涵,菜少丽等.高通量脂肪酶稳定性测定法-ANS法的建立[J].生物工程学报,2011,27(4):584–591
    67Reetz M T, Carballeira J D, Vogel A. Iterative saturation mutagenesis on the basis of B factors as astrategy for increasing protein thermostability[J]. Angew Chem Int Ed Engl,2006,45(46):7745–7751
    68Kamal M Z, Ahmad S, Yedavalli P, et al. Stability curves of laboratory evolved thermostable mutantsof a Bacillus subtilis lipase[J]. Biochim Biophys Acta,2010,1804(9):1850–1856
    69Feller G, Narinx E, Arpigny J L, et al. Enzymes from psychrophilic organisms[J]. FEMS MicrobiolRev,1996,18(2–3):189–202
    70袁彩,林琳,施巧琴等.扩展青霉碱性脂肪酶基因在毕赤酵母中的高效表达[J].生物工程学报,2003,19(2):231–235
    71Tan Z, Li J, Wu M, et al. High-level heterologous expression of an alkaline lipase gene fromPenicillium cyclopium PG37in Pichia pastoris[J]. World J Microbiol Biotechnol,2011,27(12):2767–2774
    72郑艳,周波,宋宁宁等.疏棉状嗜热丝孢菌脂肪酶基因的克隆及其在毕赤酵母中的高效表达[J].菌物学报,2009,28(2):268–274
    73徐苏炜,林影,韩振林等.米黑根毛霉脂肪酶基因在毕赤酵母中的高效表达[J].食品与发酵工业,2008,34(11):10–14
    74Akbulut N, Tuzlako lu ztürk M, Pijning T, et al. Improved activity and thermostability of Bacilluspumilus lipase by directed evolution[J]. J Biotechnol,2013,164(1):123–129
    75Ahmad S, Kamal M Z, Sankaranarayanan R, et al. Thermostable Bacillus subtilis lipases: in vitroevolution and structural insight[J]. J Mol Biol,2008,381(2):324–340
    76Yu X W, Wang R, Zhang M, et al. Enhanced thermostability of a Rhizopus chinensis lipase by in vivorecombination in Pichia pastoris[J]. Microb Cell Fact,2012,11:102
    77Park C G, Kwon M A, Song J K, et al. Cell-free synthesis and multifold screening of Candidaantarctica lipase B (CalB) variants after combinatorial mutagenesis of hot spots[J]. Biotechnol Prog,2011,27(1):47–53
    78Yadav J K, Prakash V. Thermal stability of α-amylase in aqueous cosolvent systems[J]. J Biosci,2009,34(3):377–387
    79Lavinder J J, Hari S B, Sullivan B J, et al. High-throughput thermal scanning: a general, rapiddye-binding thermal shift screen for protein engineering[J]. J Am Chem Soc,2009,131(11):3794–3795
    80黄瑛,蔡勇,杨江科等.基于易错PCR技术的短小芽孢杆菌YZ02脂肪酶基因BpL的定向进化[J].生物工程学报,2008,24(3):445–451
    81Shih T W, Pan T M. Substitution of Asp189residue alters the activity and thermostability ofGeobacillus sp. NTU03lipase[J]. Biotechnol Lett,2011,33(9):1841–1846
    82陈彦,司圣乾,刘燕雅等.易错PCR对扩展青霉脂肪酶基因PEL的定向进化[J].安徽农学通报,2011,17(5):22–24
    83Niu W N, Li Z P, Zhang D W, et al. Improved thermostability and the optimum temperature ofRhizopus arrhizus lipase by directed evolution[J]. J Mol Catal B-Enzym,2006,43(1–4):33–39
    84陶苏丹,刘佳,陈喜文等.点饱和突变技术及其在蛋白质工程中的应用[J].中国生物工程杂志,2007,27(8):82–86
    85Peng X Q. Improved thermostability of lipase B from Candida antarctica by directed evolution anddisplay on yeast surface[J]. Appl Biochem Biotechnol,2013,169(2):351–358
    86Reetz M T, Carballeira J D. Iterative saturation mutagenesis (ISM) for rapid directed evolution offunctional enzymes[J]. Nat Protoc,2007,2(4):891–903
    87Augustyniak W, Brzezinska A A, Pijning T, et al. Biophysical characterization of mutants of Bacillussubtilis lipase evolved for thermostability: factors contributing to increased activity retention[J].Protein Sci,2012,21(4):487–497
