人工分子马达的理论研究——偶氮苯的光致异构化机制与承力能力
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物马达如kinesin和dynein表明直到分子层次仍然存在功能很强的轨道定向行走。这些生物马达在生物细胞内承担着运输各种物质的重要作用。我们课题组提出了利用激光控制的光化学分子机车能够在易于实现的轨道上定向行走。该分子机车的核心机制是周期性的功循环,即周期性的将激光提供的能量转化为机械功,然后经过调制成连续的,定向的运动。偶氮苯是构造分子机车骨架的主要候选分子,而且广泛应用其他纳米器件。本论文模拟研究偶氮苯分子的光-力转化过程,及其抗阻力能力。重点探讨使用该分子作为分子纳米马达骨架的可能性。
     本论文对偶氮苯分子光致异构化过程进行了非绝热模拟研究。本文采用半经典的电子-辐射-核动力学方法(semiclassical electron-radiation-ionmethod),该方法描述含时情况下分子结构和电子动力学的耦合演化。模拟计算的结果表明,在没有外力条件下偶氮苯异构化为平面外绕轴转动的运动。在外阻力条件下该运动模式没有本质改变。我们系统地扫瞄了激光的各个参数,没有发现之前有人提出的平面内翻转机制。
     模拟计算表明90-200pN大小的力能够阻碍光致异构化。在无激光条件下,计算还表明1250-1650pN的拉力可能导致纯力学的异构化过程.力学异构化包含相当程度的平面内反转,但最终通过转动实现。最后,我们讨论本文发现对于含偶氮苯纳米器件/马达的意义。
Biomotors such as kinesin and dynein show us that robust track-walking is possible down to molecular scale. Our group designed a laser-powered molecular locomotive that is able to do that on an easily constructed track. The core of the machine is its work cycle that periodically converts optical energy into mechanical work, which is further rectified into processive, directional motion. Azobenzene molecule is a major candidate for the backbone of the molecular locomotive. It is also widely used in other mechanical nanodevices. This thesis investigates theoretically the optomechanical conversion capacity of azobenzene molecule.
     Nonadiabatic dynamical simulations were carried out to study cis-to-trans isomerization of azobenzene under laser irradiation and/or external mechanical loads. We used a semiclassical electron-radiation-ion dynamics method that is able to describe the coevolution of the structural dynamics and the underlying electronic dynamics in a real-time manner. It is found that azobenzene photoisomerization occurs predominantly by an out-of-plane rotation mechanism even under a nontrivial resisting force of several tens of piconewtons. We have repeated the simulations systematically for a broad range of parameters for laser pulses, but could not find any photoisomerization event by a previously suggested in-plane inversion mechanism.
     The simulations found that the photoisomerization process can be held back by an external resisting force of 90-200 pN depending on the frequency and intensity of the lasers. This study also found that a pure mechanical isomerization is possible from the cis-to-trans state if the azobenzene molecule is stretched by an external force of about 1250-1650 pN. Remarkably, the mechanical isomerization first proceeds through a mechanically activated inversion, and then is diverted to an ultrafast downhill rotation that accomplishes the isomerization. Implications of these findings to azobenzene-based nanomotors and nanodevices are discussed.
引文
1 A. R. Pease, J. 0. Jeppesen, J. F. Stoddart, Y. Luo, C. P. Collier, and J. R. Heath, Switching Devices Based on Interlocked Molecules[J].Acc. Chem.Res., 2001, 34: 433-444.
    
    2 R. A. van Delden, M. K. J. ter Wiel, N. Koumura, and B. L. Feringa, in Molecular motors [M]. Wiley-VCH GmbH & Co. KGaA, 2003: 559.
    
    3 C. A. Schalley, K. Beizai, and F. Voegtle, On the Way to Rotaxane-Based Molecular Motors: Studies in Molecular Mobility and Topological Chirality[J]. Acc. Chem. Res., 2001, 34(6) : 465-476.
    
    4 F. M. Raymo and J. F. Stoddart, in Molecular switches [M], edited by B. L. Feringa, Weinheim: Wiley-VCH, 2001: 219.
    
    5 J. P. Sauvage and V. Amendola. Molecular machines and motors[M], Berlin: Springer. 2001:
    
    6 J. P. Sauvage and C. Dietrich-Buchecker, Molecular catenanes, rotaxanes and knots [M]. Weinheim: Wiley-VCH. 1999:
    
    7 R. A. Bissell, E. Cordova, A. E. Kaifer, and J. F. Stoddart, A chemically and electrochemically switchable molecular shuttle [J]. Nature, 1994, 369:133-137.
    
