水稻体细胞根芽再生的蛋白质组学分析及相关基因功能验证
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物根、芽的器官建成和生长发育的分子机理是发育生物学的一个重要研究领域。本研究通过水稻器官专化诱导,蛋白质差异显示和质谱分析,鉴定出与水稻根、芽发育密切相关的基因,并籍助cDNA克隆、过表达分析、RNAi抑制和亚细胞定位等步骤来进一步弄清候选基因的具体生物学功能及其对水稻根芽发育的调控作用。主要研究结果如下:
     1.根芽离体再生体系的建立以优良籼稻恢复系明恢63的成熟种子为愈伤诱导材料,获得胚性愈伤。通过不同的激素配比及其它成份的调节,配制出芽诱导培养基、根诱导培养基及植株诱导培养基,将胚性愈伤组织分别接种于这些培养基上进行诱导培养。结果显示,在芽诱导培养基上诱导出来的只有芽而没有根,其诱导频率按接种的愈伤总数为基数计算高达95.3%;在根诱导培养基上诱导的则只有根而没有芽,其诱导频率达71.3%;在植株诱导培养基上诱导出来的既有芽又有根,其诱导频率达91.3%。这些结果表明,适用于大规模蛋白质取样和双向电泳差异显示分析的体细胞根芽器官定向诱导系统构建成功。
     2.体细胞根芽切片观察细胞和组织学切片观察体细胞根芽的诱导形成历程发现,体细胞根芽分化是自愈伤表面的几层细胞开始;至接种后的第四天,根芽诱导培养基上的愈伤表层细胞的分化差异已清晰可见,分化也随之向内层细胞发展;至接种后的第八天,由表面几层细胞分化而来的根尖生长点已清晰可见,由里面几层细胞分化而来的芽尖生长点开始形成,同时,他们都伴随有输导组织的发育;至接种后的第12天,不同器官的分化进一步进展,至接种后的第16天,根芽器官的定向分化已经完成,但在植株诱导培养基上的分化则仍在进行,与前两者相比滞后约3-5天。
     3.体细胞根芽的蛋白质组学分析对处在芽诱导培养基和根诱导培养基上的不同分化时期的细胞组织,自第0天开始,每4天取一次样抽提可溶性蛋白,并用蛋白双向电泳技术进行蛋白差异表达分析。通过各分化时期不同再生样品蛋白间电泳图谱的PDQuest软件比对分析,共鉴定出102个差异蛋白点,后经蛋白质质谱分析确定出其中78个蛋白点共计83个蛋白的氨基酸序列,其中,有5个蛋白点包含2种蛋白。对这83个蛋白按其功能进行分类,一共可分为10类,前四类分别为功能未知(36%),蛋白代谢相关(15%),防御相关(14%),代谢相关(12%),占测序蛋白总数的77%。
     4.根芽发育相关基因的克隆及功能分析本研究克隆了对应于蛋白点5108(序号由软件PDQuest自动生成)的基因,并对其具体的生物学功能进行了初步分析和验证。结果证实蛋白点5108是一类含有一个胱氨酸残基的过氧还蛋白(1-Cys Proxiredoxin),对水稻中脉的发育起调控作用。RNAi抑制分析表明,一旦该基因的表达受到抑制,水稻叶片的中脉发育异常,中脉内的2-4个大气腔消失,因而,不能对叶片起刚性支撑作用,叶片从叶枕到叶基部处扭曲下垂,以至叶片的背面朝向阳光。从外表上看,原本在叶片背面突出的中脉消失,大小变成与侧脉一致。
     4. cDNA克隆过程中人工嵌合序列产生的原因分析和消除程序的提出在对具有高度同源拷贝的水稻33kDa分泌蛋白基因家族成员进行cDNA克隆时,我们发现在所获得的克隆产物中,有20%左右为基因组中不存在的嵌合序列,并发现序列的嵌合是从一个成员的5'序列转换到另一个成员的3'序列,亦或相反。随即,我们对这种人为嵌合序列产生的原因进行了系统分析。结果显示,在本实验条件下,以混合的RNA或DNA为模板的PCR扩增是这些嵌合序列的一个主要来源,其产生的机理与PCR引物的非完全延伸有关,而这种引物的非完全延伸又主要与PCR反应体系中甘油添加剂的加入与否和聚合酶种类的选用有关。另外,我们的结果还显示,在随后的cDNA克隆过程中,微生物的多种缺刻依赖型DNA修复系统对异源cDNA双链分子的修复也是上述这种人工嵌合序列的一个来源,但不是主要的来源。基于上述这些结果,我们提出了一套改进程序,用于避免RT-PCR扩增和cDNA克隆时人工嵌合序列的发生。
Plant root and shoot development and their molecular mechanism is a hot area in development biology. The present study was attempted to identify the genes that are closely related to rice root and shoot development via in vitro individual organ specific induction, protein differential display and mass spectrum analysis. And then, to make clear the candidate genes'biological function and their effect to regulate rice root and shoot development via cDNA cloning, gene over-expression, and RNAi repression.
