GPx酶模型的分子设计及其自组装
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
谷胱甘肽过氧化物酶(GPx)是机体内重要的抗氧化硒酶,具有保护机体免受氧化损伤功能。在分子及超分子水平上模拟含硒酶,无论对于研究酶催化机制,还是对于发展新型抗氧化药物,都具有十分重要的意义。本论文的研究思路立足于单分子含硒酶的分子设计,发展利用超分子自组装技术,构筑纳米酶自组装体,即从单分子蛋白质酶分子的结构改造入手,通过对两种蛋白质酶分子谷氧还蛋白(Grx)和脱氢抗坏血酸还原酶(DHAR)的活性中心进行重新设计和定向改造,获得了两种具有GPx催化功能的抗氧化含硒人工酶;在此基础上,以酶模型分子谷胱甘肽转硫酶(GST)为超分子构筑基元,通过金属配位相互作用,制备了具有高效催化功能的超分子酶自组装体,进一步讨论了单分子硒酶结构与功能的关系,以及“bottom up”纳米技术在酶催化功能材料设计中的应用:
     I基于人源谷氧还蛋白(hGrx1)的GPx仿酶设计:本研究工作发展了一种制备高效人源GPx人工酶的新方法。Grx具有同天然GPx相同的Trx折叠结构域和谷胱甘肽(GSH)底物识别特异性,由于该酶分子具有分子量小等优点,hGrx作为模拟GPx的天然蛋白骨架备受关注。本论文采用一种优化稀有密码子表达硒酶的新策略,制备了既能识别稀有密码子又能在外源蛋白氨基酸序列中插入硒代半胱氨酸(Sec)的表达菌株BL21cysE51 CodonPlus,成功制备了人源含硒酶Seleno-hGrx1;该硒酶Seleno-hGrx1展现出了高效的GPx催化活性,其催化活性可同天然GPx相媲美,稳态动力学分析表明,其催化行为属于典型的乒乓机制,与某些天然GPx相类似。该研究工作为设计药用抗氧化酶开拓了新思路。
     II基于脱氢抗坏血酸还原酶(DHAR)的GPx仿酶设计:利用蛋白超家族具有相同底物特异性的特点,成功将DHAR转化为人工GPx。DHAR和GPx同属Trx超家族,对底物GSH同样具有相似的底物识别特异性和亲和性。以DHAR为蛋白骨架,对DHAR活性中心的GSH结合位点进行了重新设计,利用Cys营养缺陷型表达技术引入GPx催化基团Sec,从而获得新型含硒人工酶。所制备的人工酶Seleno-DHAR展现了一定的GPx催化活性,同时该研究工作为深入探究天然GPx结构功能关系以及催化机制奠定了基础。
     III超分子酶自组装体的设计:发展了利用超分子自组装技术制备酶性纳米线的新方法。我们选用GST作为抗氧化酶模型蛋白,讨论了如何利用空间立体结构对称的同源二聚体GST为构筑基元,通过金属配位相互作用制备具有催化功能的纳米酶自组装体。即以GST为蛋白骨架,通过基因工程手段修饰分子识别配体His-tag,通过金属配位相互作用成功制备了形貌可控的线性酶纳米材料。论证了通过金属离子与His-tag的金属配位相互作用构筑蛋白质酶超分子纳米材料的可行性。在超分子水平上讨论抗氧化纳米酶模型的构建及催化行为,研究了单分子酶构筑基元与超分子酶纳米材料组装与解组装机制。该研究丰富了功能蛋白质超分子组装方法,为进一步设计具有抗氧化活性的多酶组装体奠定了基础。
The formation of protein functional materials in natural biological systems occurs through self-assembly of protein building blocks whose structures are encoded by organism’s DNA. After transcription, translation and folding into functional building blocks in cells, the resultant individual protein components self-assemble at different size scales to form unique protein supramolecular structures with special physiological functions through molecular recognization, structural complementary and non-covalent interaction of fucntional protein building blocks in organisms. The dynamic biological assembling process of many natural protein superstructural materials involves a dynamic reversible change with physical and chemical conditions such as pH, temperature, and redox alterations.
     The knowledge of the details of the protein molecular recognition and supramolecular self-assembly mechanism in vivo enables us to mimic these processes in vitro through protein building block structural modification and functional redesign. The rational design of related supramolecular assemblies utilizing chemical compatibility and structural complementarity of individual protein modules based on the remarkable advance in protein engineering and biological supramolecular chemistry techniques should shed light on the principles for the development of‘bottom-up’nanotechnology and the design of functional protein nanomaterials with unique superstructures. In addition, it represents an important frontier of bionanotechnology with great potential for considerable contributions to biology, chemistry, as well as for the de novo design of biological materials with unique structures and functions.
     Based on the redesign of the active site and the molecular recognition mechanism of the supramolecular protein enzyme building blocks for the rational construction of potential functional biological nanomaterials, we redesigned the active site of human Grx1 and DHAR by incorporating catalytic amino acid residue Sec respectively to mimic the natural GPx catalytic function in vitro. The wild type human Grx1 and DHAR share a common substrate GSH binding site with natural GPx. In addition, we designed molecular recognition ligand of His-tag and introduced it to a C2 symmetric enzyme GST homodimer to prepare the bivalent supramolecular building block SjGST-6His, which could self-assemble to form linear enzyme nanomaterials with catalytic function through metal coordination between two different His-tags from two individual protein building blocks. At last, we discussed the principles for the redesign of the protein supramolecular building blocks in order to prepare functional biological nanomaterials and it should shed light on the the principles for the development of‘bottom-up’nanotechnology in the application of advanced functional protein nanomaterials.
     1. Seleno-hGrx1 with redesigned catalytic function
     The active center of human glutaredoxin (hGrx1) with excellent specific affinity for the substrate glutathione (GSH) was redesigned to introduce the catalytic selenocysteine residue for imitating the function of antioxidant selenoenzyme glutathione peroxidase (GPx) in vivo. The GSH-binding affinity of hGrx1 from human beings which shares a common thioredoxin fold with natural GPx makes it a competent candidate as antioxidant for potential medical application compared to other animal-originated protein scaffolds. Given that presence of two consecutive AGG-AGG rare codons for encoding Arg26-Arg27 residues in the reading frame of hGrx1 mRNA reduced Seleno-hGrx1 expression level significantly in the Cys auxotrophic E. coli strain BL21cysE51, a novel strategy for optimizing the rare codons was first reported and resulted in an remarkable increase of the expression level in the Cys auxotrophic cells for potential future medical production. The engineered artificial selenoenzyme displayed high GPx catalytic activity rivaling that of some natural GPx. The engineered Seleno-hGrx1 was characterized by kinetic analyses. It showed a typical ping-pong kinetic mechanism, and its catalytic properties were similar to those of some naturally occurring GPx.
     2. Seleno-DHAR with redesigned GPx function
     Divergent evolution has resulted in superfamilies of enzymes with the same protein fold, but different catalytic performances. The disparate catalytic performances require different mechanistic steps, but some of these steps may be shared. The involved changing catalytic activity of an enzyme may just require a unique substitution of an amino acid residue at the active site. DHAR and GPx have distinct catalytic abilities, but share a common substrate GSH binding site and the same Trx fold like GST. DHAR was redesigned to incorporate catalytic Sec residue of GPx at the active site of DHAR in order to mimic the natural GPx catalytic ability by genetic engineering technique. The prepared selenium enzyme Seleno-DHAR displayed a remarkable GPx catalytic activity compared to wild type DHAR for GPx catalytic activity. And the strategy for converting DHAR catalytic activity to GPx catalytic activity is first reported and may shed light on the catalytic mechanism of natural GPx and the principles for the redesign of the function of enzyme supramolecular building blocks for rational design of the desired functional protein nanomaterials.
     3. Supramolecular self-assembly with catalytic function
     A simple and versatile strategy for preparing functional enzyme nanowires based on self-assembly of a C2-symmetric homodimeric enzyme is proposed and demonstrated. The enzyme-loaded nanowires are fabricated throughout the outstretched His-tag recruiting a second building block by interprotein metal coordination. The prepared enzyme nanowires are characterized by tapping mode atom force microscopy. The height of one-dimensional nanowires forming at low protein concentration is about 4.0~5.0 nm, while nanowire height at the site of the entanglement crosslink of nanowires forming at higher protein concentration is about 7.0~9.0 nm, nearly twice the height of the single protein molecule (ca. 3.0~5.0 nm). The equilibrium of enzyme nanowires with individual protein blocks could be shifted and the geometric structure of the enzyme nanowires could be adjusted by modulating the concentration of the building blocks and metal ions. Given that the prepared enzyme nanowires introduce a minor difference in enzyme activity and second structure compared to individual building blocks, it is assumed that the metal-His tag coordination could enhance the enzyme nanowires thermostatic stability. The strategy may open a new avenue for designing large symmetrical materials in artificial control for a wide variety of proteins by adding His-tag to protein building blocks and shed light on the principles for the development of‘bottom-up’nanotechnology.