    8 H. Murakami, A. Kawabuchi, K. Kotoo, M. Kunitake, and N. Nakashima, A light-driven molecular shuttle based on a rotaxane [J]. J Am Chem Soc, 1997,119:7605-7606.
    
    9 A. M. Brouwer, C. Frochot, F. G. Gatti, D. A. Leigh, L. Mottier, F. Paolucci, S. Roffia, and G. W. H. Wurpel, Photoinduction of fast, reversible translational motion in a hydrogen-bonded molecular shuttle [J]. Science, 2001, 291:2124-2128.
    
    10 M. C. Jimenez, C. Dietrich-Buchecker, and J. P. Sauvage, Towards Synthetic Molecular Muscles: Contraction and Stretching of a Linear Rotaxane Dimer [J]. Angew. Chem. Int. Ed., 2000, 39, 3284-3287.
    
    11 D. Cardenas, A. Livoreil, and J. P. Sauvage, Redox Control of the Ring-Gliding Motion in a Cu-Complexed Catenane: A Process Involving Three Distinct Geometries [J]. J. Am. Chem. Soc. 1996, 118: 11980-11981.
    
    12 K. Tashiro, K. Konishi, and T. Aida, Metal Bisporphyrinate Double-Decker Complexes as Redox-Responsive Rotating Modules. Studies on Ligand Rotation Activities of the Reduced and Oxidized Forms Using Chirality as a Probe[J]. J. Am. Chem. Soc. 2000, 122 (33): 7921-7926.
    
    13 D. A. Leigh, J. K. Y. Wong, F. Dehez, and F. Zerbetto, Unidirectional rotation in a mechanically interlocked molecular rotor[J] Nature, 2003, 424: 174-179.
    
    14 T. R. Kelly, H. D. Silva, and R. A. Silva, Unidirectional rotary motion in a molecular system[J].Nature, 1999,401: 150-152.
    
    15 N. Koumura, R. W. J. Zijlstra, R. A. van Delden, N. Harada, and B. L. Feringa, Light-driven monodirectional molecular rotor[J]. Nature, 1999, 401: 152-155.
    
    16 R. P. Feynman, in Miniaturization [M]. Gilbert New York :Reinhold Publishing Corporation. 1961:
    
    17 Z. Wang, Synergic mechanism and fabrication target for bipedal nanomotors [J] .Proceedings of the National Academy of Sciences, 2007, 104:17921-12796.
    
    18 R. D. Astumian, Thermodynamics and kinetics of a Brownian motor [J]. Science, 1997,276:917-922.
    
    19 Z. S. Wang, Bioinspired laser-operated molecular locomotive [J]. Phys. Rev. E, 2004,70:031903-08.
    
    20 W. Hua, J. Chung, and J. Gelles, Distinguishing Inchworm and Hand-Over-Hand Processive Kinesin Movement by Neck Rotation Measurements [J]. Science, 2002, 295: 844-848.
    
    21 W. E. Moerner and M. Orrit, Illuminating Single Molecules in Condensed Matter [J].Science, 1999, 283: 1670-1676.
    
    22 S. Weiss, Fluorescence Spectroscopy of Single Biomolecules [J]. Science, 1999,283: 1676-1683.
    
    23 H. Rabitz, R. de Vivie-Riedle, M. Motzkus, and K. Kompa, Whither the Future of Controlling Quantum Phenomena? [J]. Science, 2000, 288: 824-828.
    24 T. Hugel, N. B. Holland, A. Cattani, L. Moroder, M. Seitz, and H. E. Gaub, Single-Molecule Optomechanical Cycle [J].Science,2002, 296: 1103-1106.
    
    25 H. Goerner and H. J. Kulin, Cis-Trans Photoisomerization of Stilbenes and Stilbene-Like Molecules [J]. Advances in photochemistry, 1995, 19: 1-177.
    
    26 T. Arai and K. Tokumaru, Present Status of the Photoisomerization About Ethylenic Bonds [J]. Advances in photochemistry, 1995, 20: 1-57.
    