     The main results were summarized as followings:
     1. Shoot and root in vitro regeneration systems were successfully set up
     An elite indica rice restorer line, MH63, was selected as starting material for callus induction. The medium for regeneration of individual shoot or root or whole plant were optimized by adjusting the concentration of plant hormones and other components. The calli were then inoculated onto these optimized media, respectively, for organ specific induction. The results showed that the calli induced on the shoot specific induction medium grows only shoot but no root, with the ratio up to 95.3%, while the calli induced on the root specific induction medium grows only root but no shoot, with the rate no lees than 71.0%. The higher rate up to 91.3% was also obtained for the whole plant induction. These results thus indicated that an in vitro organ specific induction system applicable for large scale protein sampling and subsequent 2-D electrophoresis has been successfully set up.
     2. Microscope observation of somatic root and shoot development
     The data derived from the microscope observation indicated that somatic root and shoot differentiation is started from the several layers of cells on the callus surface. Four days after inoculation, the differentiation differences of the callus surface cells on the shoot and root specific induction media was becoming clear. At the same time, the differentiation progressed into inner cells; another four-day after that, the root meristem derived from the several layers of callus surface cells was becoming clear, while the shoot meristem derived from the several layers of callus inner cells began to develop. At the same time, the transport tissues were accompanying them to develop. Twelve days after inoculation, the differentiation of the different organs was further progressed; Up to sixteen days after inoculation, the shoot and root specific induction was finished. However, the whole plant differentiation at the moment was still continued, lagging behind about 3 to 5 days as compared with that of root and shoot.
     3. Proteomic analysis of somatic shoot and root
     Started from zero days, soluble proteins was extracted every four days from the differentiated calli at the different developing stages and used for protein differential express display. The numbers of 102 divergence protein spots were identified via PDQuest analysis. Among them, the sequences of 83 proteins contained in the 78 spots were determined using mass spectrum. Further analysis indicated that these proteins could be classified into 10 categories based on their function. The first four categories were function unknown (36%), protein destination/chaperor (15%), defense related (14%), and metabolism related (12%), accounting for 77% of total sequenced proteins.
     4. Molecular cloning of leaf midrib related gene and its functional analysis
     Gene corresponding to protein spot 5108 with clear differences among samples and developmental stages in 2-D gel (the numbers were given by software PDQuset) were selected and cloned for further functional dissection. The results shows that the protein spot 5108 encode a 1-Cys-Proxiredoxin protein and plays an important roles in leaf midrib development. RNAi repression analysis indicates that once this gene's expression was repressed the clear cells in the middle of leaf midrib disappear so that the midrib developed abnormally and can not act to support leaf any more. The leaf blade thus droops down. In addition, the leaf base distorts so that the leaf back side turns up.