    88Augustyniak W, Wienk H, Boelens R, et al.1H,13C and15N resonance assignments of wild-typeBacillus subtilis Lipase A and its mutant evolved towards thermostability[J]. Biomol NMR Assign,2013,7(2):249–252
    89Yu X W, Tan N J, Xiao R, et al. Engineering a disulfide bond in the lid hinge region of Rhizopuschinensis lipase: increased thermostability and altered acyl chain length specificity[J]. PLoS One,2012,7(10): e46388
    90Han Z L, Han S Y, Zheng S P, et al. Enhancing thermostability of a Rhizomucor miehei lipase byengineering a disulfide bond and displaying on the yeast cell surface[J]. Appl Microbiol Biotechnol,2009,85(1):117–126
    91Costantini S, Colonna G, Facchiano A M. ESBRI: a web server for evaluating salt bridges inproteins[J]. Bioinformation,2008,3(3):137–138
    92丁彦蕊,蔡宇杰,须文波.用同源建模法探索提高脂肪酶的耐热性[J].计算机与应用化学,2007,24(11):1535–1538
    93孔祥禄,郑穗平,苏国栋等.生物信息学在脂肪酶热稳定性评价中的应用[J].山西大学学报(自然科学版),2009,32(S2):113–116
    94蔡少丽,邹有土,黄建忠等.定点突变对扩展青霉脂肪酶热稳定性的改善[J].应用与环境生物学报,2013,19(1):43–47
    95沈麟,施文芳,胡长浩等.扩展青霉脂肪酶K56R叠加突变对热稳定性的影响[J].生物技术,2009,19(2):23–26
    96蔡少丽,林俊涵,王彩梅等. K55R与ep8叠加突变对扩展青霉脂肪酶热稳定性的改善[J].生物工程学报,2007,23(4):677–680
    97邹有土,吴义真,施文芳等. K202A突变对扩展青霉脂肪酶热稳定性的影响[J].中国生物工程杂志,2007,27(12):52–56
    98王彩梅,蔡少丽,吴义真等.扩展青霉脂肪酶ep8与R182K叠加突变体的构建[J].生物技术通报,2007(4)165–168
    99Santarossa G, Lafranconi P G, Alquati C, et al. Mutations in the ‘‘lid’’ region affect chain lengthspecificity and thermostability of a Pseudomonas fragi lipase[J]. FEBS Lett,2005,579(11):2383–2386
    100刘燕雅,黄平,司圣乾等. P197E与ep8叠加突变对扩展青霉脂肪酶热稳定性的影响[J].微生物学通报,2010,37(2):161–165
    101Kumar R, Sharma M, Singh R, et al. Characterization and evolution of a metagenome-derived lipasetowards enhanced enzyme activity and thermostability[J]. Mol Cell Biochem,2013,373(1–2):149–159
    102吴厚军,喻晓蔚,沙冲等. D190V点突变提高华根霉Rhizopus chinensis CCTCC M201021脂肪酶的最适温度和热稳定性[J].微生物学通报,2013,40(11):1955–1961
    103Wu L, Liu B, Hong Y, et al. Residue Tyr224is critical for the thermostability of Geobacillus sp. RD-2lipase[J]. Biotechnol Lett,2010,32(1):107–112
    104赵伟,许尤厚,郑甲等.基于支持向量机的脂肪酶耐热序列与嗜热序列分类研究[J].中南大学学报(自然科学版),2011,42(9):2543–2550
    105Zhang H M, Li J F, Wu M C, et al. Determination of amino acids and dipeptides is correlatedsignificantly with optimum temperatures of microbial lipases[J]. Ann Microbiol,2013,63:307–313
    106Acharya P, Rajakumara E, Sankaranarayanan R, et al. Structural basis of selection and thermostabilityof laboratory evolved Bacillus subtilis lipase[J]. J Mol Biol,2004,341(5):1271–1281
    107Ahmad S, Rao N M. Thermally denatured state determines refolding in lipase: mutational analysis[J].Protein Sci,2009,18(6):1183–1196
    108Kamal M Z, Ahmad S, Molugu T R, et al. In vitro evolved non-aggregating and thermostable lipase:structural and thermodynamic investigation[J]. J Mol Biol,2011,413(3):726–741
    109Jaeger K E, Dijkstra B W, Reetz M T. Bacterial biocatalysts: molecular biology, three-dimensionalstructures and biotechnological applications of lipases[J]. Annu Rev Microbiol,1999,53:315–351