引文
1. Kehrer, J. P. (1993) Free Radicals as Mediators of Tissue Injury and Disease, Crit. Rev. Toxicol. 23, 21-48.
    2. McCord, J. M. (1985) Oxygen-Derived Free Radicals in Postischemic Tissue Injury, N. Engl. J. Med. 312, 159-163.
    3. Castro, L. & Freeman, B. A. (2001) Reactive Oxygen Species in Human Health and Disease, Nutrition 17, 161-165.
    4. Weydert, C. J. & Cullen, J. J. (2010) Measurement of Superoxide Dismutase, Catalase and Glutathione Peroxidase in Cultured Cells and Tissue, Nat. Protocols 5, 51-66.
    5. Halliwell, B. (1996) Antioxidants in Human Health and Disease, Annu. Rev. Nutr. 16, 33-50.
    6. Rennenberg, H. (1980) Glutathione Metabolism and Possible Biological Roles in Higher Plants, Phytochemistry 21, 2771-2781.
    7. Flohe, L., Günzler, W. A. & Schock, H. H. (1973) Glutathione Peroxidase: A Selenoenzyme, FEBS Lett. 32, 132-134.
    8. Epp, O., Ladenstein, R. & Wendel, A. (1983) The Refined Structure of the Selenoenzyme Glutathione Peroxidase at 0.2-nm Resolution, Eur. J. Biochem. 133, 51-69.
    9. Ren, B., Huang, W., ?kesson, B. & Ladenstein, R. (1997) The Crystal Structure of Seleno-Glutathione Peroxidase from Human Plasma at 2.9 ? Resolution, J. Mol. Biol. 268, 869-885.
    10. Toscano, M. D., Woycechowsky, K. J. & Hilvert, D. (2007) Minimalist Active-Site Redesign: Teaching Old Enzymes New Tricks, Angew. Chem. Int. Ed. 46, 3212-3236.
    11. Jochens, H., Stiba, K., Savile, C., Fujii, R., Yu, J., Gerassenkov, T., Kazlauskas, R. J. &Bornscheuer, U. T. (2009) Converting an Esterase into an Epoxide Hydrolase, Angew. Chem. Int. Ed. 48, 3532-3535.
    12. Klimacek, M. & Nidetzky, B. (2010) From Alcohol Dehydrogenase to a“One-way”Carbonyl Reductase by Active-Site Redesign, J. Biol. Chem. 285, 30644-30653.
    13. Akira, O. T. Y., Haruhiko, K., Keiji, S., Isamu, S., Takenori, Y. & Hajime, Y. (1999) Ebselen in Acute Middle Cerebral Artery Occlusion: A Placebo-Controlled, Double-Blind Clinical Trial, Cerebrovasc. Dis. 9, 112-118.
    14. Sies, H. & Masumoto, H. (1996) Ebselen as a Glutathione Peroxidase Mimic and as a Scavenger of Peroxynitrite in Adv Pharmacol (Helmut, S., ed) pp. 229-246, Academic Press.
    15. Ostrovidov, S., Franck, P., Joseph, D., Martarello, L., Kirsch, G., Belleville, F., Nabet, P. & Dousset, B. (2000) Screening of New Antioxidant Molecules Using Flow Cytometry, J. Med. Chem. 43, 1762-1769.
    16. Dong, Z., Liu, J., Mao, S., Huang, X., Yang, B., Ren, X., Luo, G. & Shen, J. (2004) Aryl Thiol Substrate 3-Carboxy-4-Nitrobenzenethiol Strongly Stimulating Thiol Peroxidase Activity of Glutathione Peroxidase Mimic 2, 2'-Ditellurobis(2-Deoxy-β-Cyclodextrin), J. Am. Chem. Soc. 126, 16395-16404.
    17. Ren, X., Liu, J., Luo, G., Zhang, Y., Luo, Y., Yan, G. & Shen, J. (2000) A Novel Selenocystine-β-Cyclodextrin Conjugate That Acts as a Glutathione Peroxidase Mimic, Bioconjugate Chem. 11, 682-687.
    18. Ren, X., Xue, Y., Zhang, K., Liu, J., Luo, G., Zheng, J., Mu, Y. & Shen, J. (2001) A Novel Dicyclodextrinyl Ditelluride Compound with Antioxidant Activity, FEBS Lett. 507, 377-380.
    19. Ren, X., Xue, Y., Liu, J., Zhang, K., Zheng, J., Luo, G., Guo, C., Mu, Y. & Shen, J. (2002) A Novel Cyclodextrin-Derived Tellurium Compound with Glutathione Peroxidase Activity, Chembiochem 3, 356-363.
    20. Park, H. S., Nam, S. H., Lee, J. K., Yoon, C. N., Mannervik, B., Benkovic, S. J. & Kim, H. S. (2006) Design and Evolution of New Catalytic Activity with an Existing Protein Scaffold, Science 311, 535-538.
    21. Xiang, H., Luo, L., Taylor, K. L. & Dunaway, M. D. (1999) Interchange of Catalytic Activity within the 2-Enoyl-Coenzyme A Hydratase/Isomerase Superfamily Based on a Common Active Site Template, Biochemistry 38, 7638-7652.
    22. Seebeck, F. P. & Hilvert, D. (2003) Conversion of a PLP-Dependent Racemase into an Aldolase by a Single Active Site Mutation, J. Am. Chem. Soc. 125, 10158-10159.
    23. Schmidt, D. M. Z., Mundorff, E. C., Dojka, M., Bermudez, E., Ness, J. E., Govindarajan, S.,Babbitt, P. C., Minshull, J. & Gerlt, J. A. (2003) Evolutionary Potential of (β/α)8-Barrels: Functional Promiscuity Produced by Single Substitutions in the Enolase Superfamily, Biochemistry 42, 8387-8393.
    24. Bernhardt, P., Hult, K. & Kazlauskas, R. J. (2005) Molecular Basis of Perhydrolase Activity in Serine Hydrolases, Angew. Chem. Int. Ed. 44, 2742-2746.
    25. Terao, Y., Miyamoto, K. & Ohta, H. (2006) Introduction of Single Mutation Changes Arylmalonate Decarboxylase to Racemase, Chem. Commun. 3600-3602.
    26. Rothlisberger, D., Khersonsky, O., Wollacott, A. M., Jiang, L., DeChancie, J., Betker, J., Gallaher, J. L., Althoff, E. A., Zanghellini, A., Dym, O., Albeck, S., Houk, K. N., Tawfik, D. S. & Baker, D. (2008) Kemp Elimination Catalysts by Computational Enzyme Design, Nature 453, 190-195.
    27. Seelig, B. & Szostak, J. W. (2007) Selection and Evolution of Enzymes from a Partially Randomized Non-Catalytic Scaffold, Nature 448, 828-831.
    28. Jiang, L., Althoff, E. A., Clemente, F. R., Doyle, L., R?thlisberger, D., Zanghellini, A., Gallaher, J. L., Betker, J. L., Tanaka, F., Barbas, C. F., Hilvert, D., Houk, K. N., Stoddard, B. L. & Baker, D. (2008) De Novo Computational Design of Retro-Aldol Enzymes, Science 319, 1387-1391.
    29. Wu, Z. & Hilvert, D. (1990) Selenosubtilisin as a Glutathione Peroxidase Mimic, J. Am. Chem. Soc. 112, 5647-5648.
    30. Mao, S., Dong, Z., Liu, J., Li, X., Liu, X., Luo, G. & Shen, J. (2005) Semisynthetic Tellurosubtilisin with Glutathione Peroxidase Activity, J. Am. Chem. Soc. 127, 11588-11589.
    31. Ren, X., Jemth, P., Board, P. G., Luo, G., Mannervik, B., Liu, J., Zhang, K. & Shen, J. (2002) A Semisynthetic Glutathione Peroxidase with High Catalytic Efficiency: Selenoglutathione Transferase, Chem. Biol. 9, 789-794.
    32. Huang, X., Liu, X., Luo, Q., Liu, J. & Shen, J. (2011) Artificial Selenoenzymes: Designed and Redesigned, Chem. Soc. Rev. 40, 1171-1184.
    33. Ding, L., Liu, Z., Zhu, Z., Luo, G., Zhao, D. & Ni, J. (1998) Biochemical Characterization of Selenium-Containing Catalytic Antibody as a Cytosolic Glutathione Peroxidase Mimic, Biochem. J. 332, 251-255.
    34. Zhang, K., Zang, T., Yang, W., Sun, Y., Mu, Y., Liu, J., Shen, J. & Luo, G. (2006) Single Chain Antibody Displays Glutathione S-Transferase Activity, J. Biol. Chem. 281, 12516-12520.
