纤维堆囊菌遗传操作体系建立及其在埃博霉素生物合成改造中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
粘细菌是革兰氏阴性的滑动细菌,它以复杂的多细胞社会学行为及产生多种生物活性物质而著称。至今研究者已经从粘细菌次级代谢物中鉴定了100种以上的基本化学结构和500多种结构衍生物,约占微生物来源活性物质总数的3.5%。在粘细菌的研究中,急需适宜的遗传操作工具。但是到目前为止,转导和电穿孔方法只能在模式菌粘球菌中有效的应用。在其他的粘细菌类群中,甚至是不同的种或菌株,遗传操作都很难获得结果或效率很低。
     堆囊菌属是粘细菌中唯一能够降解纤维素的生理类群,尤其令人感兴趣的是该属菌株能够产生丰富的次级代谢产物。菌株次级代谢物产生率接近100%,而且在粘细菌共17个属所产生的次级代谢产物种类中,堆囊菌属的次级代谢产物可达到48.4%。菌株So0157-2是本实验室从盐水湖岸边土样品中分离鉴定的一株纤维堆囊菌。实验室前期生物学活性分析结果证实So0157-2可以产生包括埃博霉素(epothilones)在内的多种生物活性物质,是重要的药源菌。
     从天然药物的结构出发,进行结构修饰、类似物的合成及系统的活性研究,以作为设计新药目标化合物的基础,是国际上研究天然活性成分的主要思路和方法。埃博霉素作为极具潜力的抗癌药物,其分子结构与生物合成特点激发了科研人员和制药公司的极大热情,并已经成为化学界、生物界和临床医学研究的热点。埃博霉素属于聚酮类化合物,由大型多酶复合体催化羧酸单体连续缩合而形成,该酶复合体称为聚酮合酶即PKSs(Polyketide synthases)。模块PKSs是聚酮合酶家族中的独特类群,表现出极其丰富的结构和功能,该类模块PKS的逻辑组织结构形式,为人工创造各种非天然“天然”化合物提供了灵感,是组合生物合成的良好模式材料。
     作为粘细菌产生的次级代谢产物中最具有应用前景的埃博霉素,其组合生物学改造的重要前提之一是建立良好的遗传操作手段。目前,纤维堆囊菌中主要的遗传操作方法是接合转移,该方法在1992年由Jaoua S等人建立。随着纤维堆囊菌次级代谢研究的展开,研究人员发现由于不同的纤维堆囊菌菌株生理生化性能存在显著差异,已建立的遗传操作系统缺乏通用性,如在纤维堆囊菌So ce26或So ce56菌株中建立的遗传操作系统并不能有效地应用于纤维堆囊菌的其它菌株。而且,遗憾的是文献所报道的接合转移方法同样不适用于本实验室分离的埃博霉素产生菌株So0157-2的遗传操作。所以,纤维堆囊菌遗传操作手段的匮乏极大地阻碍了埃博霉素以及其他次级代谢产物的研究。为了避开纤维堆囊菌难于操作的问题,研究者将目光转到了发酵友好的异源宿主中,然而异源表达面临的难题是:epothilones对于非纤维堆囊菌宿主具有强烈的细胞毒活性,而epothilones的抗性机理尚不明确,使得异源表达产量较低,给后续的产物分析及工业化制备带来很多困难。
     纤维堆囊菌So0157-2是一株具有优良发酵性状的埃博霉素产生菌,具有非常广阔的应用前景。为了实现埃博霉素在产生菌中的定向结构改造及代谢调控改造,探索和建立其高效的遗传操作方法势在必行。因此本论文从接合转移和转化两个方面对纤维堆囊菌的遗传体系进行了研究。在建立起高效广泛适用于不同纤维堆囊菌的抗生素添加接合转移方法的同时,还发现纤维堆囊菌子实体形成过程中存在自然转化的现象。利用本文所建立的抗生素添加的接合转移方法,在epothilones产生菌So0157-2中进行了epothilone的定向改造及代谢调控改造,并检测到了epothilones结构类似物的合成。论文的相关工作为进行纤维堆囊菌的组合生物合成建立了技术平台,希望产生大量的新化合物,丰富药物筛选原料库。此外,本论文还在纤维堆囊菌中发现了自然转化并对其实现条件进行了初步探索,相关结果为纤维堆囊菌遗传操作提供了新的思路。
     实验通过在氯霉素抗性基因cat前端加入纤维堆囊菌能够识别的启动子aphⅡ,构建了氯霉素抗性基因盒,然后将其插入诱动载体pCVD442中,解决了纤维堆囊菌So0157-2接合转移中无可用筛选抗生素的问题。这是首次将抗性基因序列短、不易产生耐药性的氯霉素引入到纤维堆囊菌的遗传操作系统中,使氯霉素继腐草霉素与潮霉素后成为第三个纤维堆囊菌遗传操作筛选标记。
     通过对纤维堆囊菌接合转移条件的摸索,最终确定了低剂量双筛选抗生素添加的接合转移方法。该方法与现有的纤维堆囊菌So ce56遗传操作方法相比,接合转移效率提高了10倍以上,阳性率几乎达到100%。并且对于So0157-2等难于操作的纤维堆囊菌来说,抗生素添加的接合转移方法使其遗传操作的效率提高了100倍以上,为次级代谢改造在纤维堆囊菌中的直接进行铺平了道路。进一步实验证明,该方法不仅在纤维堆囊菌中具有广泛的适用性,并且对大肠杆菌的接合转移同样具有促进作用。
     通过质粒的连续添加实验,首次实现了纤维堆囊菌So0003-3的自然转化,而且基本确定了自然感受态出现的时间阶段,即子实体形成的早期。实验还确定了CaCl_2对感受态的形成有较好的促进作用,并发现纤维堆囊菌对外界DNA的吸收重组可能具有序列识别能力。通过自然转化的方法将含有埃博酶素epoF基因片段的质粒pCCK700转入纤维堆囊菌So0003-3中,并对转化子进行了验证。此外,通过纤维堆囊菌So0003-3对外源DNA的吸附及降解情况以及子实体形成中释放出大量DNA的实验现象,证明了在自然环境中纤维堆囊菌发生自然转化的可能性。目前,纤维堆囊菌转化的研究还处于起步的阶段,随着研究的深入该方法极有可能成为纤维堆囊菌遗传操作又一有力工具。与此同时,自然转化在粘细菌中的发现还为其如此庞大的基因组可能是通过基因水平转移进化而来提供了实验支持。
     以本论文所建立的抗生素添加的纤维堆囊菌高效接合转移体系为基础,利用聚酮合酶的模块特性,设计了单一结构域失活以及模块缺失的结构改造路线。实现了基因epoD中模块7的结构域失活,并将epoE中的TE结构域提前到了epoD中,对埃博霉素的合成进行了提前终止,并对所获得的突变株进了产物分析。目前尚未见对埃博霉素合成酶基因簇中这两个模块进行研究的报道。相关实验结果证明,模块7中KR结构域是没有功能的,这与氨基酸序列以及产物结构分析的结果相吻合;模块7中MT结构域的失活使产物epthiloneA1、A2的发酵量有所提高。另外,TE结构域提前使埃博霉素合成提前终止,但其产物的鉴定仍需要更多的结构化学分析。相关的实验内容对埃博霉素定向改造进行了初步探索,相关结果可以为筛选新的埃博霉素类似物提供备选化合物,并为聚酮类化合物的组合生物合成奠定基础和提供理论指导。
     纤维堆囊菌所产生的次级代谢产物中,聚酮类化合物是主要的产物,其合成酶基因通常表现出独特的序列组成和组织结构的多样性。美国基因组学研究所(TIGR)对粘细菌DK1622的全基因组序列分析发现,PKSs基因约占其基因组的8.6%,因此在堆囊菌中仍可能有大量的次级代谢物有待我们去研究。实验室的前期工作从So0157-2的cosmid粘粒文库中筛选到了一个非埃博霉素聚酮合酶基因,该聚酮合酶与埃博霉素合酶的组织结构有一定的相似性。本论文对该粘粒cosmid6进行了测序,共获得了31777 bp的序列,其中包括一个完整的新的聚酮合酶基因dx1,全长14673 bp,初步判断其含有3个模块。还获得了dx1下游部分dx2基因。对dx1、dx2基因进行了结构域的预测,证实该聚酮合酶为一类结构较为新颖的聚酮合酶基因簇——反式AT型模块PKS。同时确定了该基因簇中没有NRPS模块的存在,对前期的cosmid6所含聚酮合酶的特征预测进行了修正。使用本论文所建立的抗生素添加的接合转移方法对野生型纤维堆囊菌So0157-2的dx1基因进行了插入失活。对突变子的产物分析表明,埃博霉素产量明显提高。相关研究不仅可以帮助我们认识纤维堆囊菌So0157-2中聚酮合酶的多样性和特殊性,认识纤维堆囊菌聚酮类化合物合成酶基因的表达及代谢关联,帮助我们构建高效合成目标化合物的工程菌,并且为发现和利用更多的粘细菌次级代谢产物,发掘粘细菌巨大的次级代谢潜力提供可能。
Myxobacteria are Gram-negative gliding bacteria that are noted for the complicated multicellular social behavior and the excellent ability to produce various bioactive compounds.In the past two decades,about 100 basic structures and 500 structural variants have been discovered in myxobacteria and have been fully characterized chemically,which account for about 3.5%of the presently known secondary metabolites of microbial origin.Nearly 100%of the Sorangium strains produce some kinds of compounds with diverse biological activities.The genetic tools are urgently needed in myxobacteria but to date,transduction and electroporation have been well described only for the model species Myxococcus xanthus.In other myxobacterial taxa and even different Myxococcus species or strains,the genetic performance is usually difficult to achieve or suffers from low efficiency.
     In Sorangium,the only cellulose-degrader among all of the 17 myxobacterial genera but the producer of almost half of the discovered secondary metabolites from myxobacteria,there are many barriers for genetic performances.The sorangial cells grow slowly,possess multiple antibiotics-resistances,produce abundant extracellular polysaccharides,and tend to aggregate.In Sorangium,conjugation,which was first reported by Jaoua et al.in 1992,is the major genetic tool.In 2002,Pradella et al. adapted the conjugation conditions for S.cellulosum So ce56.However,the conjugation protocol developed for S.cellulosum So ce56 or So ce26 is probably not applicable for other Sorangium strains,due to the discrepant physiological characteristics of Sorangium strains.The Sorangium So0157-2 is a facultative alkaliphile strain,which was isolated from a soil sample collected on ChengHai lake bank.Our previous bioactivity screeninganalysis confirmed that So0157-2 is a promising strain for the production of bioactive secondary metabolites.But using the normal conjugation protocol,there was no visible conjugant on the selection plates.
     At present,structure modification and analogue synthesis of natural products are the main methods for screening new drugs.The polyketide compounds-epothilones are produced by Sorangium strains,and has generated substantial interests over the last few years in the areas of chemistry,biology,and medicine due to their interesting structure and,more importantly,their activity against numerous cancer cell lines. Polyketides are one important large family of complex natural products.They are synthesized from simple carboxylic acids by sequential reactions catalyzed by the large multienzyme protein complexes called polyketide synthases(PKSs).Modular PKSs constitute a unique class of type I polyketide synthases,exhibiting remarkable diversity in terms of their structures and functions.In resent years,the combinatorial genetic protocols have been applied and confirmed to expand vastly the molecular diversity of these pharmacologically important metabolites,taking advantage of the natural modularity of polyketides.However the most serious problem is that the Sorangium strains have poorly developed the conjugation system and thus lacks flexible genetic tools.The studies of epothilones and other secondary metabolites are lagging.To bypass the serious limitations of Sorangium genetics manipulation, researchers integrated by homologous recombination the entire epothilones gene clusters to heterologous hosts,in which the background genetic methodology is already more highly developed,for the production of value metabolites.But epothilones had great toxicity to heterologous hosts,and the yields were quite low.