    110Saxena R K, Sheoran A, Giri B, et al. Purification strategies for microbial lipases[J]. J MicrobiolMethods,2003,52(1):1–18
    111Sharma R, Soni S K, Vohra R M, et al. Purification and characterisation of a thermostable alkalinelipase from a new thermophilic Bacillus sp. RSJ-1[J]. Process Biochem,2002,37(10):1075–1084
    112张搏,杨江科,闫云君.假单胞菌脂肪酶的研究进展[J].生物技术通报,2007(2):52–57
    113Hube B, Stehr F, Bossenz M, et al. Secreted lipases of Candida albicans: cloning, characterization andexpression analysis of a new gene family with at least ten members[J]. Arch Microbiol,2000,174(5):362–374
    114Eggert T, van Pouderoyen G, Pencreac’h G, et al. Biochemical properties and three-dimensionalstructures of two extracellular lipolytic enzymes from Bacillus subtilis[J]. Colloid Surf B Biointerface,2002,26(1–2):37–46
    115Taipa M A, Liebeton K, Costa J V, et al. Lipase from Chromobacterium viscosum: biochemicalcharacterization indicating homology to the lipase from Pseudomonas glumae[J]. Biochim BiophysActa,1995,1256(3):396–402
    116Beer H D, McCarthy J E G, Bornscheuer U T, et al. Cloning, expression, characterization and role ofthe leader sequence of a lipase from Rhizopus oryzae[J]. Biochim Biophys Acta,1998,1399(2–3):173–180
    117王乐乐.华根霉(Rhizopus chinensis)脂肪酶的基因克隆、表达,纯化和酶学性质研究[D]:[硕士学位论文].无锡:江南大学,2008
    118邬敏辰,王曙,黄伟达等.圆弧青霉碱性脂肪酶的分离纯化和特性[J].生物化学与生物物理学报,1999,31(6):664–668
    119Wu M C, Qian Z K, Jiang P H, et al. Cloning of an alkaline lipase gene from Penicillium cyclopiumand its expression in Escherichia coli[J]. Lipids,2003,38(3):191–199
    120邓珊珊,邬敏辰,李江华等.圆弧青霉BD26碱性脂肪酶基因的克隆及其在大肠杆菌中的表达[J].食品与发酵工业,2008,34(2):42–46
    121邬敏辰,朱劼,黄伟达等.圆弧青霉脂肪酶基因的克隆和表达[J].无锡轻工大学学报,2002,21(3):218–223
    122Wang J Q, Zhang H M, Wu M C. et al. Cloning and sequence analysis of a novel xylanase gene,Auxyn10A, from Aspergillus usamii[J]. Biotechnol Lett,2011,33(5):1029–1038
    123Sambrook J, Russell D W. Molecular cloning: a laboratory manual, Cold Spring Harbor, NY, USA:Cold Spring Harbor Laboratory Press,2001.1595–1604
    124Laemmli U K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4[J].Nature,1970,227(5259):680–685
    125Li J F, Tang C D, Shi H L, et al. Cloning and optimized expression of a neutral endoglucanase gene(ncel5A) from Volvariella volvacea WX32in Pichia pastoris[J]. J Biosci Bioeng,2011,111(5):537–540
    126邓珊珊.圆弧青霉碱性脂肪酶基因的克隆、定点突变及其表达的研究[D]:[硕士学位论文].无锡:江南大学,2008
    127Jahic M, Gustavsson M, Jansen A K, et al. Analysis and control of proteolysis of a fusion protein inPichia pastoris fed-batch processes[J]. J Biotechnol,2003,102(1):45–53
    128邬敏辰,李江华.圆弧青霉PG37碱性脂肪酶的研究[J].江苏食品与发酵,1997(4):2–7
    129Qureshi M S, Zhang D, Du G, et al. Improved production of polygalacturonate lyase by combining apH and online methanol control strategy in a two-stage induction phase with a shift in the transitionphase[J]. J Ind Microbiol Biotechnol,2010,37(4):323–333
    130Zhang J, Wang X, Su E, et al. A new fermentation strategy for S-adenosylmethionine production inrecombinant Pichia pastoris[J]. Biochem Eng J,2008,41(1):74–78
    131Shi X, Karkut T, Chamankhah M, et al. Optimal conditions for the expression of a single-chainantibody (scFv) gene in Pichia pastoris[J]. Protein Expr Purif,2003,28(2):321–330