    35. Thanbichler, M. & Bock, A. (2002) The function of SECIS RNA in Translational Control ofGene Expression in Escherichia coli, EMBO J. 21, 6925-6934.
    36. Boschi, M. S., Muller, S., Van Dorsselaer, A., B?ck, A. & Branlant, G. (1998) Substituting Selenocysteine for Active Site Cysteine 149 of Phosphorylating Glyceraldehyde 3-Phosphate Dehydrogenase Reveals a Peroxidase Activity, FEBS Lett. 439, 241-245.
    37. Budisa, N. (2004) Prolegomena to Future Experimental Efforts on Genetic Code Engineering by Expanding Its Amino Acid Repertoire, Angew. Chem. Int. Ed. 43, 6426-6463.
    38. Liu, X., Silks, L. A., Liu, C., Ollivault, S. M., Huang, X., Li, J., Luo, G., Hou, Y., Liu, J. & Shen, J. (2009) Incorporation of Tellurocysteine into Glutathione Transferase Generates High Glutathione Peroxidase Efficiency, Angew. Chem. Int. Ed. 48, 2020-2023.
    39. Yu, H., Liu, J., B?ck, A., Li, J., Luo, G. & Shen, J. (2005) Engineering Glutathione Transferase to a Novel Glutathione Peroxidase Mimic With High Catalytic Efficiency, J. Biol. Chem. 280, 11930-11935.
    40. Martin, J. L. (1995) Thioredoxin --a Fold for All Reasons, Structure 3, 245-250.
    41. Ge, Y., Qi, Z., Wang, Y., Liu, X., Li, J., Xu, J., Liu, J. & Shen, J. (2009) Engineered Selenium-Containing Glutaredoxin Displays Strong Glutathione Peroxidase Activity Rivaling Natural Enzyme, Int. J. Biochem. Cell Biol. 41, 900-906.
    42. Holmgren, A. (1976) Hydrogen Donor System for Escherichia coli Ribonucleoside-Diphosphate Reductase Dependent upon Glutathione, Proc. Natl. Acad. Sci. USA 73, 2275-2279.
    43. Racker, E. (1955) Glutathione-Homocystine Transhydrogenase, J. Biol. Chem. 217, 867-874.
    44. Nagai, S. & Black, S. (1968) A Thiol-Disulfide Transhydrogenase from Yeast, J. Biol. Chem. 243, 1942-1947.
    45. Nordstrand, K., ?slund, F., Holmgren, A., Otting, G. & Berndt, K. D. (1999) NMR Structure of Escherichia coli Glutaredoxin 3-Glutathione Mixed Disulfide Complex: Implications for the Enzymatic Mechanism, J. Mol. Biol. 286, 541-552.
    46. Sun, C., Berardi, M. J. & Bushweller, J. H. (1998) The NMR Solution Structure of Human Glutaredoxin in the Fully Reduced Form, J. Mol. Biol. 280, 687-701.
    47. Xia, T., Bushweller, J. H., Sodano, P., Billeter, M., Bj?rnberg, O., Holmgren, A. & Wüthrich, K. (1992) NMR Structure of Oxidized Escherichia coli Glutaredoxin: Comparison with Reduced E. coli Glutaredoxin and Functionally Related Proteins, Protein Sci. 1, 310-321.
    48. Bushweller, J. H., Billeter, M., Holmgren, A. & Wüthrich, K. (1994) The Nuclear Magnetic Resonance Solution Structure of the Mixed Disulfide between Escherichia coliGlutaredoxin(C14S) and Glutathione, J. Mol. Biol. 235, 1585-1597.
    49. Yang, Y., Jao, S., Nanduri, S., Starke, D. W., Mieyal, J. J. & Qin, J. (1998) Reactivity of the Human Thioltransferase (Glutaredoxin) C7S, C25S, C78S, C82S Mutant and NMR Solution Structure of Its Glutathionyl Mixed Disulfide Intermediate Reflect Catalytic Specificity, Biochemistry 37, 17145-17156.
    50. Dillet, V., Dyson, H. J. & Bashford, D. (1998) Calculations of Electrostatic Interactions and pKas in the Active Site of Escherichia coli Thioredoxin, Biochemistry 37, 10298-10306.
    51. Gan, Z. R. & Wells, W. W. (1987) Identification and Reactivity of the Catalytic Site of Pig Liver Thioltransferase, J. Biol. Chem. 262, 6704-6707.
    52. Berardi, M. J. & Bushweller, J. H. (1999) Binding Specificity and Mechanistic Insight into Glutaredoxin-Catalyzed Protein Disulfide Reduction, J. Mol. Biol. 292, 151-161.
    53. Basantani, M. & Srivastava, A. (2007) Plant Glutathione Transferases - a Decade Falls Short, Can. J. Bot.-Rev. Can. Bot. 85, 443-456.
    54. Yang, H., Zhao, Y., Wang, C., Yang, Z., Zeng, Q. & Lu, H. (2009) Molecular Characterization of a Dehydroascorbate Reductase from Pinus bungeana, J. Int. Plant. Biol. 51, 993-1001.
    55. Shimaoka, T., Miyake, C. & Yokota, A. (2003) Mechanism of the Reaction Catalyzed by Dehydroascorbate Reductase from Spinach Chloroplasts, Eur. J. Biochem. 270, 921-928.
    56. Zeng, Q., Lu, H. & Wang, X. (2005) Molecular Characterization of a Glutathione Transferase from Pinus tabulaeformis (Pinaceae), Biochimie 87, 445-455.
    57. Zeng, Q.. & Wang, X.. (2006) Divergence in Structure and Function of tau Class Glutathione Transferase from Pinus tabulaeformis, P. yunnanensis and P. densata, Biochem. Syst. Ecol. 34, 678-690.
    58. Foyer, C. H. & Halliwell, B. (1976) The Presence of Glutathione and Glutathione Reductase in Chloroplasts: A Proposed Role in Ascorbic Acid Metabolism, Planta 133, 21-25.
    59. Noctor, G. & Foyer, C. H. (1998) Ascorbate and Glutathione: Keeping Active Oxygen under Control, Annu. Rev. Plant Physiol. Plant Mol. Biol. 49, 249-279.
    60. Baughman, R. H., Zakhidov, A. A. & de Heer, W. A. (2002) Carbon Nanotubes--the Route Toward Applications, Science 297, 787-792.
    61. Ryadnov, M. G., Ceyhan, B., Niemeyer, C. M. & Woolfson, D. N. (2003)“Belt and Braces”: A Peptide-Based Linker System of de Novo Design, J. Am. Chem. Soc. 125, 9388-9394.
    62. Aggeli, A., Bell, M., Boden, N., Keen, J. N., Knowles, P. F., McLeish, T. C. B., Pitkeathly, M. & Radford, S. E. (1997) Responsive Gels Formed by the Spontaneous Self-Assembly of Peptides into Polymeric [beta]-Sheet Tapes, Nature 386, 259-262.
    63. Holmes, T. C., de Lacalle, S., Su, X., Liu, G., Rich, A. & Zhang, S. (2000) Extensive Neurite Outgrowth and Active Synapse Formation on Self-Assembling Peptide Scaffolds, Proc. Natl. Acad. Sci. USA 97, 6728-6733.
    64. Takahashi, Y., Ueno, A. & Mihara, H. (2002) Amyloid Architecture: Complementary Assembly of Heterogeneous Combinations of Three or Four Peptides into Amyloid Fibrils, Chembiochem 3, 637-642.
    65. Matsumura, S., Uemura, S. & Mihara, H. (2004) Fabrication of Nanofibers with Uniform Morphology by Self-Assembly of Designed Peptides, Chem. Eur. J. 10, 2789-2794.
    66. Ghadiri, M. R., Granja, J. R., Milligan, R. A., McRee, D. E. & Khazanovich, N. (1993) Self-Assembling Organic Nanotubes Based on a Cyclic Peptide Architecture, Nature 366, 324-327.
    67. Park, S. H., Pistol, C., Ahn, S. J., Reif, J. H., Lebeck, A. R., Dwyer, C. & LaBean, T. H. (2006) Finite-Size, Fully Addressable DNA Tile Lattices Formed by Hierarchical Assembly Procedures, Angew. Chem. Int. Ed. 45, 735-739.
    68. Whitesides, G. M., Mathias, J. P. & Seto, C. T. (1991) Molecular Self-Assembly and Nanochemistry: a Chemical Strategy for the Ssynthesis of Nanostructures, Science 254, 1312-1319.
    69. Whitesides, G. M. & Boncheva, M. (2002) Beyond Molecules: Self-assembly of Mesoscopic and Macroscopic Components, Proc. Natl. Acad. Sci. USA 99, 4769-4774.