     Sorangium cellulosum So0157-2 is an epothilone producer with good fermentation characteristics.Efficient genetic manipulation methods are needed to establish for epothilone structure modification and regulation controlling in Sorangium cellulosum So0157-2.In this work we discovered two important protocols.One is that we established an efficient conjugation method by the presence of the dual selective antibiotics,which fit for different Sorangium strains even different microorganisms. The other is that we discovered the natural transformation during the development of fruiting bodies.Using the improved conjugation protocol,we achieved in epothilones structure modification in its producing strain.The efficient and flexible conjugation toolbox established in this work meet the major requirements for practical exploitations of combinatorial biosynthesis.The natural transformation was discovered for the first time in myxobacteria,which can afford new ideas and potential means for developing new genetic performance techniques in myxobacteria.
     Before this work,the selection markers used for Sorangium conjugation protocols was only phlenmycin and hygromycin.However,many Sorangium strains were found to be able to tolerate phleomycin and/or hygromycin,such as So0157-2 and So02007-3.To select a competent marker for Sorangium conjugation,we screened different Sorangium strains on a large scale for their antibiotics-resistances,which revealed that chloramphenicol was one of the few antibiotics to which all of the screened Sorangium strains were sensitive.Thus,a chloramphenicol resistance cassette containing an aphⅡpromoter element and a followed chloramphenicol resistant gene was constructed into the mobilizable plasmid pCVD442.Aider insertion of the fragments of epothilone biosynthetic genes,the resulting plasmids were used for transfer from DH5α(λpir)to S.cellulosum strains with the help of pRK2013.
     Using the previously described procedures,there was no visible transconjugant from the mating of S.cellulosum So0157-2 cells and the E.coil cells,even adjusting the ratio of the donor and recipient cells,conjugative time,and culture stages. However,when low dosages of the dual selective antibiotics were added into the mating medium,many clones appeared on the selection plates.The mating efficiency for transfer of pCCMT61 containing a 3 kb-insert of epothilone gene fragment was 1-3×10~(-6).For So0157-2,the genetic manipulation efficiency was improved 100 times, and the background growth was smoothed away.The improved protocol is able to circumvent the barriers for the Sorangium conjugation and is potentially applicable for different Sorangium strains,either sensitive or less sensitive to living E.coli cells.The effect of the dual selective antibiotics was also confirmed in the mating for transfer of the self-transmissible plasmid pRK2013 from E.coli strain DH5αto HB101.The finding is significant for those less-efficient or unachievable conjugation performances, especially in those slowly growing bacteria.
     By the addition of plasmid pCCK700 to So0003-3,the natural genetic transformation appeared.Our experimental results indicate that competence for the uptake of exogenous DNA materials is able to be transiently developed during the fruiting body formation.We also found that CaCl_2 was helpful for the forming of competence stage,and sequence-specific DNA uptake in transformation of Sorangium. Developmental lysis of cells occurs during the morphogenesis and provides a DNA pool,which is suggested to be available for the natural transformation if competence is developed.The discovery of competence of cells in fruiting bodies and natural transformation provides not only a reasonable explanation for the expansion means of myxobacterial genomes,but also new ideas and potential means for developing new genetic performance techniques in myxobacteria.
     Based on the conjugation method with low dosages of dual selecting antibiotics established by this work,module 7 and module 8 of epothilones synthases gene were used for structure modification.β-ketoacyl-ACP reductase(KR)domain and methyltransferase(MT)domain of module 7 were inactivated by the insertion of chloramphenicol resistance cassette.It was turned out that KR domain in module 7 was inactive and MT domain inactivation in module 7 could lead to production increase of epothiloneA1 and epothiloneA2.Meanwhile the thioesterase(TE)domain was repositioned to module 7,which promote the epothilones specific cleavage in forward,but the products need to be confirmed further.The results were helpful to the combinatorial manipulation of the structures of polyketides,and the resulting products can help to enrich the compounds pool for the selection of drugs.
     Genome sequencing indicated that 5-10%genome was constituted by PKSs,and it was about twice the capacity for producing polyketides of either Streptomyces coelicolor or Streptomyces avermitilis.Our previous construction of So0157-2 genome library got a cosmid 6 which had high organized similar with epothilones synthases genes.We got 31777 bp sequences by sequencing,in which there was a new polyketide synthase gene,named dx1.There were three modules in dx1,but no acyl-transferase(AT)was found.We did not found NRPS module in dx1.So the dx1 gene was trans-AT module PKS.The inactivation of dx1 make the epothilones product of So0157-2 increased apparently.The exploration of regulatory alteration in So0157-2 can help us not only reconstruct efficient industrial strain,but also find and utilize more secondary metabolites.
引文
1. Reichenbach, H. and G. Hofle. 1999. Myxobacteria as producers of secondary metabolites. In: Grabley S, Thiericke R (eds) Drug discovery from nature. Springer, Berlin Heidelberg New York, pp 149-179.
    2. Dworkin, M. 2000. Introduction to the myxobacteria. In: Brun YV, Shimkets LJ (eds) Prokaryotic development. American Society of Microbiology, Washington, D.C., pp 221-242.
    3. Dworkin, M. 1996. Recent advances in the social and developmental biology of the myxobacteria. Microbiol. Rev. 60:70-102.
    4. Dawid, W. 2000. Biology and global distribution of myxobacteria in soils. FEMS Microbiol. Rev. 24:403-427.
    5. Reichenbach, H. and M. Dworkin. 1992. The myxobacteria. The prokaryotes, 2nd ed (Balows A, Truper HG, Dworkin M, Harder W & Schleifer KH, eds).
    6. Shimkets. L. J., M. Dworkin, and H. Reichenbach. 2005. The myxobacteria. In A. Balows, G.H. Truper, M. Dworkin, W. Harder, and K. H. Schleifer (eds.), The Prokaryotes. Springer, New York. 1-94.
    