     5. Analysis of causes leads to sequence chimeras during cDNA cloning
     When clone two members of a closely related rice 33-kDa secretory protein gene family, we found existence of 20% sequence chimeras in the final products. These sequence chimeras generally switched from 5'-end of one member to 3'-end of another member, or vice versa. To make clear how these chimeras were produced, we systematically analyzed their occurrence causes. The data indicate that the mix template amplification is the major source leading to formation of these sequence chimeras. Their occurrences mechanism was confirmed mostly due to incomplete DNA amplification. While this incomplete DNA amplification was largely affected by PCR buffer additive and DNA polymerase species. In addition, our data also reveal that heteroduplex repairs by nick-dependent microbial DNA repair systems in the cDNA cloning step were found to produce chimeras, although it was not the major source under the present conditions. Based on these results, several simple strategies have been suggested to reduce the formation of the chimeras in the mixed-template amplification and subsequent cDNA cloning.
引文
Aida, M., Ishida, T., and Tasaka, M. (1999). Shoot apical meristem and cotyledon formation during Arabidopsis embryogenesis:interaction among the CUP-SHAPED COTYLEDON and SHOOT MERISTEMLESS genes. Development 126,1563-1570.
    Aida, M., Ishida, T., Fukaki, H., Fujisawa, H., and Tasaka, M. (1997). Genes involved in organ separation in Arabidopsis:an analysis of the cup-shaped cotyledon mutant. Plant Cell 9,841-857.
    Aida, M., Vernoux, T., Furutani, M., Traas, J., and Tasaka, M. (2002). Roles of PIN-FORMED 1 and MONOPTEROS in pattern formation of the apical region of the Arabidopsis embryo. Development 129,3965-3974.
    Alexandersson, E., Saalbach, G., Larsson, C., and Kjellbom, P. (2004). Arabidopsis plasma membrane proteomics identifies components of transport, signal transduction and membrane trafficking. Plant Cell Physiol 45, 1543-1556.
    Alfonso, P., Nunez, A., Madoz-Gurpide, J., Lombardia, L., Sanchez, L., and Casal, J.I. (2005). Proteomic expression analysis of colorectal cancer by two-dimensional differential gel electrophoresis. Proteomics 5,2602-2611.
    Almeida, J.S., Stanislaus, R., Krug, E., and Arthur, J.M. (2005). Normalization and analysis of residual variation in two-dimensional gel electrophoresis for quantitative differential proteomics. Proteomics 5,1242-1249.
    Baier, M., Stroher, E., and Dietz, K.J. (2004). The acceptor availability at photosystem I and ABA control nuclear expression of 2-Cys peroxiredoxin-A in Arabidopsis thaliana. Plant Cell Physiol 45,997-1006.
    Berleth, T., and Jurgens, G.(1993). The Role of the Monopteros Gene in Organizing the Basal Body Region of the Arabidopsis Embryo. Development 118, 575-587.
    Bradley, R.D., and Hillis, D.M. (1997). Recombinant DNA sequences generated by PCR amplification. Mol Biol Evol 14,592-593.
    Brechlin, P., Jahn, O., Steinacker, P., Cepek, L., Kratzin, H., Lehnert, S., Jesse, S., Mollenhauer, B., Kretzschmar, H.A., Wiltfang, J., and Otto, M. (2008). Cerebrospinal fluid-optimized two-dimensional difference gel electrophoresis (2-D DIGE) facilitates the differential diagnosis of Creutzfeldt-Jakob disease. Proteomics 8,4357-4366.
    Carraway, M., and Marinus, M.G.(1993). Repair of heteroduplex DNA molecules with multibase loops in Escherichia coli. J Bacteriol 175,3972-3980.
    Cary, A.J., Che, P., and Howell, S.H. (2002). Developmental events and shoot apical meristem gene expression patterns during shoot development in Arabidopsis thaliana. Plant Journal 32,867-877.
    Chang, W.W., Huang, L., Shen, M., Webster, C., Burlingame, A.L., and Roberts, J.K. (2000). Patterns of protein synthesis and tolerance of anoxia in root tips of maize seedlings acclimated to a low-oxygen environment, and identification of proteins by mass spectrometry. Plant Physiol 122,295-318.
    Chen, C., and Chen, Z. (2002). Potentiation of developmentally regulated plant defense response by AtWRKY18, a pathogen-induced Arabidopsis transcription factor. Plant Physiol 129,706-716.