    70. Sarikaya, M., Tamerler, C., Jen, A. K. Y., Schulten, K. & Baneyx, F. (2003) Molecular Biomimetics: Nanotechnology through Biology, Nat. Mater. 2, 577-585.
    71. Ferrari, M. (2005) Cancer Nanotechnology: Opportunities and Challenges, Nat. Rev. Cancer 5, 161-171.
    72. Seeman, N. C. (2000) DNA Nicks and Nodes and Nanotechnology, Nano Lett. 1, 22-26.
    73. Seeman, N. C. (1999) DNA Engineering and Its Application to Nanotechnology, Trends. Biotechnol. 17, 437-443.
    74. Seeman, N. C. (2003) At the Crossroads of Chemistry, Biology, and Materials: Structural DNA Nanotechnology, Chem. Biol. 10, 1151-1159.
    75. Giesecke, A. V., Fang, R. & Joung, J. K. (2006) Synthetic Protein-Protein Interaction Domains Created by Shuffling Cys2His2 Zinc-Fingers, Mol. Syst. Biol. 2.
    76. Yeates, T. O. & Padilla, J. E. (2002) Designing Supramolecular Protein Assemblies, Curr. Opin. Struc. Biol. 12, 464-470.
    77. Padilla, J. E., Colovos, C. & Yeates, T. O. (2001) Nanohedra: Using Symmetry to Design Self-Assembling Protein Cages, Layers, Crystals, and Filaments, Proc. Natl. Acad. Sci. USA98, 2217-2221.
    78. Pandya, M. J., Spooner, G. M., Sunde, M., Thorpe, J. R., Rodger, A. & Woolfson, D. N. (2000) Sticky-End Assembly of a Designed Peptide Fiber Provides Insight into Protein Fibrillogenesis, Biochemistry 39, 8728-8734.
    79. Ogihara, N. L., Ghirlanda, G., Bryson, J. W., Gingery, M., DeGrado, W. F. & Eisenberg, D. (2001) Design of Three-Dimensional Domain-Swapped Dimers and Fibrous Oligomers, Proc. Natl. Acad. Sci. USA 98, 1404-1409.
    80. Ringler, P. & Schulz, G. E. (2003) Self-Assembly of Proteins into Designed Networks, Science 302, 106-109.
    81. Dotan, N., Arad, D., Frolow, F. & Freeman, A. (1999) Self-Assembly of a Tetrahedral Lectin into Predesigned Diamondlike Protein Crystals, Angew. Chem. Int. Ed. 38, 2363-2366.
    82. Kopytek, S. J., Standaert, R. F., Dyer, J. C. D. & Hu, J. (2000) Chemically Induced Dimerization of Dihydrofolate Reductase by a Homobifunctional Dimer of Methotrexate, Chem. Biol. 7, 313-321.
    83. Carlson, J. C. T., Kanter, A., Thuduppathy, G. R., Cody, V., Pineda, P. E., McIvor, R. S. & Wagner, C. R. (2003) Designing Protein Dimerizers: The Importance of Ligand Conformational Equilibria, J. Am. Chem. Soc. 125, 1501-1507.
    84. Carlson, J. C. T., Jena, S. S., Flenniken, M., Chou, T., Siegel, R. A. & Wagner, C. R. (2006) Chemically Controlled Self-Assembly of Protein Nanorings, J. Am. Chem. Soc. 128, 7630-7638.
    85. Brunsveld, L., Folmer, B. J. B., Meijer, E. W. & Sijbesma, R. P. (2001) Supramolecular Polymers, Chem. Rev. 101, 4071-4098.
    86. Lehn, J. M. (2002) Supramolecular Polymer Chemistry—Scope and Perspectives, Polym. Int. 51, 825-839.
    87. Fouquey, C., Lehn, J. M. & Levelut, A. M. (1990) Molecular Recognition Directed Self-Assembly of Supramolecular Liquid Crystalline Polymers from Complementary Chiral Components, Adv. Mater. 2, 254-257.
    88. Miyauchi, M., Takashima, Y., Yamaguchi, H. & Harada, A. (2005) Chiral Supramolecular Polymers Formed by Host?Guest Interactions, J. Am. Chem. Soc. 127, 2984-2989.
    89. Kitagishi, H., Oohora, K., Yamaguchi, H., Sato, H., Matsuo, T., Harada, A. & Hayashi, T. (2007) Supramolecular Hemoprotein Linear Assembly by Successive Interprotein Heme?Heme Pocket Interactions, J. Am. Chem. Soc. 129, 10326-10327.
    90. Kitagishi, H., Kakikura, Y., Yamaguchi, H., Oohora, K., Harada, A. & Hayashi, T. (2009) Self-Assembly of One- and Two-Dimensional Hemoprotein Systems by Polymerizationthrough Heme-Heme Pocket Interactions, Angew. Chem. Int. Ed. 48, 1271-1274.
    91. Yang, Z., Liang, G. & Xu, B. (2008) Enzymatic Hydrogelation of Small Molecules, Acc. Chem. Res. 41, 315-326.
    92. Bae, Y., Fukushima, S., Harada, A. & Kataoka, K. (2003) Design of Environment-Sensitive Supramolecular Assemblies for Intracellular Drug Delivery: Polymeric Micelles That Are Responsive to Intracellular pH Change, Angew. Chem. Int. Ed. 42, 4640-4643.
    93. Van Hest, J. C. M. & Tirrell, D. A. (2001) Protein-Based Materials, toward a New Level of Structural Control, Chem. Commun. 1897-1904.
    94. Sugimoto, K., Kanamaru, S., Iwasaki, K., Arisaka, F. & Yamashita, I. (2006) Construction of a Ball-and-Spike Protein Supramolecule, Angew. Chem. Int. Ed. 45, 2725-2728.
    95. Chou, T., So, C., White, B. R., Carlson, J. C. T., Sarikaya, M. & Wagner, C. R. (2008) Enzyme Nanorings, ACS Nano 2, 2519-2525.
    96. Salgado, E. N., Radford, R. J. & Tezcan, F. A. (2010) Metal-Directed Protein Self-Assembly, Acc. Chem. Res. 43, 661-672.
    97. Salgado, E. N., Faraone, M. J. & Tezcan, F. A. (2007) Controlling Protein-Protein Interactions through Metal Coordination: Assembly of a 16-Helix Bundle Protein, J. Am. Chem. Soc. 129, 13374-5.
    98. Salgado, E. N., Lewis, R. A., Faraone, M. J. & Tezcan, F. A. (2008) Metal-Mediated Self-Assembly of Protein Superstructures: Influence of Secondary Interactions on Protein Oligomerization and Aggregation, J. Am. Chem. Soc. 130, 6082-4.
    99. Radford, R. J. & Tezcan, F. A. (2009) A Superprotein Triangle Driven by Nickel(II) Coordination: Exploiting Non-Natural Metal Ligands in Protein Self-Assembly, J. Am. Chem. Soc. 131, 9136-7.
    100. Salgado, E. N., Ambroggio, X. I., Brodin, J. D., Lewis, R. A., Kuhlman, B. & Tezcan, F. A. (2010) Metal Templated Design of Protein Interfaces, Proc. Natl. Acad. Sci. USA 107, 1827-32.
    101. Geng, Y., Dalhaimer, P., Cai, S., Tsai, R., Tewari, M., Minko, T. & Discher, D. E. (2007) Shape Effects of Filaments Versus Spherical Particles in Flow and Drug Delivery, Nat. Nano. 2, 249-255.
    102. Biswas, S., Kinbara, K., Oya, N., Ishii, N., Taguchi, H. & Aida, T. (2009) A Tubular Biocontainer: Metal Ion-Induced 1D Assembly of a Molecularly Engineered Chaperonin, J. Am. Chem. Soc. 131, 7556-7557.
    103. Evans, O. R. & Lin, W. (2002) Crystal Engineering of NLO Materials Based on Metal?Organic Coordination Networks, Acc. Chem. Res. 35, 511-522.
    104. Kitagawa, S., Kitaura, R. & Noro, S. (2004) Functional Porous Coordination Polymers, Angew. Chem. Int. Ed. 43, 2334-2375.
    105. Ockwig, N. W., Delgado, F. O., O'Keeffe, M. & Yaghi, O. M. (2005) Reticular Chemistry: Occurrence and Taxonomy of Nets and Grammar for the Design of Frameworks, Acc. Chem. Res. 38, 176-182.
    106. Fujita, M., Tominaga, M., Hori, A. & Therrien, B. (2005) Coordination Assemblies from a Pd(II)-Cornered Square Complex, Acc. Chem. Res. 38, 369-378.
    107. Hosseini, M. W. (2005) Molecular Tectonics: From Simple Tectons to Complex Molecular Networks, Acc. Chem. Res. 38, 313-323.