    7. Gerth, K., S. Pradella, O. Perlova, S. Beyer, and R. Muller. 2003. Myxobacteria: proficient producers of novel natural products with various biological activities—past and future biotechnological aspects with the focus on the genus Sorangium. J Biotechnol. 106:233-253.
    8. Pradella, S., A. Hans, C. Sproer, H. Reichenbach, K. Gerth, and S. Beyer. 2002. Characterisation, genome size and genetic manipulation of the myxobacterium Sorangium cellulosum So ce56. Arch. Microbiol. 178:484-492.
    9. Dawid, W., C. A. Gallikowski, and P. Hirsch 1988. Psychrophilic myxobacteria from Antarctic soils. Polarforschung271-278.
    10. Kaiser, D. 2003. Coupling cell movement to multicellular development in myxobacteria. Nat. Rev. Microbiol. 1:45-54.
    11. Bode, H. B. and R. Muller. 2007. Reversible Sugar Transfer by Glycosyltransferases as a Tool for Natural Product (Bio)synthesis. Angew. Chem. Int. Ed Engl. 46:2147-2150.
    12.Li Jian,Li Yuezhong,and Wang Zhenyi.1998.Advances in Studies of Bioactive Substances Produced by Myxobacteria.Journal of Chinese new medicine 7:89.
    13.李越中,李健,周璐,张勇,胡玮,陈琦.我国粘细菌(Myxobacteria)资源的分离与鉴定.微生物学报,2000,40(6):652-656.
    14.Julien,B.and R.Fehd.2003.Development of a mariner-based transposon for use in Sorangium cellulosum.Appl.Environ.Microbiol.69:6299-6301.
    15.吴斌辉,李越中,胡玮,周璐,侯配斌.纤维堆囊菌的多细胞形态发生过程.微生物学报,2002,42(6):657-661.
    16.吴斌辉,李越中,王溱圯,胡玮,侯爱华.纤维堆囊菌生长及限制因素的研究.生物技术,2001,11(3):16-18.
    17.Gray,K.M.1997.Intercellular communication and group behavior in bacteria.Trends Microbiol.5:184-188.
    18.Kopp,M.,H.Irschik,S.Pradella,and R.Muller.2005.Production of the tubulin destabilizer disorazol in Sorangium cellulosum:biosynthetic machinery and regulatory genes.Chembiochem.6:1277-1286.
    19.Perlova,O.,K.Gerth,O.Kaiser,A.Hans,and R.Muller.2006.Identification and analysis of the chivosazol biosynthetic gene cluster from the myxobacterial model strain Sorangium cellulosum So ce56.J Biotechnol.121:174-191.
    20.Julien,B.,S.Shah,R.Ziermann,R.Goldman,L.Katz,and C.Khosla.2000.Isolation and characterization of the epothilone biosynthetic gene cluster from Sorangium cellulosum.Gene 249:153-160.
    21.Gerth,K.,N.Bedorf,H.Irschik,G.Hofle,and H.Reichenbach.1994.The soraphens:a family of novel antifungal compounds from Sorangium cellulosum (Myxobacteria).I.Soraphen A1 alpha:fermentation,isolation,biological properties.J Antibiot.(Tokyo)47:23-31.
    22.Gerth,K.,P.Washausen,G.Hofle,H.Irschik,and H.Reichenbach.1996.The jerangolids:A family of new antifungal compounds from Sorangium cellulosum (Myxobacteria).Production,physico-chemical and biological properties of jerangolid A.J Antibiot.(Tokyo)49:71-75.
    23.Irschik,H.,R.Jansen,K.Gerth,G.Hofle,and H.Reichenbach.1995.Sorangiolid A,a new antibiotic isolated from the myxobacterium Sorangium cellulosum So ce 12.J Antibiot.(Tokyo)48:886-887.
    24.Gerth,K.,D.Schummer,G.Hofle,H.Irschik,and H.Reichenbach.1995. Ratjadon: a new antifungal compound from Sorangium cellulosum (myxobacteria) production, physio-chemical and biological properties. J Antibiot. (Tokyo) 48:973-976.
    