    27 M. Schliwa, Molecular motors[M]. (Wiley-VCH GmbH & Co. KGaA, 2003).
    
    28 R. D. Vale and R. A. Milligan, The Way Things Move: Looking Under the Hood of Molecular Motor Proteins [J].Science, 2000, 288: 88-95.
    
    29 P. W. Atkins, Physical Chemistry [M]. Oxford, Melbourne, Tokyo: Oxford University Press, 1998:
    
    30 M. Schliwa and G. Woehlke, Molecular motors[J].Nature,2003, 422: 759-765 .
    
    31 V. Balzani, A. Credi, F. M. Raymo, and J. F. Stoddart, Artificial Molecular Machines [J]. Angew. Chem. Int. Ed., 2000 39(19): 3348-3391.
    
    32 B. L. Feringa, R. A. v. Delden, N. Kumura, and E. M. Geertsema, Chiroptical Molecular Switches[J]. Chem. Rev., 2000, 100: 1789-1816.
    
    33 J. P. Collin, P. Gavina, V. Heitz, and J. P. Sauvage, Construction of One-Dimensional Multicomponent Molecular Arrays: Control of Electronic and Molecular Motions [J]. Eur. J. Inorg. Chem., 1998, 1998: 1-14.
    
    34 F. Oesterhelt, D. Oesterhelt, M. Pfeiffer, A. Engel, H. E. Gaub, and D. J. Miiller, Unfolding Pathways of Individual Bacteriorhodopsins [J].Science,2000,288: 143-146.
    
    35 G. Binnig, C. F. Quate, and C. Gerber, Atomic Force Microscope [J]. Phys. Rev.Letters, 1986, 56: 930-933.
    
    36 W. R. Browne and B. L. Feringa, Making molecular machines work[J]. Nature Nanotechnology, 2006, 1: 25-35.
    
    37 M. Volgraf, P. Gorostiza, R. Numano, R. Kramer, E. Isacoff, and D. Trauner,Allosteric control of an ionotropic glutamate receptor with an optical switch[J]. Nature Chemical Biology,2005, 2 (1): 47-52.
    38 C. Zhang, M.-H. Du, H.-P. Cheng, X.-G. Zhang, A. E. Roitberg, and J. L. Krause, Coherent electron transport through an azobenzene molecule: a light-driven molecular switch[J]. Phy.Rev.Lett. 2004, 92 (15): 158301-04.
    
    39 S. Muramatsu, K. Kinbara, H. Taguchi, N. Ishii, and T. Aida, Semibiological Molecular Machine with an Implemented "AND" Logic Gate for Regulation of Protein Folding[J]. J.Am.Chem.Soc,2006, 128: 3764-3769.
    
    40 D. S. Marlin, D. G. Cabrera, D. A. Leigh, and M. Z. Slawin, An allosterically regulated molecular shuttle[J]. Angew. Chem. Int. Ed. ,2006, 45:1385-1390.
    
    41 H. Asanuma, X. G. Liang, T. Yoshida, A. Yamazawa, and M. Komiyama,Photocontrol of Triple-Helix Formation by Using Azobenzene-Bearing Oligo(thymidine) [J]. Angew. Chem. Int. Ed., 2000, 39 (7): 1316-1318.
    
    42 X. G. Liang, H. Asanuma, and M. Komiyama, Photoregulation of DNA Triplex Formation by Azobenzene [J]. Journal of the American Chemical Society, 2002,124(9): 1877-1883.
    
    43 I. Willner and S. Rubin, Control of the Structure and Functions of Biomaterials by Light [J]. Angew. Chem. Int. Ed. Engl, 1996, 35: 367-385.
    
    44 Z. S. Wang, Optimally controlled optomechanical work cycle for a molecular locomotive[J]. J. Phys.: Condens. Matter, 2005,17:S3767-S3782.
    
    45 D. Li, D. Fan, and Z. S. Wang, General mechanism for inchworm nanoscale track walkers: analytical theory and realistic simulation [J]. J Chem Phys,2007,126:245105-245111.
    
    46 Z. S. Wang, Synergic mechanism and fabrication target for bipedal nanomotors [J].Proc. National Academy of Sciences of the United States of America, 2007, 104: 17921-17926.
    