    108. Bartl, M. H., Boettcher, S. W., Frindell, K. L. & Stucky, G. D. (2005) 3-D Molecular Assembly of Function in Titania-Based Composite Material Systems, Acc. Chem. Res. 38, 263-271.
    109. Driessens, F. C. M. (1990) Mann, S. Webb, J. Williams, R. J. P. (Eds.): Biomineralization: Chemical and Biochemical Perspectives, VCH Verlagsgesellschaft, Weinheim, Basel, Canbridge, New York, 1989. 541 Seiten, Preis: DM 274.—, Berichte der Bunsengesellschaft für physikalische Chemie. 94, 209-209.
    110. Shorter, J. & Lindquist, S. (2005) Prions as Adaptive Conduits of Memory and Inheritance, Nat. Rev. Genet. 6, 435-450.
    111. Burazerovic, S., Gradinaru, J., Pierron, J. & Ward, T. R. (2007) Hierarchical Self-Assembly of One-Dimensional Streptavidin Bundles as a Collagen Mimetic for the Biomineralization of Calcite, Angew. Chem. Int. Ed. 46, 5510-5514.
    112. Gazit, E. (2007) Use of Biomolecular Templates for the Fabrication of Metal Nanowires, FEBS J. 274, 317-322.
    113. Mertig, M., Kirsch, R. & Pompe, W. (1998) Biomolecular Approach to Nanotube Fabrication, Appl. Phys. A 66, S723-S727.
    114. Keren, K., Krueger, M., Gilad, R., Ben, Y. G., Sivan, U. & Braun, E. (2002) Sequence-Specific Molecular Lithography on Single DNA Molecules, Science 297, 72-75.
    115. Patolsky, F., Weizmann, Y., Lioubashevski, O. & Willner, I. (2002) Au-Nanoparticle Nanowires Based on DNA and Polylysine Templates, Angew. Chem. Int. Ed. 41, 2323-2327.
    116. Knez, M., Bittner, A. M., Boes, F., Wege, C., Jeske, H., Maiβ, E. & Kern, K. (2003) Biotemplate Synthesis of 3-nm Nickel and Cobalt Nanowires, Nano Lett. 3, 1079-1082.
    117. Reches, M. & Gazit, E. (2003) Casting Metal Nanowires within Discrete Self-Assembled Peptide Nanotubes, Science 300, 625-627.
    118. Ostrov, N. & Gazit, E. (2010) Genetic Engineering of Biomolecular Scaffolds for theFabrication of Organic and Metallic Nanowires, Angew. Chem. Int. Ed. 49, 3018-3021.
    119. Aizenberg, J., Muller, D. A., Grazul, J. L. & Hamann, D. R. (2003) Direct Fabrication of Large Micropatterned Single Crystals, Science 299, 1205-1208.
    120. Meldrum, F. C. & C?lfen, H. (2008) Controlling Mineral Morphologies and Structures in Biological and Synthetic Systems, Chem. Rev. 108, 4332-4432.
    121. Losic, D., Mitchell, J. G. & Voelcker, N. H. (2009) Diatomaceous Lessons in Nanotechnology and Advanced Materials, Adv. Mater. 21, 2947-2958.
    122. Comellas, A. M., Engelkamp, H., Claessen, V. I., Sommerdijk, N. A. J. M., Rowan, A. E., Christianen, P. C. M., Maan, J. C., Verduin, B. J. M., Cornelissen, J. J. L. M. & Nolte, R. J. M. (2007) A Virus-Based Single-Enzyme Nanoreactor, Nat. Nano. 2, 635-639.
    123. Tong, G. J., Hsiao, S. C., Carrico, Z. M. & Francis, M. B. (2009) Viral Capsid DNA Aptamer Conjugates as Multivalent Cell-Targeting Vehicles, J. Am. Chem. Soc. 131, 11174-11178.
    124. Butler, T. Z., Pavlenok, M., Derrington, I. M., Niederweis, M. & Gundlach, J. H. (2008) Single-Molecule DNA Detection with an Engineered MspA Protein Nanopore, Proc. Natl. Acad. Sci. USA 105, 20647-20652.
    125. Branton, D., Deamer, D. W., Marziali, A., Bayley, H., Benner, S. A., Butler, T., Di, V. M., Garaj, S., Hibbs, A., Huang, X., Jovanovich, S. B., Krstic, P. S., Lindsay, S., Ling, X., Mastrangelo, C. H., Meller, A., Oliver, J. S., Pershin, Y. V., Ramsey, J. M., Riehn, R., Soni, G. V., Tabard, C. V., Wanunu, M., Wiggin, M. & Schloss, J. A. (2008) The Potential and Challenges of Nanopore Sequencing, Nat. Biotech. 26, 1146-1153.
    126. Meller, A., Nivon, L., Brandin, E., Golovchenko, J. & Branton, D. (2000) Rapid Nanopore Discrimination between Single Polynucleotide Molecules, Proc. Natl. Acad. Sci. USA 97, 1079-1084.
    127. Clarke, J., Wu, H., Jayasinghe, L., Patel, A., Reid, S. & Bayley, H. (2009) Continuous Base Identification for Single-Molecule Nanopore DNA Sequencing, Nat. Nano. 4, 265-270.
    128. ?slund, F., Berndt, K. D. & Holmgren, A. (1997) Redox Potentials of Glutaredoxins and Other Thiol-Disulfide Oxidoreductases of the Thioredoxin Superfamily Determined by Direct Protein-Protein Redox Equilibria, J. Biol. Chem. 272, 30780-30786.
    129. Shimaoka, T., Miyake, C. & Yokota, A. (2003) Mechanism of the Reaction Catalyzed by Dehydroascorbate Reductase from Spinach chloroplasts, Eur. J. Biochem. 270, 921-928.
    130. Toppo, S., Vanin, S., Bosello, V. & Tosatto, S. C. E. (2008) Evolutionary and Structural Insights into the Multifaceted Glutathione Peroxidase (Gpx) Superfamily, Antioxid. Redox. Sign. 10, 1501-1514.
    1. Castro, L. & Freeman, B. A. (2001) Reactive Oxygen Species in Human Health and Disease, Nutrition 17, 161-165.
    2. Weydert, C. J. & Cullen, J. J. (2010) Measurement of Superoxide Dismutase, Catalase and Glutathione Peroxidase in Cultured Cells and Tissue, Nat. Protocols. 5, 51-66.
    3. Halliwell, B. (1996) Antioxidants in Human Health and Disease, Annu. Rev. Nutr. 16, 33-50.
    4. Jochens, H., Stiba, K., Savile, C., Fujii, R., Yu, J., Gerassenkov, T., Kazlauskas, R. J. & Bornscheuer, U. T. (2009) Converting an Esterase into an Epoxide Hydrolase, Angew. Chem. Int. Ed. 48, 3532-3535.
    5. Toscano, M. D., Woycechowsky, K. J. & Hilvert, D. (2007) Minimalist Active-Site Redesign: Teaching Old Enzymes New Tricks, Angew. Chem. Int. Ed. 46, 3212-3236.
    6. Akira, O. T. Y., Haruhiko, K., Keiji, S., Isamu, S., Takenori, Y. & Hajime, Y. (1999) Ebselen in Acute Middle Cerebral Artery Occlusion: A Placebo-Controlled, Double-Blind Clinical Trial, Cerebrovasc. Dis. 9, 112-118.
    7. Epp, O., Ladenstein, R. & Wendel, A. (1983) The Refined Structure of the Selenoenzyme Glutathione Peroxidase at 0.2-nm Resolution, Eur. J. Biochem. 133, 51-69.
    8. Ding, L., Liu, Z., Zhu, Z., Luo, G., Zhao, D. & Ni, J. (1998) Biochemical Characterization of Selenium-Containing Catalytic Antibody as a Cytosolic Glutathione Peroxidase Mimic, Biochem. J. 332, 251-255.
    9. Su, D., Ren, X., You, D., Li, D., Mu, Y., Yan, G., Zhang, Y., Luo, Y., Xue, Y., Shen, J., Liu, Z. & Luo, G. (2001) Generation of Three Selenium-Containing Catalytic Antibodies with High Catalytic Efficiency Using a Novel Hapten Design Method, Arch. Biochem. Biophys. 395, 177-184.
    10. Liu, J., Luo, G., Gao, S., Zhang, K., Chen, X. & Shen, J. (1999) Generation of a Glutathione Peroxidase-like Mimic Using Bioimprinting and Chemical Mutation, Chem. Commun. 199-200.
    11. Jiang, Z., Arnér, E. S. J., Mu, Y., Johansson, L., Shi, J., Zhao, S., Liu, S., Wang, R., Zhang, T., Yan, G., Liu, J., Shen, J. & Luo, G. (2004) Expression of Selenocysteine-Containing Glutathione S-Transferase in Escherichia coli, Biochem. Biophys. Res. Commun. 321, 94-101.