    25. Julien, B., Z. Q. Tian, R. Reid, and C. D. Reeves. 2006. Analysis of the ambniticin and jerangolid gene clusters of Sorangium cellulosum reveals unusual mechanisms of polyketide biosynthesis. Chem. Biol. 13:1277-1286.
    
    26. Service, R. F. 1996. Tumor-killer made; how does it work? Science 274:2009.
    
    27. Domling, A. and W. Richter. 2005. Myxobacterial epothilones and tubulysins as promising anticancer agents. Mol. Divers. 9:141-147.
    
    28. Kolman, A. 2005. Activity of epothilones. Curr. Opin. Investig. Drugs 6:616-622.
    
    29. Cane, D. E., C. T. Walsh, and C. Khosla. 1998. Harnessing the biosynthetic code: combinations, permutations, and mutations. Science 282:63-68.
    
    30. Hopwood, D. A. 1997. Genetic Contributions to Understanding Polyketide Synthases. Chem. Rev. 97:2465-2498.
    
    31. Shen, B. 2003. Polyketide biosynthesis beyond the type Ⅰ, Ⅱ and Ⅲ polyketide synthase paradigms. Curr. Opin. Chem. Biol. 7:285-295.
    
    32. Yadav, G., R. S. Gokhale, and D. Mohanty. 2003. Computational approach for prediction of domain organization and substrate specificity of modular polyketide synthases. J Mol. Biol. 328:335-363.
    
    33. Pereda, A., R. G.Summers, D. L. Stassi, X. Ruan, and L. Katz. 1998. The loading domain of the erythromycin polyketide synthase is not essential for erythromycin biosynthesis in Saccharopolyspora erythraea. Microbiology 144 (Pt 2):543-553.
    
    34. Xue, Q., G.Ashley, C. R. Hutchinson, and D. V. Santi. 1999. A multiplasmid approach to preparing large libraries of polyketides. Proc. Natl. Acad. Sci. U. S. A 96:11740-11745.
    
    35. Gokhale, R. S., D. Hunziker, D. E. Cane, and C. Khosla. 1999. Mechanism and specificity of the terminal thioesterase domain from the erythromycin polyketide synthase. Chem. Biol. 6:117-125.
    
    36. Santi, D. V., M. A. Siani, B. Julien, D. Kupfer, and B. Roe. 2000. An approach for obtaining perfect hybridization probes for unknown polyketide synthase genes: a search for the epothilone gene cluster. Gene 247:97-102.
    