    132Jaeger K E, Eggert T. Lipase for biotechnology[J]. Curr Opin Biotechnol,2002,13(4):390–397
    133Alquati C, De Gioia L, Santarossa G, et al. The cold-active lipase of Pseudomonas fragi. Heterologousexpression, biochemical characterization and molecular modeling[J]. Eur J Biochem,2002,269(13):3321–3328
    134Liebeton K, Zacharias A, Jaeger K E. Disulfide bond in Pseudomonas aeruginosa lipase stabilizes thestructure but is not required for interaction with its foldase[J]. J Bacteriol,2001,183(2):597–603
    135Grochulski P, Bouthillier F, Kazlauskas R J, et al. Analogs of reaction intermediates identify a uniquesubstrate binding site in Candida rugosa lipase[J]. Biochemistry,1994,33(12):3494–3500
    136Uppenberg J, Ohrner N, Norin M, et al. Crystallographic and molecular-modeling studies of lipase Bfrom Candida antarctica reveal a stereospecificity pocket for secondary alcohols[J]. Biochemistry,1995,34(51):16838–16851
    137Lang D A, Mannesse M L, de Haas G H, et al. Structural basis of the chiral selectivity ofPseudomonas cepacia lipase[J]. Eur J Biochem,1998,254(2):333–340
    138Nardini M, Lang D A, Liebeton K, et al. Crystal structure of Pseudomonas aeruginosa lipase in theopen conformation The prototype for family I.1of bacterial lipases[J]. J Biol Chem,2000,275(40):31219–31225
    139Dombkowski A A. Disulfide by Design: a computational method for the rational design of disulfidebonds in proteins[J]. Bioinformatics,2003,19(14):1852–1853
    140Badieyan S, Bevan D R, Zhang C. Study and design of stability in GH5cellulases[J]. BiotechnolBioeng,2012,109(1):31–44
    141Joo J C, Pack S P, Kim Y H, et al. Thermostabilization of Bacillus circulans xylanase: computationaloptimization of unstable residues based on thermal fluctuation analysis[J]. J Biotechnol,2011,151(1):56–65
    142Xie Z H, Shi X J. Fast and almost100%efficiency site-directed mutagenesis by the megaprimer PCRmethod[J]. Prog Biochem and Biophys,2009,36(11):1490–1494
    143Zhou C, Bai H, Deng S, et al. Cloning of a xylanase gene from Aspergillus usamii and its expression inEscherichia coli[J]. BioresourTechnol,2008,99(4):831–838
    144Ollis D L, Cheah E, Cygler M, et al. The α/β hydrolase fold[J]. Protein Eng,1992,5(3):197–211
    145Liu L, Gao C, Lan D, et al. Molecular basis for substrate selectivity of a mono-and diacylglycerollipase from Malassezia globosa[J]. Biochem Biophys Res Commun,2012,424(2):285–289
    146Radestock S, Gohlke H. Explotiting the link between protein rigidity and thermostability fordata-driven protein engineering[J]. Eng Life Science,2008,8(5):507–522
    147Austin B P, Waugh D S. Isolation of Metarhizium anisopliae carboxypeptidase A with native disulfidebonds from the cytosol of Escherichia coli BL21(DE3)[J]. Protein Expr Purif,2012,82(1):116–214
    148Warsame A, Vad R, Kristensen T, et al. Characterization of a gene encoding a Pichia pastoris proteindisulfide isomerase[J]. Biochem Biophys Res Commun,2001,281(5):1176–1182