    12. Zhang, K., Zang, T., Yang, W., Sun, Y., Mu, Y., Liu, J., Shen, J. & Luo, G. (2006) Single Chain Antibody Displays Glutathione S-Transferase Activity, J. Biol. Chem. 281,12516-12520.
    13. Ren, X., Jemth, P., Board, P. G., Luo, G., Mannervik, B., Liu, J., Zhang, K. & Shen, J. (2002) A Semisynthetic Glutathione Peroxidase with High Catalytic Efficiency: Selenoglutathione Transferase, Chem. Biol 9, 789-794.
    14. Yu, H., Liu, J., B?ck, A., Li, J., Luo, G. & Shen, J. (2005) Engineering Glutathione Transferase to a Novel Glutathione Peroxidase Mimic with High Catalytic Efficiency, J. Biol. Chem. 280, 11930-11935.
    15. Liu, X., Silks, L. A., Liu, C., Ollivault, S. M., Huang, X., Li, J., Luo, G., Hou, Y., Liu, J. & Shen, J. (2009) Incorporation of Tellurocysteine into Glutathione Transferase Generates High Glutathione Peroxidase Efficiency, Angew. Chem. Int. Ed. 48, 2020-2023.
    16. Collinson, E. J., Wheeler, G. L., Garrido, E. O., Avery, A. M., Avery, S. V. & Grant, C. M. (2002) The Yeast Glutaredoxins Are Active as Glutathione Peroxidases, J. Biol. Chem. 277, 16712-16717.
    17. Washburn, M. P. & Wells, W. W. (1999) Identification of the Dehydroascorbic Acid Reductase and Thioltransferase (Glutaredoxin) Activities of Bovine Erythrocyte Glutathione Peroxidase, Biochem. Biophys. Res. Commun. 257, 567-571.
    18. Casi, G., Roelfes, G. & Hilvert, D. (2008) Selenoglutaredoxin as a Glutathione Peroxidase Mimic, Chembiochem 9, 1623-1631.
    19. Ge, Y., Qi, Z., Wang, Y., Liu, X., Li, J., Xu, J., Liu, J. & Shen, J. (2009) Engineered Selenium-Containing Glutaredoxin Displays Strong Glutathione Peroxidase Activity Rivaling Natural Enzyme, Int. J. Biochem. Cell Biol. 41, 900-906.
    20. Mueller, S., Senn, H., Gsell, B., Vetter, W., Baron, C. & Boeck, A. (1994) The Formation of Diselenide Bridges in Proteins by Incorporation of Selenocysteine Residues: Biosynthesis and Characterization of (Se)2-Thioredoxin, Biochemistry 33, 3404-3412.
    21. Wilson, S. R., Zucker, P. A., Huang, R. R. C. & Spector, A. (1989) Development of Synthetic Compounds with Glutathione Peroxidase Activity, J. Am. Chem. Soc. 111, 5936-5939.
    22. Holmgren, A. (1979) Glutathione-Dependent Synthesis of Deoxyribonucleotides. Characterization of the Enzymatic Mechanism of Escherichia coli Glutaredoxin, J. Biol. Chem. 254, 3672-3678.
    23. Rosenberg, A. H., Goldman, E., Dunn, J. J., Studier, F. W. & Zubay, G. (1993) Effects of Consecutive AGG Codons on Translation in Escherichia Coli, Demonstrated with a Versatile Codon Test System, J. Bacteriol. 175, 716-722.
    24. Yang, Y., Jao, S., Nanduri, S., Starke, D. W., Mieyal, J. J. & Qin, J. (1998) Reactivity of the Human Thioltransferase (Glutaredoxin) C7S, C25S, C78S, C82S Mutant and NMR SolutionStructure of Its Glutathionyl Mixed Disulfide Intermediate Reflect Catalytic Specificity, Biochemistry 37, 17145-17156.
    25. Spanjaard, R. A. & van Duin, J. (1988) Translation of the Sequence AGG-AGG Yields 50% Ribosomal Frameshift, Proc. Natl. Acad. Sci. USA 85, 7967-7971.
    26. Fernando, M. R., Lechner, J. M., L?fgren, S., Gladyshev, V. N. & Lou, M. F. (2006) Mitochondrial Thioltransferase (Glutaredoxin 2) Has GSH-Dependent and Thioredoxin Reductase-Dependent Peroxidase Activities in vitro and in Lens Epithelial Cells, FASEB J. 20, 2645-2647.
    27. Metanis, N., Keinan, E. & Dawson, P. E. (2006) Synthetic Seleno-Glutaredoxin 3 Analogues Are Highly Reducing Oxidoreductases with Enhanced Catalytic Efficiency, J. Am. Chem. Soc. 128, 16684-16691.
    28. Jao, S. C., English Ospina, S. M., Berdis, A. J., Starke, D. W., Post, C. B. & Mieyal, J. J. (2006) Computational and Mutational Analysis of Human Glutaredoxin (Thioltransferase): Probing the Molecular Basis of the Low pKa of Cysteine 22 and Its Role in Catalysis, Biochemistry 45, 4785-4796.
    29. Mugesh, G. & Singh, H. B. (2000) Synthetic Organoselenium Compounds as Antioxidants: Glutathione Peroxidase Activity, Chem. Soc. Rev. 29, 347-357.
    30. Bell, I. M., Fisher, M. L., Wu, Z. P. & Hilvert, D. (1993) Kinetic Studies on the Peroxidase Activity of Selenosubtilisin, Biochemistry 32, 3754-3762.
    31. Rabenstein, D. L., Arnold, A. P. & Guy, R. D. (1986) 1H-NMR Study of the Removal of Methylmercury from Intact Erythrocytes by Sulfhydryl Compounds, J. Inorg. Biochem. 28, 279-287.
    32. Maiorino, M. A. K., Brigelius, F. R., Doria, D., van den Heuvel, J., McCarthy, J., Roveri, A., Ursini, F. & Flohé, L. (1995) Probing the Presumed Catalytic Triad of Selenium-Containing Peroxidases by Mutational Analysis of Phospholipid Hydroperoxide Glutathione Peroxidase (PHGPx), Biol. Chem. Hoppe-Seyler. 376, 651-60.
    33. Chu, F. F., Doroshow, J. H. & Esworthy, R. S. (1993) Expression, Characterization, and Tissue Distribution of a New Cellular Selenium-Dependent Glutathione Peroxidase, GSHPx-GI, J. Biol. Chem. 268, 2571-2576.
    34. Mannervik, B. (1985) Glutathione Peroxidase, Methods Enzymol. 113, 490-495.
    35. Forstrom, J. W., Zakowski, J. J. & Tappel, A. L. (1978) Identification of the Catalytic Site of Rat Liver Glutathione Peroxidase as Selenocysteine, Biochemistry 17, 2639-2644.
    36. Babbitt, P. C. & Gerlt, J. A. (1997) Understanding Enzyme Superfamilies, J. Biol. Chem. 272, 30591-30594.
    37. Mannervik, B., Cameron, A. D., Fernandez, E., Gustafsson, A., Hansson, L. O., Jemth, P., Jiang, F., Alwyn, J. T., Larsson, A. K., Nilsson, L. O., Olin, B., Pettersson, P. L., Ridderstr?m, M., Stenberg, G. & Widersten, M. (1998) An Evolutionary Approach to the Design of Glutathione-Linked Enzymes, Chem. Biol. Interact. 111-112, 15-21.
    38. Wentworth, P. (2002) Antibody Design by Man and Nature, Science 296, 2247-2249.
    1. Giles, G. I., Fry, F. H., Tasker, K. M., Holme, A. L., Peers, C., Green, K. N., Klotz, L. O., Sies, H. & Jacob, C. (2003) Evaluation of Sulfur, Selenium and Tellurium Catalysts with Antioxidant Potential, Org. Biomol. Chem. 1, 4317-4322.
    2. Toscano, M. D., Woycechowsky, K. J. & Hilvert, D. (2007) Minimalist Active-Site Redesign: Teaching Old Enzymes New Tricks, Angew. Chem. Int. Ed. 46, 3212-3236.
    3. Park, H. S., Nam, S. H., Lee, J. K., Yoon, C. N., Mannervik, B., Benkovic, S. J. & Kim, H. S. (2006) Design and Evolution of New Catalytic Activity with an Existing Protein Scaffold, Science 311, 535-538.
    4. Xiang, H., Luo, L., Taylor, K. L. & Dunaway, M. D. (1999) Interchange of Catalytic Activity within the 2-Enoyl-Coenzyme a Hydratase/Isomerase Superfamily Based on a Common Active Site Template, Biochemistry 38, 7638-7652.