    37. Staunton, J. and B. Wilkinson. 2001. Combinatorial biosynthesis of polyketides and nonribosomal peptides. Curr. Opin. Chem. Biol. 5:159-164.
    38. Khalil, M. W., F. Sasse, H. Lunsdorf, Y. A. Elnakady, and H. Reichenbach. 2006. Mechanism of action of tubulysin, an antimitotic peptide from myxobacteria. Chembiochem. 7:678-683.
    39. Jenke-Kodama, H., A. Sandmann, R. Muller, and E. Dittmann. 2005. Evolutionary implications of bacterial polyketide synthases. Mol. Biol. Evol. 22:2027-2039.
    40. Molnar, I., T. Schupp, M. Ono, R. Zirkle, M. Milnamow, B. Nowak-Thompson, N. Engel, C. Toupet, A. Stratmann, D. D. Cyr, J. Gorlach, J. M. Mayo, A. Hu, S. Goff, J. Schmid, and J. M. Ligon. 2000. The biosynthetic gene cluster for the microtubule-stabilizing agents epothilones A and B from Sorangium cellulosum So ce90. Chem. Biol. 7:97-109.
    41. Irschik, H., R. Jansen, K. Gerth, G. Hofle, and H. Reichenbach. 1995. Disorazol A, an efficient inhibitor of eukaryotic organisms isolated from myxobacteria. J Antibiot. (Tokyo) 48:31-35.
    42. Cortes, J., S. F. Haydock, G. A. Roberts, D. J. Bevitt, and P. F. Leadlay. 1990. An unusually large multifunctional polypeptide in the erythromycin-producing polyketide synthase of Saccharopolyspora erythraea. Nature 348:176-178.
    43. Cortes, J., K. E. Wiesmann, G. A. Roberts, M. J. Brown, J. Staunton, and P. F. Leadlay. 1995. Repositioning of a domain in a modular polyketide synthase to promote specific chain cleavage. Science 268:1487-1489.
    44. Cane, D. E., G.Luo, C. Khosla, C. M. Kao, and L. Katz. 1995. Erythromycin biosynthesis. Highly efficient incorporation of polyketide chain elongation intermediates into 6-deoxyerythronolide B in an engineered Streptomyces host. J Antibiot. (Tokyo) 48:647-651.
    45. Oliynyk, M., M. J. Brown, J. Cortes, J. Staunton, and P. F. Leadlay. 1996. A hybrid modular polyketide synthase obtained by domain swapping. Chem. Biol. 3:833-839.
    46. Ruan, X., A. Pereda, D. L. Stassi, D. Zeidner, R. G.Summers, M. Jackson, A. Shivakumar, S. Kakavas, M. J. Staver, S. Donadio, and L. Katz. 1997. Acyltransferase domain substitutions in erythromycin polyketide synthase yield novel erythromycin derivatives. J Bacteriol. 179:6416-6425.
    47. Donadio, S., M. J. Staver, J. B. McAlpine, S. J. Swanson, and L. Katz. 1991. Modular organization of genes required for complex polyketide biosynthesis. Science 252:675-679.
    48. Donadio, S., J. B. McAlpine, P. J. Sheldon, M. Jackson, and L. Katz. 1993. An erythromycin analog produced by reprogramming of polyketide synthesis. Proc. Natl. Acad. Sci. U. S. A 90:7119-7123.
    49. Bedford, D., J. R. Jacobsen, G.Luo, D. E. Cane, and C. Khosla. 1996. A functional chimeric modular polyketide synthase generated via domain replacement. Chem. Biol. 3:827-831.
    50. McDaniel, R., C. M. Kao, S. J. Hwang, and C. Khosla. 1997. Engineered intermodular and intramodular polyketide synthase fusions. Chem. Biol. 4:667-674.
    51. Bohm, I., I. E. Holzbaur, U. Hanefeld, J. Cortes, J. Staunton, and P. F. Leadlay. 1998. Engineering of a minimal modular polyketide synthase, and targeted alteration of the stereospecificity of polyketide chain extension. Chem. Biol. 5:407-412.
    52. Weissman, K. J., M. Timoney, M. Bycroft, P. Grice, U. Hanefeld, J. Staunton, and P. F. Leadlay. 1997. The molecular basis of Celmer's rules: the stereochemistry of the condensation step in chain extension on the erythromycin polyketide synthase. Biochemistry 36:13849-13855.
    53. Goodin, S., M. P. Kane, and E. H. Rubin. 2004. Epothilones: mechanism of action and biologic activity. J Clin. Oncol. 22:2015-2025.
    54. Altmann, K. H. 2005. Recent developments in the chemical biology of epothilones. Curr. Pharm. Des 11:1595-1613.
    55. Larkin, J. M. and S. B. Kaye. 2006. Epothilones in the treatment of cancer. Expert. Opin. Investig. Drugs 15:691-702.
    56. Bollag, D. M., P. A. McQueney, J. Zhu, O. Hensens, L. Koupal, J. Liesch, M. Goetz, E. Lazarides, and C. M. Woods. 1995. Epothilones, a new class of microtubule-stabilizing agents with a taxol-like mechanism of action. Cancer Res. 55:2325-2333.
    57. Lockshin, R. A. and Z. Zakeri. 2004. Caspase-independent cell death? Oncogene 23:2766-2773.
    58. Nettles, J. H., H. Li, B. Cornett, J. M. Krahn, J. P. Snyder, and K. H. Downing. 2004. The binding mode of epothilone A on alpha,beta-tubulin by electron crystallography. Science 305:866-869.
    59. Mani, S., M. Macapinlac, Jr., S. Goel, D. Verdier-Pinard, T. Fojo, M. Rothenberg, and D. Colevas. 2004. The clinical development of new mitotic inhibitors that stabilize the microtubule. Anticancer Drugs 15:553-558.
    60. Kowalski, R. J., P. Giannakakou, and E. Hamel. 1997. Activities of the microtubule-stabilizing agents epothilones A and B with purified tubulin and in cells resistant to paclitaxel (Taxol(R)). J Biol. Chem. 272:2534-2541.
    61. Altmann, K. H. 2003. Epothilone B and its analogs - a new family of anticancer agents. Mini. Rev. Med. Chem. 3:149-158.
    62. Li, Z. F., J. Y. Zhao, Z. J. Xia, J. Shi, H. Liu, Z. H. Wu, W. Hu, W. F. Liu, and Y. Z. Li. 2007. Evolutionary diversity of ketoacyl synthases in cellulolytic myxobacterium Sorangium. Syst. Appl. Microbiol. 30:189-196.
    63. Tang, L., S. Shah, L. Chung, J. Carney, L. Katz, C. Khosla, and B. Julien. 2000. Cloning and heterologous expression of the epothilone gene cluster. Science 287:640-642.
    64. Julien, B. and S. Shah. 2002. Heterologous expression of epothilone biosynthetic genes in Myxococcus xanthus. Antimicrob. Agents Chemother. 46:2772-2778.
    65. Mutka, S. C., J. R. Carney, Y. Liu, and J. Kennedy. 2006. Heterologous production of epothilone C and D in Escherichia coli. Biochemistry 45:1321-1330.
    66. Nicolaou, K. C., M. R. Finlay, S. Ninkovic, N. P. King, Y. He, T. Li, F. Sarabia, and D. Vourloumis. 1998. Synthesis and biological properties of C12,13-cyclopropyl-epothilone A and related epothilones. Chem. Biol. 5:365-372.
    67. Reichenbach, H. 2001. Myxobacteria, producers of novel bioactive substances. J Ind. Microbiol. Biotechnol. 27:149-156.
    68. Dworkin, M. 1983. Tactic behavior of Myxococcus xanthus. J Bacteriol. 154:452-459.
    69. de la, C. F. and J. Davies. 2000. Horizontal gene transfer and the origin of species: lessons from bacteria. Trends Microbiol. 8:128-133.
    