    Chen, J.Q., Meng, X.P., Zhang, Y., Xia, M., and Wang, X.P. (2008). Over-expression of OsDREB genes lead to enhanced drought tolerance in rice. Biotechnol Lett 30,2191-2198.
    Chen, S., and Harmon, A.C. (2006). Advances in plant proteomics. Proteomics 6, 5504-5516.
    Dao, V., and Modrich, P. (1998). Mismatch-, MutS-, MutL-, and helicase II-dependent unwinding from the single-strand break of an incised heteroduplex. J. Biol. Chem.273,9202-9207.
    Destro-Bisol, G, and Spinella, A. (1989). Non-equilibrium pH gradient electrophoresis (NEPHGE) on ultrathin polyacrylamide gels containing separators:improved erythrocyte phosphoglucomutase (PGM) and esterase D (EsD) diagnosis in red cell lysates and bloodstains. Forensic Sci Int 42,43-50.
    Dietz, K.J. (2003). Plant peroxiredoxins. Annu Rev Plant Biol 54,93-107.
    Dietz, K.J. (2007). The dual function of plant peroxiredoxins in antioxidant defence and redox signaling. Subcell Biochem 44,267-294.
    Dietz, K.J., Jacob, S., Oelze, M.L., Laxa, M., Tognetti, V., de Miranda, S.M., Baier, M., and Finkemeier, I. (2006). The function of peroxiredoxins in plant organelle redox metabolism. J Exp Bot 57,1697-1709.
    Dulbecco, R. (1986). A turning point in cancer research:sequencing the human genome. Science 231,1055-1056.
    Egler, R.A., Fernandes, E., Rothermund, K., Sereika, S., de Souza-Pinto, N., Jaruga, P., Dizdaroglu, M., and Prochownik, E.V. (2005). Regulation of reactive oxygen species, DNA damage, and c-Myc function by peroxiredoxin 1. Oncogene 24,8038-8050.
    Espejo, R.T., Feijoo, C.G, Romero, J., and Vasquez, M. (1998). PAGE analysis of the heteroduplexes formed between PCR-amplified 16S rRNA genes: estimation of sequence similarity and rDNA complexity. Microbiology-Sgm 144,1611-1617.
    Fletcher, J.C., Brand, U., Running, M.P., Simon, R., and Meyerowitz, E.M. (1999). Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science 283,1911-1914.
    Fukao, Y., Hayashi, M., and Nishimura, M. (2002). Proteomic analysis of leaf peroxisomal proteins in greening cotyledons of Arabidopsis thaliana. Plant Cell Physiol 43,689-696.
    H.Brakenhoff, R., G.G.Schoenmakers, J., and H.Lubsen, N. (1991). Chimeric cDNA clones:a novel PCR artifact. Nucleic Acids Research 19,1949.
    Haecker, A., Gross-Hardt, R., Geiges, B., Sarkar, A., Breuninger, H., Herrmann, M., and Laux, T. (2004). Expression dynamics of WOX genes mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana. Development 131,657-668.
    Han, Y., Cao, H., Jiang, J., Xu, Y., Du, J., Wang, X., Yuan, M., Wang, Z., Xu, Z.,
    and Chong, K. (2008). Rice ROOT ARCHITECTURE ASSOCIATED1 binds the proteasome subunit RPT4 and is degraded in a D-box and proteasome-dependent manner. Plant Physiol 148,843-855.
    Henke, W., Herdel, K., Jung, K., Schnorr, D., and Loening, S.A. (1997). Betaine improves the PCR amplification of GC-rich DNA sequences. Nucleic Acids Res 25,3957-3958.
    Hrebicek, T., Durrschmid, K., Auer, N., Bayer, K., and Rizzi, A. (2007). Effect of CyDye minimum labeling in differential gel electrophoresis on the reliability of protein identification. Electrophoresis 28,1161-1169.
    Hsieh, T.H., Lee, J.T., Charng, Y.Y., and Chan, M.T. (2002a). Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress. Plant Physiol 130,618-626.