    5. Seebeck, F. P. & Hilvert, D. (2003) Conversion of a PLP-Dependent Racemase into an Aldolase by a Single Active Site Mutation, J. Am. Chem. Soc. 125, 10158-10159.
    6. Schmidt, D. M. Z., Mundorff, E. C., Dojka, M., Bermudez, E., Ness, J. E., Govindarajan, S., Babbitt, P. C., Minshull, J. & Gerlt, J. A. (2003) Evolutionary Potential of (β/α)8-Barrels: Functional Promiscuity Produced by Single Substitutions in the Enolase Superfamily, Biochemistry 42, 8387-8393.
    7. Bernhardt, P., Hult, K. & Kazlauskas, R. J. (2005) Molecular Basis of Perhydrolase Activity in Serine Hydrolases, Angew. Chem. Int. Ed. 44, 2742-2746.
    8. Terao, Y., Miyamoto, K. & Ohta, H. (2006) Introduction of Single Mutation Changes Arylmalonate Decarboxylase to Racemase, Chem. Commun. 3600-3602.
    9. Rothlisberger, D., Khersonsky, O., Wollacott, A. M., Jiang, L., DeChancie, J., Betker, J., Gallaher, J. L., Althoff, E. A., Zanghellini, A., Dym, O., Albeck, S., Houk, K. N., Tawfik, D. S. & Baker, D. (2008) Kemp Elimination Catalysts by Computational Enzyme Design, Nature 453, 190-195.
    10. Seelig, B. & Szostak, J. W. (2007) Selection and Evolution of Enzymes from a Partially Randomized Non-Catalytic Scaffold, Nature 448, 828-831.
    11. Jiang, L., Althoff, E. A., Clemente, F. R., Doyle, L., R?thlisberger, D., Zanghellini, A., Gallaher, J. L., Betker, J. L., Tanaka, F., Barbas, C. F., Hilvert, D., Houk, K. N., Stoddard, B. L. & Baker, D. (2008) De Novo Computational Design of Retro-Aldol Enzymes, Science 319, 1387-1391.
    12. Wentworth, P. (2002) Antibody Design by Man and Nature, Science 296, 2247-2249.
    13. Yu, H., Liu, J., B?ck, A., Li, J., Luo, G. & Shen, J. (2005) Engineering Glutathione Transferase to a Novel Glutathione Peroxidase Mimic With High Catalytic Efficiency, J. Biol. Chem. 280, 11930-11935.
    14. Liu, X., Silks, L. A., Liu, C., Ollivault, S. M., Huang, X., Li, J., Luo, G., Hou, Y. M., Liu, J. & Shen, J. (2009) Generates High Glutathione Peroxidase Efficiency, Angew. Chem. Int. Ed. 48, 2020-2023.
    15. Ge, Y., Qi, Z., Wang, Y., Liu, X., Li, J., Xu, J., Liu, J. & Shen, J. (2009) Engineered Selenium-Containing Glutaredoxin Displays Strong Glutathione Peroxidase Activity Rivaling Natural Enzyme, Int. J. Biochem. Cell Biol. 41, 900-906.
    16. Washburn, M. P. & Wells, W. W. (1998) The Catalytic Mechanism of the Glutathione-Dependent Dehydroascorbate Reductase Activity of Thioltransferase (Glutaredoxin), Biochemistry 38, 268-274.
    17. Girardini, J., Amirante, A., Zemzoumi, K. & Serra, E. (2002) Characterization of an Omega-Class Glutathione S-Transferase from Schistosoma Mansoni with Glutaredoxin-like Dehydroascorbate Reductase and Thiol Transferase Activities, Eur. J. Biochem. 269, 5512-5521.
    18. Jung, C., Washburn, M. P. & Wells, W. W. (2002) Ebselen Has Dehydroascorbate Reductase and Thioltransferase-like Activities, Biochem. Biophys. Res. Commun. 291, 550-553.
    19. Shimaoka, T., Miyake, C. & Yokota, A. (2003) Mechanism of the Reaction Catalyzed by Dehydroascorbate Reductase from Spinach Chloroplasts, Eur. J. Biochem. 270, 921-928.
    20. Ken, C., Lin, C.., Jiang, Y., Wen, L. & Lin, C. (2009) Cloning, Expression, and Characterization of an Enzyme Possessing both Glutaredoxin and Dehydroascorbate Reductase Activity from Taiwanofungus camphorata, J. Agric. Food Chem. 57, 10357-10362.
    21. Jiang, Y., Huang, C., Wen, L. & Lin, C. (2008) Dehydroascorbate Reductase cDNA from Sweet Potato (Ipomoea batatas [L.] Lam): Expression, Enzyme Properties, and Kinetic Studies, J. Agric. Food Chem. 56, 3623-3627.
    22. Shimaoka, T., Yokota, A. & Miyake, C. (2000) Purification and Characterization of Chloroplast Dehydroascorbate Reductase from Spinach Leaves, Plant Cell Physiol. 41, 1110-1118.
    23. Yang, H., Zhao, Y., Wang, C., Yang, Z., Zeng, Q. & Lu, H. (2009) Molecular Characterization of a Dehydroascorbate Reductase from Pinus Bungeana, J. Integr. Plant Biol. 51, 993-1001.
    24. Bell, I. M., Fisher, M. L., Wu, Z. P. & Hilvert, D. (1993) Kinetic Studies on the Peroxidase Activity of Selenosubtilisin, Biochemistry 32, 3754-3762.
    25. Atkins, J. F. & Gesteland, R. F. (2000) Translation: The Twenty-First Amino Acid, Nature 407, 463-464.
    26. Mueller, S., Senn, H., Gsell, B., Vetter, W., Baron, C. & Boeck, A. (1994) The Formation of Diselenide Bridges in Proteins by Incorporation of Selenocysteine Residues: Biosynthesis and Characterization of (Se)2-Thioredoxin, Biochemistry 33, 3404-3412.
    27. Wilson, S. R., Zucker, P. A., Huang, R. R. C. & Spector, A. (1989) Development of Synthetic Compounds with Glutathione Peroxidase Activity, J. Am. Chem. Soc. 111, 5936-5939.
    28. Hossain, M. A. & Asada, K. (1984) Purification of Dehydroascorbate Reductase from Spinach and Its Characterization as a Thiol Enzyme, Plant Cell Physiol. 25, 85-92.
    29. Mugesh, G. & Singh, H. B. (2000) Synthetic Organoselenium Compounds as Antioxidants: Glutathione Peroxidase Activity, Chem. Soc. Rev. 29, 347-357.
    30. Rabenstein, D. L., Arnold, A. P. & Guy, R. D. (1986) 1H-NMR Study of the Removal of Methylmercury from Intact Erythrocytes by Sulfhydryl Compounds, J. Inorg. Biochem. 28, 279-287.
    31. Maiorino, M. A. K., Brigelius, F. R., Doria, D., van den Heuvel, J., McCarthy, J., Roveri, A., Ursini, F. & Flohé, L. (1995) Probing the Presumed Catalytic Triad of Selenium-Containing Peroxidases by Mutational Analysis of Phospholipid Hydroperoxide Glutathione Peroxidase (PHGPx), Biol. Chem. Hoppe-Seyler. 376, 651-60.
    32. Babbitt, P. C. & Gerlt, J. A. (1997) Understanding Enzyme Superfamilies, J. Biol. Chem. 272, 30591-30594.
    33. Mannervik, B., Cameron, A. D., Fernandez, E., Gustafsson, A., Hansson, L. O., Jemth, P., Jiang, F., Alwyn Jones, T., Larsson, A. K., Nilsson, L. O., Olin, B., Pettersson, P. L., Ridderstr?m, M., Stenberg, G. & Widersten, M. (1998) An Evolutionary Approach to the Design of Glutathione-Linked Enzymes, Chem. Biol. Interact. 111-112, 15-21.
    34. Huang, X., Liu, X., Luo, Q., Liu, J. & Shen, J. (2011) Artificial Selenoenzymes: Designed and Redesigned, Chem. Soc. Rev. 40, 1171-1184.
    1. Whitesides, G. M., Mathias, J. P. & Seto, C. T. (1991) Molecular Self-Assembly and Nanochemistry: a Chemical Strategy for the Synthesis of Nanostructures, Science 254, 1312-1319.
    2. Lehn, J. M. (2007) From Supramolecular Chemistry towards Constitutional Dynamic Chemistry and Adaptive Chemistry, Chem. Soc. Rev. 36, 151-160.
    3. Kato, T., Mizoshita, N. & Kishimoto, K. (2006) Functional Liquid-Crystalline Assemblies: Self-Organized Soft Materials, Angew. Chem. Int. Ed. 45, 38-68.