    70. Waters, V. L. 2001. Conjugation between bacterial and mammalian cells. Nat. Genet. 29:375-376.
    
    71. Christie, P. J. and J. P. Vogel. 2000. Bacterial type IV secretion: conjugation systems adapted to deliver effector molecules to host cells. Trends Microbiol. 8:354-360.
    72.Waters,V.L.1999.Conjugative transfer in the dissemination of beta-lactam and aminoglycoside resistance.Front Biosci.4:D433-D456.
    73.Droge,M.,A.Puhler,and W.Selbitschka.2000.Phenotypic and molecular characterization of conjugative antibiotic resistance plasmids isolated from bacterial communities of activated sludge.Mol.Gen.Genet.263:471-482.
    74.Guiney,D.G.and E.Lanka.1989.Conjugative transfer of IncP plasmids.In Promiscuous Plasmids of Gram-negative Bacteria.
    75.Christie,P.J.,K.Atmakuri,V.Krishnamoorthy,S.Jakubowski,and E.Cascales.2005.Biogenesis,architecture,and function of bacterial type Ⅳ secretion systems.Annu.Rev.Microbiol.59:451-485.
    76.Lawley,T.D.,W.A.Klimke,M.J.Gubbins,and L.S.Frost.2003.F factor conjugation is a true type Ⅳ secretion system.FEMS Microbiol.Lett.224:1-15.
    77.Grohmann,E.,G.Muth,and M.Espinosa.2003.Conjugative plasmid transfer in gram-positive bacteria.Microbiol.Mol.Biol.Rev.67:277-301,table.
    78.Chen,I.,P.J.Christie,and D.Dubnau.2005.The ins and outs of DNA transfer in bacteria.Science 310:1456-1460.
    79.Achtman,M.,G.Morelli,and S.Schwuchow.1978.Cell-cell interactions in conjugating Escherichia coli:role of F pill and fate of mating aggregates.J Bacteriol.135:1053-1061.
    80.Bradley,D.E.,D.E.Taylor,and D.R.Cohen.1980.Specification of surface mating systems among conjugative drug resistance plasmids in Escherichia coli K-12.J Bacteriol.143:1466-1470.
    81.陈向东,陈琪,谢志雄,沈萍.环境中发生的自然遗传转化.环境科学与技术.1998,3:12-15.
    82.Lorenz,M.G.and W.Wackemagel.1994.Bacterial gene transfer by natural genetic transformation in the environment.Microbiol.Rev.58:563-602.
    83.Wackernagel W,Romanowski G,and Lorenz MG.1992.Studies on gene flux by free bacterial DNA in soil,sediment and groundwater aquifer.In D.E.S.Stewart-Tull and M.Sussman(ed.),The release of genetically modified microorganisms.Plenum Press,New Yorkl 71-174.
    84.Dubnau,D.1991.Genetic competence in Bacillus subtilis.Microbiol.Rev.55:395-424.
    85. Khanna, M. and G. Stotzky. 1992. Transformation of Bacillus subtilis by DNA bound on montmorillonite and effect of DNase on the transforming ability of bound DNA. Appl. Environ. Microbiol. 58:1930-1939.
    86. Demaneche, S., L. Jocteur-Monrozier, H. Quiquampoix, and P. Simonet. 2001. Evaluation of biological and physical protection against nuclease degradation of clay-bound plasmid DNA. Appl. Environ. Microbiol. 67:293-299.
    87.沈萍,彭珍荣.自然转化的研究进展.遗传,1995,17(增刊):89-91
    88. Danner, D. B., R. A. Deich, K. L. Sisco, and H. O. Smith. 1980. An eleven-base-pair sequence determines the specificity of DNA uptake in Haemophilus transformation. Gene 11:311-318.
    89. Graves, J. F., G.D. Biswas, and P. F. Sparling. 1982. Sequence-specific DNA uptake in transformation of Neisseria gonorrhoeae. J Bacteriol. 152:1071-1077.
    90. Nielsen, K. M, W. van, T. N. Berg, A. M. Bones, A. N. Hagler, and J. D. van Elsas. 1997. Natural transformation and availability of transforming DNA to Acinetobacter calcoaceticus in soil microcosms. Appl. Environ. Microbiol. 63:1945-1952.
    91. Kaiser, D. 1991. Genetic systems in myxobacteria. Methods Enzymol. 204:357-372.
    92. Kashefi, K. and P. L. Hartzell. 1995. Genetic suppression and phenotypic masking of a Myxococcus xanthus frzF- defect. Mol. Microbiol. 15:483-494.
    93. Kopp, M., H. Irschik, F. Gross, O. Perlova, A. Sandmann, K. Gerth, and R. Muller. 2004. Critical variations of conjugational DNA transfer into secondary metabolite multiproducing Sorangium cellulosum strains So ce12 and So ce56: development of a mariner-based transposon mutagenesis system. J Biotechnol. 107:29-40.
    94. Jaoua, S., S. Neff, and T. Schupp. 1992. Transfer of mobilizable plasmids to Sorangium cellulosum and evidence for their integration into the chromosome. Plasmid 28:157-165.
    95. Guiney, M. and G. Urwin. 1993. Frequency and antimicrobial susceptibility of clinical isolates of enterococci. Eur. J Clin. Microbiol. Infect. Dis. 12:362-366.
    96. Goldman, B. S., W. C. Nierman, D. Kaiser, S. C. Slater, A. S. Durkin, J. A. Eisen, C. M. Ronning, W. B. Barbazuk, M. Blanchard, C. Field, C. Hailing, G. Hinkle, O. Iartchuk, H. S. Kim, C. Mackenzie, R. Madupu, N. Miller, A. Shvartsbeyn, S. A. Sullivan, M. Vaudin, R. Wiegand, and H. B. Kaplan. 2006. Evolution of sensory complexity recorded in a myxobacterial genome. Proc. Natl. Acad. Sci. U.S.A 103:15200-15205.
    97. Tang, L., R. G.Qiu, Y. Li, and L. Katz. 2003. Generation of novel epothilone analogs with cytotoxic activity by biotransformation. J Antibiot. (Tokyo) 56:16-23.
    98. Tang, L., L. Chung, J. R. Carney, C. M. Starks, P. Licari, and L. Katz. 2005. Generation of new epothilones by genetic engineering of a polyketide synthase in Myxococcus xanthus. J Antibiot. (Tokyo) 58:178-184.
    99. Reichenbach H. The Myxococcales. Bergey's Manual of Systematic Bacteriology. (Garrity GM ed). 2004. pp. 1059-1143. Springer-Verlag, New York. Ref Type: Generic
    