    Hsieh, T.H., Lee, J.T., Yang, P.T., Chiu, L.H., Charng, Y.Y., Wang, Y.C., and Chan, M.T. (2002b). Heterology expression of the Arabidopsis C-repeat/dehydration response element binding factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiol 129,1086-1094.
    Hwang, I., and Sheen, J. (2001). Two-component circuitry in Arabidopsis cytokinin signal transduction. Nature 413,383-389.
    Hwang, I., and Sheen, J. (2002). Two-component circuitry in Arabidopsis cytokinin signal transduction. Developmental Biology 247,484-484.
    Judo, M.S., Wedel, A.B., and Wilson, C. (1998). Stimulation and suppression of PCR-mediated recombination. Nucleic Acids Res 26,1819-1825.
    Kakimoto, T. (1996). CKI1, a histidine kinase homolog implicated in cytokinin signal transduction. Science 274,982-985.
    Kang, J.Y., Choi, H.I., Im, M.Y., and Kim, S.Y. (2002). Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling. Plant Cell 14,343-357.
    Khoo, K.S., Lamey, P.J., and Beeley, J.A. (1988). Two-Dimensional Electrophoresis of Human Salivary Proteins Using Immobilized Ph Gradients. Electrophoresis 9,631-631.
    Kim, H.S., and Delaney, T.P. (2002). Over-expression of TGA5, which encodes a bZIP transcription factor that interacts with NIM1/NPR1, confers SAR-independent resistance in Arabidopsis thaliana to Peronospora parasitica. Plant J 32,151-163.
    Knowles, M.R., Cervino, S., Skynner, H.A., Hunt, S.P., de Felipe, C., Salim, K., Meneses-Lorente, G, McAllister, G., and Guest, P.C. (2003). Multiplex proteomic analysis by two-dimensional differential in-gel electrophoresis. Proteomics,S,1162-1171.
    Komatsu, S. (2005). Rice proteome database:a step toward functional analysis of the rice genome. Plant Mol Biol 59,179-190.
    Komatsu, S., and Tanaka, N. (2005). Rice proteome analysis:a step toward functional analysis of the rice genome. Proteomics 5,938-949.
    Konishi, M., and Sugiyama, M. (2003). Genetic analysis of adventitious root
    formation with a novel series of temperature-sensitive mutants of Arabidopsis thaliana. Development 130,5637-5647.
    Krishnan, A., Guiderdoni, E., An, G., Hsing, Y.I., Han, C.D., Lee, M.C., Yu, S.M., Upadhyaya, N., Ramachandran, S., Zhang, Q., Sundaresan, V., Hirochika, H., Leung, H., and Pereira, A. (2009). Mutant resources in rice for functional genomics of the grasses. Plant Physiol 149,165-170.
    Kurepa, J., Wang, S., Li, Y., Zaitlin, D., Pierce, A.J., and Smalle, J.A. (2009). Loss of 26S proteasome function leads to increased cell size and decreased cell number in Arabidopsis shoot organs. Plant Physiol 150,178-189.
    Lee, K.O., Jang, H.H., Jung, B.G., Chi, Y.H., Lee, J.Y., Choi, Y.O., Lee, J.R., Lim, C.O., Cho, M.J., and Lee, S.Y. (2000). Rice 1 Cys-peroxiredoxin over-expressed in transgenic tobacco does not maintain dormancy but enhances antioxidant activity. FEBS Lett 486,103-106.
    Li, X., Lassner, M., and Zhang, Y. (2002). Deleteagene:a fast neutron deletion mutagenesis-based gene knockout system for plants. Comp Funct Genomics 3, 158-160.
    Long, J.A., and Barton, M.K. (1998). The development of apical embryonic pattern in Arabidopsis. Development 125,3027-3035.
    Long, J.A., Woody, S., Poethig, S., Meyerowitz, E.M., and Barton, K. (2002). Transformation of shoots into roots in Arabidopsis embryos mutant at the TOPLESS locus. Development 129,2797-2806.
    Marshall, A., and Hodgson, J. (1998). DNA chips:An array of possibilities. Nature Biotechnology 16,27-31.
    Mayer, K.F., Schoof, H., Haecker, A., Lenhard, M., Jurgens, G., and Laux, T. (1998). Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell 95,805-815.