    47 D. Li, D. G. Fan, W. W. Zheng, Y. K. Le, and Z. S. Wang, From molecular to shuttles to directed procession of nanorings [J]. Chem. Phys., 2008,352:235-240.
    
    48 G. Zimmerman, L. Chow, and U. Paik, The Photochemical Isomerization of Azobenzene[J]. J.Am.Chem.Soc, 1958, 80 (14): 3528-3531 .
    
    49 P. Bortolus and S. Monti, Cis-trans photoisomerization of azobenzene. Solvent and triplet donors effects [J]. J. Phys. Chem., 1979, 83, 648-652.
    
    50 H. Rau and Erik Lueddecke, On the rotation-inversion controversy on photoisomerization of azobenzenes. Experimental proof of inversion [J]. J.AM.CHEM.SOC, 1982, 104(6): 1616 -1620.
    
    51 H. Rau, Further evidence for rotation in the n,n* and inversion in the n,π* photoisomerization of azobenzenes [J]. J. Photochem., 1984, 26: 221-225.
    
    52 P. Bortolus and S. Monti, Trans Photoisomerization of Azobenzene- Cyclodextrin Inclusion Complexes[J].J. Phys. Chem., 1987, 91:5046-5050.
    
    53 T. Fujino and T. Tahara, Picosecond Time-Resolved Raman Study of trans- Azobenzene [J]. J. Phys. Chem. A, 2000, 104: 4203-4210.
    
    54 Y.-C. Lu, E. W.-G. Diau, and H. Rau, Femtosecond Fluorescence Dynamics of Rotation-Restricted Azobenzenophanes: New Evidence on the Mechanism of trans-cis Photoisomerization of Azobenzene [J]. J. Phys. Chem. A,2005, 109:2090-2099.
    55 S. Monti, G. Orlandi, and P. Palmieri, Features of the photochemically active state surfaces of azobenzene[J]. Chem. Phys. ,1982, 71: 87-99.
    
    56 P. Cattaneo and M. Persico, An ab initio study of the photochemistry of azobenzene [J]. Phy. Chem. Chem. Phys., 1999, 1: 4739-4743.
    
    57 T. Ishikawa, T. Noro, and T. Shoda, Theoretical study on the photoisomerization of azobenzene [J]. J. Chem. Phys, 2001, 115: 7503-7512.
    
    58 L. Gagliardi, G. Orlandi, F. Bernardi, A. Cembran, and M. Garavelli, A theoretical study of the lowest electronic states of azobenzene: the role of torsion coordinate in the cis-trans photoisomerization [J].Theor Chem Acc,2004, 111:363-372.
    
    59 A. Cembran, F. Bernardi, M. Garavelli, M. Gagliardi, and G. Orlandi, On the mechanism of the cis-trans isomerization in the lowest electronic states of azobenzene: S0, S1, and T1 [J]. J.Am.Chem.Soc,2004, 126(10): 3234-43.
    
    60 E W.-G. Diau, A New trans-to-cis Photoisomerization Mechanism of Azobenzene on the Sl(n,p*) Surface [J].J. Phys. Chem. A 2004, 108: 950-956.
    
    61 G. Granucci and M. Persico, Excited state dynamics with the direct trajectory surface hopping method: azobenzene and its derivatives as a case study [J].Theor Chem Acc, 2007, 117: 1131-1143.
    
    62 B. R. Torralva, Photophysics and photochemistry of molecules[D]. Texas: A& M University. 2001:
    
    63 U. Saalmann. and R. Schmidt., Non-adiabatic quantum molecular dynamics:basic formalism and case study [J].Zeitschrift fur Physik D Atoms, 1996, 38:153.
    64 J. Slater. and G. Koster., Simplified LCAO Method for the Periodic Potential Problem [J]. Physical Review, 1954, 94: 1498-1524.
    65 D. Porezag. and etc., Construction of tight-binding-like potentials on the basis of density-functional theory: Application to carbon [J]. Phys.Rev.B, 1995, 51: 12947-12957.
    66 W. Matthew, C. Foulkes and H. Roger, Tight-binding models and density-functional theory [J].Phys.Rev.B, 1989,39: 12520-125236.
    67 P.-O. L(o|¨)wdin, On the Non-Orthogonality Problem Connected with the Use of Atomic Wave Functions in the Theory of Molecules and Crystals[J].J Chemical Physics, 1950, 18: 365-375.
    