    100. Yan, Z. C., B. Wang, Y. Z. Li, X. Gong, H. Q. Zhang, and P. J. Gao. 2003. Morphologies and phylogenetic classification of cellulolytic myxobacteria. Syst. Appl. Microbiol. 26:104-109.
    101. Hao, T., D. Biran, G. J. Velicer, and L. Kroos. 2002. Identification of the Omega4514 regulatory region, a developmental promoter of Myxococcus xanthus that is transcribed in vitro by the major vegetative RNA polymerase. J Bacteriol. 184:3348-3359.
    102. Zirkle, R., J. M. Ligon, and I. Molnar. 2004. Heterologous production of the antifungal polyketide antibiotic soraphen A of Sorangium cellulosum So ce26 in Streptomyces lividans. Microbiology 150:2761-2774.
    103. Prudhomme, M., L. Attaiech, G.Sanchez, B. Martin, and J. P. Claverys. 2006. Antibiotic stress induces genetic transformability in the human pathogen Streptococcus pneumoniae. Science 313:89-92.
    104. Mercenier, A. and B. M. Chassy. 1988. Strategies for the development of bacterial transformation systems. Biochimie 70:503-517.
    105. Galsky, M. D., E. J. Small, W. K. Oh, I. Chen, D. C. Smith, A. D. Colevas, L. Martone, T. Curley, A. Delacruz, H. I. Scher, and W. K. Kelly. 2005. Multi-institutional randomized phase II trial of the epothilone B analog ixabepilone (BMS-247550) with or without estramustine phosphate in patients with progressive castrate metastatic prostate cancer. J Clin. Oncol. 23:1439-1446.
    
    106. Gerth, K., N. Bedorf, G.Hofle, H. Irschik, and H. Reichenbach. 1996. Epothilons A and B:antifungal and cytotoxic compounds from Sorangium cellulosum (Myxobacteria).Production,physico-chemical and biological properties.J Antibiot.(Tokyo)49:560-563.
    107.Frykman,S.A.,H.Tsuruta,and P.J.Licari.2005.Assessment of fed-batch,semicontinuous,and continuous epothilone D production processes.Biotechnol.Prog.21:1102-1108.
    108.李越中,胡玮,等,一种提高埃博霉素A产量的发酵工艺方法,国家发明专利号:ZL 02 110068.3
    Chen, I., Christie, P.J., Dubnau, D., 2005. The ins and outs of DNA transfer in bacteria. Science. 310,1456-1460.
    
    Donnenberg, M.S., Kaper, J.B., 1991. Construction of an eae deletion mutant of enteropathogenic Escherichia coli by using a positive-selection suicide vector. Infect Immun. 59, 4310-4317.
    
    Figurski, D.H., Helinski, D.R., 1979. Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci USA. 76, 1648-1652.
    
    Gerth, K., Pradella, S., Perlova, O., Beyer, S., Muller, R., 2003. Myxobacteria: proficient producers of novel natural products with various biological activities-past and future biotechnological aspects with the focus on the genus Sorangium. J Biotechnol. 106, 233-253.
    
    Gill, R.I., Shimkets, L.J., 1993. Genetic approaches for analysis of myxobacterial behavior. In: Dworkin, M., Kaiser, D. (Eds.), Myxobacteria II. American Society of Microbiology, Washington, D.C., pp. 129-155
    
    Gomis-Ruth, F.X., Sola, M., de la Cruz, F., Coll, M., 2004. Coupling factors in macromolecular type-IV secretion machineries. Curr Pharm Des. 10, 1551-1565.
    
    Grohmann, E., Muth, G., Espinosa, M., 2003. Conjugative plasmid transfer in gram-positive bacteria. Microbiol Mol Biol Rev. 67, 277-301.
    
    Jaoua, S., Neff, S., Schupp, T., 1992. Transfer of mobilizable plasmids to Sorangium cellulosum and evidence for their integration into the chromosome. Plasmid. 28, 157-165.
    
    Julien, B., Fehd, R., 2003. Development of a mariner-based transposon for use in Sorangium cellulosum. Appl Environ Microbiol. 69, 6299-301.
    
    Kaiser, D., 1991. Genetic systems in myxobacteria. Methods Enzymol. 204, 357-372.
    
    Kashefi, K., Hartzell, P.L., 1995. Genetic suppression and phenotypic masking of a Myxococcus xanthus frzF- defect. Mol Microbiol. 15, 483-494.
    
    Kopp, M., Irschik, H., Gross, F., Perlova, O., Sandmann, A., Gerth, K., Muller, R., 2004. Critical variations of conjugational DNA transfer into secondary metabolite multiproducing Sorangium cellulosum strains So ce12 and So ce56: development of a mariner-based transposon mutagenesis system. J Biotechnol. 107, 29-40.
    
    Lawley, T.D., Klimke, W.A., Gubbins, M.J., Frost, L.S., 2003. F factor conjugation is a true type IV secretion system. FEMS Microbiol Lett. 224, 1-15.
    
    Li, Z.F., Zhao, J.Y., Xia, Z.J., Shi, J., Liu, H., Wu, Z.H., Hu, W., Liu, W.F., Li, Y.Z., 2007. Evolutionary diversity of ketoacyl synthases in cellulolytic myxobacterium Sorangium. Syst Appl Microbiol. 30, 189-196.
    
    Nguimbi, E., Li, Y.Z., Gao, B.L., Li, Z.F., Wang, B., Wu, Z.H., Yan, B.X., Qu, Y.B., Gao, P.J., 2003. 16S-23S ribosomal DNA intergenic spacer regions in cellulolytic myxobacteria and differentiation of closely related strains. Syst Appl Microbiol. 26,262-268
    
    Palmen, R., Driessen, A.J., Hellingwerf, K.J., 1994. Bioenergetic aspects of the translocation of macromolecules across bacterial membranes. Biochim Biophys Acta. 1183,417-451.
    
    Pradella, S., Hans, A., Sproer, C., Reichenbach, H., Gerth, K., Beyer, S., 2002. Characterisation, genome size and genetic manipulation of the myxobacterium Sorangium cellulosum So ce56. Arch Microbiol. 178,484-492.
    
    Reichenbach, H., 2004. The Myxococcales. In: Garrity, G.M. (Eds.), Bergey's Manual of Systematic Bacteriology. Springer-Verlag, New York, pp. 1059-1143.
    
    Reichenbach, H., Dworkin, M., 1992. The myxobacteria. In: Balows, A., Truper, H.G., Dworkin, M., Harder, W., Schleifer, K.H. (Eds.), The prokaryotes, 2nd ed. Springer-Verlag, New York, pp. 3416-3487.
    