    4. De Greef, T. F. A., Smulders, M. M. J., Wolffs, M., Schenning, A. P. H. J., Sijbesma, R. P. &Meijer, E. W. (2009) Supramolecular Polymerization, Chem. Rev. 109, 5687-5754.
    5. Li, Q., Hapka, D., Chen, H., Vallera, D. A. & Wagner, C. R. (2008) Self-Assembly of Antibodies by Chemical Induction, Angew. Chem. Int. Ed. 47, 10179-10182.
    6. Philp, D. & Stoddart, J. F. (1996) Self-Assembly in Natural and Unnatural Systems, Angew. Chem. Int. Ed. 35, 1154-1196.
    7. Zhang, S. (2003) Fabrication of Novel Biomaterials through Molecular Self-assembly, Nat. Biotech. 21, 1171-1178.
    8. Dujardin, E. & Mann, S. (2002) Bio-inspired Materials Chemistry, Adv. Mater. 14, 775-788.
    9. Astier, Y., Bayley, H. & Howorka, S. (2005) Protein Components for Nanodevices, Curr. Opin. Chem. Biol. 9, 576-584.
    10. Bae, Y., Fukushima, S., Harada, A. & Kataoka, K. (2003) Design of Environment-Sensitive Supramolecular Assemblies for Intracellular Drug Delivery: Polymeric Micelles That Are Responsive to Intracellular pH Change, Angew. Chem. Int. Ed. 115, 4788-4791.
    11. Burazerovic, S., Gradinaru, J., Pierron, J. & Ward, T. R. (2007) Hierarchical Self-Assembly of One-Dimensional Streptavidin Bundles as a Collagen Mimetic for the Biomineralization of Calcite, Angew. Chem. Int. Ed. 46, 5510-5514.
    12. Lutolf, M. P. & Hubbell, J. A. (2005) Synthetic Biomaterials as Instructive Extracellular Microenvironments for Morphogenesis in Tissue Engineering, Nat. Biotech. 23, 47-55.
    13. Kitagishi, H., Kakikura, Y., Yamaguchi, H., Oohora, K., Harada, A. & Hayashi, T. (2009) Self-Assembly of One- and Two-Dimensional Hemoprotein Systems by Polymerization through Heme-Heme Pocket Interactions, Angew. Chem. Int. Ed. 48, 1271-1274.
    14. Biswas, S., Kinbara, K., Oya, N., Ishii, N., Taguchi, H. & Aida, T. (2009) A Tubular Biocontainer: Metal Ion-Induced 1D Assembly of a Molecularly Engineered Chaperonin, J. Am. Chem. Soc. 131, 7556-7557.
    15. Carlson, J. C. T., Jena, S. S., Flenniken, M., Chou, T. F., Siegel, R. A. & Wagner, C. R. (2006) Chemically Controlled Self-Assembly of Protein Nanorings, J. Am. Chem. Soc. 128, 7630-7638.
    16. Chou, T. F., So, C., White, B. R., Carlson, J. C. T., Sarikaya, M. & Wagner, C. R. (2008) Enzyme Nanorings, ACS Nano 2, 2519-2525.
    17. Ringler, P. & Schulz, G. E. (2003) Self-Assembly of Proteins into Designed Networks, Science 302, 106-109.
    18. Yeates, T. O. & Padilla, J. E. (2002) Designing Supramolecular Protein Assemblies, Curr. Opin. Struct. Biol. 12, 464-470.
    19. Knowles, T. P., Fitzpatrick, A. W., Meehan, S., Mott, H. R., Vendruscolo, M., Dobson, C. M.& Welland, M. E. (2007) Role of Intermolecular Forces in Defining Material Properties of Protein Nanofibrils, Science 318, 1900-1903.
    20. Fegan, A., White, B., Carlson, J. C. T. & Wagner, C. R. (2010) Chemically Controlled Protein Assembly: Techniques and Applications, Chem. Rev. 110, 3315-3336.
    21. Alberts, B. (1998) The Cell as a Collection of Protein Machines: Preparing the Next Generation of Molecular Biologists, Cell 92, 291-294.
    22. Grueninger, D., Treiber, N., Ziegler, M. O. P., Koetter, J. W. A., Schulze, M. S. & Schulz, G. E. (2008) Designed Protein-Protein Association, Science 319, 206-209.
    23. Salgado, E. N., Faraone, M. J. & Tezcan, F. A. (2007) Controlling Protein-Protein Interactions through Metal Coordination: Assembly of a 16-Helix Bundle Protein, J. Am. Chem. Soc. 129, 13374-5.
    24. Salgado, E. N., Lewis, R. A., Faraone, M. J. & Tezcan, F. A. (2008) Metal-Mediated Self-Assembly of Protein Superstructures: Influence of Secondary Interactions on Protein Oligomerization and Aggregation, J. Am. Chem. Soc. 130, 6082-4.
    25. Ruben, M., Rojo, J., Romero, S. F. J., Uppadine, L. H. & Lehn, J. M. (2004) Grid-Type Metal Ion Architectures: Functional Metallosupramolecular Arrays, Angew. Chem. Int. Ed. 43, 3644-3662.
    26. Semenov, A., Spatz, J. P., M?ller, M., Lehn, J. M., Sell, B., Schubert, D., Weidl, C. H. & Schubert, U. S. (1999) Controlled Arrangement of Supramolecular Metal Coordination Arrays on Surfaces, Angew. Chem. Int. Ed. 38, 2547-2550.
    27. Leininger, S., Olenyuk, B. & Stang, P. J. (2000) Self-Assembly of Discrete Cyclic Nanostructures Mediated by Transition Metals, Chem. Rev. 100, 853-908.
    28. Olenyuk, B., Whiteford, J. A., Fechtenkotter, A. & Stang, P. J. (1999) Self-Assembly of Nanoscale Cuboctahedra by Coordination Chemistry, Nature 398, 796-799.
    29. Stang, P. J. & Olenyuk, B. (1997) Self-Assembly, Symmetry, and Molecular Architecture: Coordination as the Motif in the Rational Design of Supramolecular Metallacyclic Polygons and Polyhedra, Acc. Chem. Res. 30, 502-518.
    30. Kitagawa, S., Kitaura, R. & Noro, S. I. (2004) Functional Porous Coordination Polymers, Angew. Chem. Int. Ed. 43, 2334-2375.
    31. Kondo, M., Yoshitomi, T., Matsuzaka, H., Kitagawa, S. & Seki, K. (1997) Three-Dimensional Framework with Channeling Cavities for Small Molecules: {[M2(4, 4′-bpy)3(NO3)4]·xH2O}n (M = Co, Ni, Zn), Angew. Chem. Int. Ed. 36, 1725-1727.
    32. Matsuda, R., Kitaura, R., Kitagawa, S., Kubota, Y., Belosludov, R. V., Kobayashi, T. C., Sakamoto, H., Chiba, T., Takata, M., Kawazoe, Y. & Mita, Y. (2005) Highly ControlledAcetylene Accommodation in a Metal-Organic Microporous Material, Nature 436, 238-241.
    33. Radford, R. J. & Tezcan, F. A. (2009) A Superprotein Triangle Driven by Nickel(II) Coordination: Exploiting Non-Natural Metal Ligands in Protein Self-Assembly, J. Am. Chem. Soc. 131, 9136-7.
    34. Salgado, E. N., Radford, R. J. & Tezcan, F. A. (2010) Metal-Directed Protein Self-Assembly, Acc. Chem. Res. 43, 661-672.
    35. Tsurkan, M. V. & Ogawa, M. Y. (2007) Metal-Mediated Peptide Assembly: Use of Metal Coordination to Change the Oligomerization State of anα-Helical Coiled-Coil, Inorg. Chem. 46, 6849-6851.
    36. Salgado, E. N., Ambroggio, X. I., Brodin, J. D., Lewis, R. A., Kuhlman, B. & Tezcan, F. A. (2010) Metal Templated Design of Protein Interfaces, Proc. Natl. Acad. Sci. USA 107, 1827-32.
    37. Kitagishi, H., Oohora, K., Yamaguchi, H., Sato, H., Matsuo, T., Harada, A. & Hayashi, T. (2007) Supramolecular Hemoprotein Linear Assembly by Successive Interprotein Heme?Heme Pocket Interactions, J. Am. Chem. Soc. 129, 10326-10327.
    38. Padilla, J. E., Colovos, C. & Yeates, T. O. (2001) Nanohedra: Using Symmetry to Design Self Assembling Protein Cages, Layers, Crystals, and Filaments, Proc. Natl. Acad. Sci. USA 98, 2217-2221.
    39. Sugimoto, K., Kanamaru, S., Iwasaki, K., Arisaka, F. & Yamashita, I. (2006) Construction of a Ball-and-Spike Protein Supramolecule, Angew. Chem. Int. Ed. 45, 2725-2728.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700