    68 M.Elstner. and etc., Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties[J]. Phys.Rev.B, 1998, 58: 7260-7268.
    
    69 GLouie. and etc., Nonlinear ionic pseudopotentials in spin-density-functional calculations [J].Phys.Rev.B, 1982,26: 1738-1742.
    
    70 H.Eschrig. and I. Bergert., [J]. Phys. Status Solidi b, 1978, 90, 621.
    
    71 J.S. Graves and R. E. Allen, edited by P. E. A. Turchi, A. Gonis, and L. Colombo In Tight-binding Approach to Computational Materials Science[M]. Pennsylvania: Mat. Res. Soc; Warrendale. 1998:
    
    72 H. Gould and J. Tobochnik, An Introduction to Computer Simulation Methods [M]. New York: Addison-Wesley. 1988:
    73 J.J.Sakuri,Modern Quantum Mechenics[M].New York:Addison-Wesley.1985:
    74 W.Press,B.Flanery,S.Teukolsky,and W.Vetterling,Cambridge:Cambridge U.P.1988:
    75 T.Nagele,R.Hoche,W.Zinth,and J.Wachtveitl,Femtosecond photoisomerization of cis-azobenzene[J].Chemical Physics Letters,1997,272:489-495.
    76 E.Teller,The Crossing of Potential Surfaces[J].J.Phys.Chem.,1937,41:109-116.
    77 M.Born and J.R.Oppenheimer,[J].Ann.Phys.(Leipzig) 1927,84:457.
    78 E.b.W.Domcke,D.R.Yarkony,and H.Koppel,Conical Intersections:Electronic Structure,Dynamics,and Spectroscopy[M].Singapore:World Scientific.2004:1.
    79 M.Baer,Beyond Born-Oppenheimer:Electronic Nonadiabatic Coupling Terms and Conical Intersections[M].NY:Wiley,Hoboken.2006:1.
    80 D.R.Yarkony,Diabolical conical intersections[J].Rev.Mod.Phys,1996,68985-1013.
    81 M.J.Bearpark,F.Bemardi,S.Clifford,M.Olivucci,M.A.Robb,and T.Vreven,Cooperating Rings in cis-Stilbene Lead to an S_0/S_1 Conical Intersection[J].J.Phys.Chem.A,1997,101:3841-3847.
    82 B.G.Levine and T.J.Martinez,Isomerization through conical intersections[J].Ann.Rev.Phys.Chem,2007,58:613-34.
    83 M.J.Frisch,G.W.Trucks,and H.B.Schlegel,etc GAUSSIAN 03,Revision A.l[CP].Pittsburg:Gaussian,Inc.2003:
    84 Y.Dou,B.R.Torralva,and R.E.Allen,Detailed Mechanism for Trans-Cis Photoisomerization of Butadiene Following a Femtosecond-Scale Laser Pulse[J].J.Phys.Chem.A,2003,107:8817-8824.
    85 Y.Dou,B.R.Torralva,and R.E.Allen,Semiclassical electron-radiation-ion dynamics(SERID) and cis-trans photoisomerization of butadiene [J].J.Mod.Opt,2003,50:2615-2643.
    86 A.D.Mehta,M.Rief,J.A.Spudich,D.A.Smith,and R.M.Simmons,Single-Molecule Biomechanics with Optical Methods[J].Science,1999,283:1689-1695.
    87 M.Grandbois,M.Beyer,M.Rief,C.-S.Hauke,and H.E.Gaub,How Strong Is a Covalent Bond?[J].Science,1999,283(5048):1727-1730.
    88 H.Rau and Erik Lueddecke,On the rotation-inversion controversy on photoisomerization of azobenzenes.Experimental proof of inversion[J].J.AM.CHEM.SOC.,1982,104(6):1616-1620.
    89 T.Bornschloegl and M.Rief,Single Molecule Unzipping of Coiled Coils:Sequence Resolved Stability Profiles[J].Phys.Rev.Lett.,2006,96:118102-05.
    90 D.Li,基于轨道的纳米马达的理论研究[D].Shanghai:Fudan University,2007:

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700