    Sambrook, J., Russell, D.W., 2001. Molecular Cloning: A Laboratory Manual, 3rd ed. Cold Spring Harbor, NY, USA.
    
    Schroder, G., Lanka, E., 2005. The mating pair formation system of conjugative plasmids-A versatile secretion machinery for transfer of proteins and DNA. Plasmid. 54,1-25.
    
    Simon, R., Priefer, U., Puhler, A., 1983. A Broad Host Range Mobilization System for In Vivo Genetic Engineering: Transposon Mutagenesis in Gram Negative Bacteria. Bio/Technology. 1,784-791.
    
    Yan, Z.C., Wang, B., Li, Y.Z., Gong, X., Zhang, H.Q., Gao, P.J., 2003. Morphologies and phylogenetic classification of cellulolytic Myxobacteria. Syst Appl Microbiol. 26, 104-109.
    
    Zirkle, R., Ligon, J.M., Molnar, I., 2004. Heterologous production of the antifungal polyketide antibiotic soraphen A of Sorangium cellulosum So ce26 in Streptomyces lividans. Microbiology. 150,2761-2774.
    1.Demaneche S,Jocteur-Monrozier L,Quiquampoix H & Simonet P(2001)Evaluation of biological and physical protection against nuelease dedradation of clay-bound plasmid DNA.Appl Environ Microbiol 67:293-299.
    2.Dworkin M(1996)Recent advances in the social and developmental biology of the myxobacteria.Microbiol Rev 60:70-102.
    3.Gill RJ & Shirnkets LJ(1993)Genetic approaches for analysis of myxobacterial behavior.Myxobacteria Ⅱ.(Dworkin M & Kaiser D,eds),pp.129-155.American Society of Microbiology,Washington,D.C.
    4.Goldman BS,Nierman WC,Kaiser D,Slater SC,Durkin AS,Eisen J,Ronning CM,Barbazuk WB,Blanchard M,Field C et al.(2006)Evolution of sensory complexity recorded in a myxobacterial genome.Proc Natl Acad Sci USA 103:15200-15205.
    5.Gophna U,Charlebois R & Doolittle WF(2006)Ancient lateral gene transfer in the evolution of Bdellovibrio bacteriovorus.Trends Microbiol 14:64-69.
    6.Jaoua S,Neff S & Schupp T(1992)Transfer of mobilizable plasmids to Sorangium cellulosum and evidence for their integration into the chromosome.Plasmid 28:157-165.
    7.Kaiser D(1991)Genetic systems in myxobacteria.Methods Enzymo1204:357-372.
    8.Karlin S(2001)Detecting anomalous gene clusters and pathogenicity islands in diverse bacterial genomes.Trends Microbiol 9:335-343.
    9.Karlin S,Brocchieri L,Mrazek J & Kaiser D(2006)Distinguishing features of δ-proteobacterial genomes.Proc Natl Acad Sci USA 103:11352-11357.
    10.Kashefi K & Hartzell PL(1995)Genetic suppression and phenotypic masking of a Myxococcus xanthus frzF-defect.Mol Microbiol 15:483-494.
    11.Khanna M & Stotzky G(1992)Transformation of Bacillus Subtilis by DNA bound on montmorillonite and effect of DNase on the transforming ability of bound DNA.Appl Environ Microbiol 6:1930-1939.
    12.Kopp M,Irschik H,Gross F,Perlova O,Sandmann A,Gerth K & Muller R(2004) Critical variations of conjugational DNA transfer into secondary metabolite multiproducing Sorangium cellulosum strains So ce12 and So ce56: development of a mariner-based transposon mutagenesis system. J Biotechnol 107: 29-40.
    
    13. Lerat E, Daubin V, Ochman H & Moran N (2005) Evolutionary origins of genomic repertoires in bacteria. PLoS Biol 3: 0807-0814.
    
    14. Li ZF, Zhao JY, Xia ZJ, Shi J, Liu H, Wu ZH, Hu W, Liu WF & Li YZ (2007) Evolutionary diversity of ketoacyl synthases in cellulolytic myxobacterium Sorangium. Syst Appl Microbiol 30:189-196.
    
    15. Lorenz MG & Wackemagel W (1994) Bacterial Gene Transfer by Natural Genetic Transformation in the Environment. Microbiol Rev 58: 563-602.
    
    16. Mercenier A & Chassy BM (1988) Strategies for the development of bacterial transformation systems. Biochimie 70: 503-517.
    
    17. Nguimbi E, Li YZ, Gao BL, Li ZF, Wang B, Wu ZH, Yan BX, Qu YB & Gao PJ (2003) 16S-23S ribosomal DNA intergenic spacer regions in cellulolytic myxobacteria and differentiation of closely related strains. Syst Appl Microbiol 26: 262-268
    
    18. Pradella S, Hans A, Sproer C, Reichenbach H, Gerth K & Beyer S (2002) Characterisation, genome size and genetic manipulation of the myxobacterium Sorangium cellulosum So ce56. Arch Microbiol 178: 484-492.
    
    19. Reichenbach H & Dworkin M (1992) The myxobacteria. The Prokaryotes, 2nd ed (Balows A, Truper HG, Dworkin M, Harder W & Schleifer KH, eds), pp. 3416-3487. Springer-Verlag, New York.
    
    20. Shimkets LJ (1990) Social and developmental biology of myxobacteria. Microbiol Rev 54:473-501.
    
    21. Snaidr J, Amann R, Huber I, Ludwig W & Schleifer (1997) Phylogenetic Analysis and In Situ Identification of Bacteria in Activated Sludge. Appl Environ Microbiol 63: 2884-2896.
    
    22. Wackemagel W, Romanowski G & Lorenz MG (1992) Studies on gene flux by free bacterial DNA in soil, sediment and groundwater aquifer. The release of genetically modified microorganisms. (Stewart-Tull DES & Sussman M,eds), p. 171-174. Plenum Press, New York.
    23. Womack BJ, Gilmore DF & White D (1989) Calcium Requirement for Gliding Motility in Myxobacteria. J Bacteriol 171: 6093-6096.
    
    24. Yan ZC, Wang B, Li YZ, Gong X, Zhang HQ & Gao PJ. (2003) Morphologies and phylogenetic classification of cellulolytic myxobacteria. Syst Appl Microbiol 26: 104-108.
    
    25. Zhang H, Dong H, Zhao J, Hu W & Li YZ. (2005) Characterization of developmental autolysis in myxobacterial fruiting body morphogenesis with profiling of amino acids using capillary electrophoresis method. Amino Acids 28: 319-325.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700