    149Cereghino J L, Cregg J M. Heterologous protein expression in the methylotrophic yeast Pichiapastoris[J]. FEMS Microbiol Rev,2000,24(1):45–66
    150Yamaguchi S, Takeuchi K, Mase T, et al. The consequences of engineering an extra disulfide bond inthe Penicillium camembertii mono-and diglyceride specific lipase[J]. Protein Eng,1996,9(9):789–795
    151Dubois M, Gilles K A, Hamilton J K, et al. Colorimetric method for determination of sugars andrelated substances[J]. Anal Chem,1956,28:350–356
    152Roh C, Villatte F. Isolation of a low-temperature adapted lipolytic enzyme from uncultivatedmicro-organism[J]. J Appl Microbiol,2008,105(1):116–123
    153Sang S L, Li G, Hu X P, et al. Molecular cloning, overexpression and characterization of a novelferuloyl esterase from a soil metagenomic library[J]. J Mol Microbiol Biotechnol,2011,20(4):196–203
    154Katakura Y, Zhang W, Zhuang G, et al. Effect of methanol concentration on the production of humanβ2-glycoproteinⅠ domain V by a recombinant Pichia pastoris: A simple system for the control ofmethanol concentration using a semiconductor gas sensor[J]. Ferment Bioeng,1998,86(5):482–487
    155Cregg J M, Higgins D R. Production of foreign proteins in the yeast Pichia pastoris[J]. Can J Bot,1995,73(S1):891–897
    156Chen X, Cao Y, Ding Y, et al. Cloning, functional expression and characterization of Aspergillussulphureus β-mannanase in Pichia pastoris[J]. J Biotechnol,2007,128(3):452–461
    157Zhang H, Wu M, Li J, et al. Cloning and expression of a novel xylanase gene (Auxyn11D) fromAspergillus usamii E001in Pichia pastoris[J]. Appl Biochem Biotechnol,2012,167(8):2198–2211
    158Srimathi S, Jayaraman G. Effect of glycosylation on the catalytic and conformational stability ofhomologous α-amylases[J]. Protein J,2005,24(2):79–88
    159Shental-Bechor D, Levy Y. Effect of glycosylation on protein folding: a close look at thermodynamicstabilization[J]. Proc Natl Acad Sci U S A,2008,105(24):8256–8261
    160Horchani H, Ouertani S, Gargouri Y, et al. The N-terminal His-tag and the recombination processaffect the biochemical properties of Staphylococcus aureus lipase produced in Escherichia coli[J]. JMol Catal B-Enzym,2009,61(3–4):194–201
    161Xu T, Liu L, Hou S, et al. Crystal structure of a mono-and diacylglycerol lipase from Malasseziaglobosa reveals a novel lid conformation and insights into the substrate specificity[J]. J Struct Biol,2012,178(3):363–369
    162徐光宪,王祥云.物质结构[M].第2版.北京:科学出版社,2010
    163Reetz M T. Laboratory evolution of stereoselective enzymes as a means to expand the toolbox oforganic chemists[J]. Tetrahedron,2012,68(37):7530–7548
    164董华壮,扶雄,罗志刚等.双酶协同酶解木薯淀粉的研究[J].现代食品科技,2009,25(2):182–184,187
    165Collins T, Gerday C, Feller G. Xylanases, xylanase families and extremophilic xylanases[J]. FEMSMicrobiol Rev,2005,29,3–23
    166黄瑛,高欢,郑海等.脂肪酶协同催化猪油合成生物柴油工艺研究[J].中国生物工程杂志,2008,28(1):30–35
    167尤纪雪,连海兰,叶汉玲等.脂肪酶在麦草漆酶脱木素中的协同作用[J].中国造纸,2006,25(11):5–8
    168李晓敏,万金泉,马邕文.碱性脂肪酶与表面活性剂协同脱墨[J].纸和造纸,2006,25(2):49–51
    169韩瑞丽,马健,张佳程等. HPLC-ELSD与GC-MS法测定牛乳甘油三酯sn-2位脂肪酸组成[J].分析测试技术与仪器,2009,34(1):30–34

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700