    Meyerhans, A., Vartanian, J.P., and Wain-Hobson, S. (1990). DNA recombination during PCR. Nucleic Acids Res 18,1687-1691.
    Molloy, M.P. (2000). Two-dimensional electrophoresis of membrane proteins using immobilized pH gradients. Analytical Biochemistry 280,1-10.
    Moons, A., Gielen, J., Vandekerckhove, J., Van der Straeten, D., Gheysen, G., and Van Montagu, M. (1997). An abscisic-acid-and salt-stress-responsive rice cDNA from a novel plant gene family. Planta 202,443-454.
    Napoli, C., Lemieux, C., and Jorgensen, R. (1990). Introduction of a Chimeric Chalcone Synthase Gene into Petunia Results in Reversible Co-Suppression of Homologous Genes in trans. Plant Cell 2,279-289.
    O'Farrell, P.H. (1975). High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250,4007-4021.
    Oh, S., Kim, Y.H., Hann, H.J., Lee, H.L., Choi, H.S., Kim, H.S., and Ho, I.K. (2001). Modulation of the levels of NMDA receptor subunit mRNA and the bindings of [3H]MK-801 in rat brain by chronic infusion of subtoxic dose of MK-801. Neurochem Res 26,559-565.
    Ohmori, Y., Abiko, M., Horibata, A., and Hirano, H.Y. (2008). A transposon, Ping, is integrated into intron 4 of the DROOPING LEAF gene of rice, weakly
    reducing its expression and causing a mild drooping leaf phenotype. Plant Cell Physiol 49,1176-1184.
    Ozawa, S., Yasutani, I., Fukuda, H., Komamine, A., and Sugiyama, M. (1998). Organogenic responses in tissue culture of srd mutants of Arabidopsis thaliana. Development 125,135-142.
    Paabo, S., Irwin, D.M., and Wilson, A.C. (1990). DNA damage promotes jumping between templates during enzymatic amplification. J Biol Chem 265, 4718-4721.
    Park, J.M., Park, C.J., Lee, S.B., Ham, B.K., Shin, R., and Paek, K.H. (2001). Overexpression of the tobacco Tsil gene encoding an EREBP/AP2-type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco. Plant Cell 13,1035-1046.
    Patel, R., Lin, M., Laney, M., Kurn, N., Rose, S., and Ullman, E.F. (1996). Formation of chimeric DNA primer extension products by template switching onto an annealed downstream oligonucleotide. Proc Natl Acad Sci U S A 93, 2969-2674.
    Pomp, D., and Medrano, J.F. (1991). Organic-Solvents as Facilitators of Polymerase Chain-Reaction. Biotechniques 10,58-59.
    Porubleva, L., Vander Velden, K., Kothari, S., Oliver, D.J., and Chitnis, P.R. (2001). The proteome of maize leaves:use of gene sequences and expressed sequence tag data for identification of proteins with peptide mass fingerprints. Electrophoresis 22,1724-1738.
    Qiu, X., Wu, L., Huang, H., McDonel, P.E., Palumbo, A.V., Tiedje, J.M., and Zhou, J. (2001). Evaluation of PCR-generated chimeras, mutations, and heteroduplexes with 16S rRNA gene-based cloning. Appl Environ Microbiol 67,880-887.
    Rakwal, R., and Komatsu, S. (2000). Role of jasmonate in the rice (Oryza sativa L.) self-defense mechanism using proteome analysis. Electrophoresis 21, 2492-2500.
    Riederer, I.M., and Riederer, B.M. (2007). Differential protein labeling with thiol-reactive infrared DY-680 and DY-780 maleimides and analysis by two-dimensional gel electrophoresis. Proteomics 7,1753-1756.
    Ruan, S.L., Ma, H.S., Wan, S.H., Xin, Y., Qian, L.H., Tong, J.X., and Wang, J. (2006a). [Advances in plant proteomics--Ⅰ. Key techniques of proteome]. Yi Chuan 28,1472-1486.
    Ruan, S.L., Ma, H.S., Wang, S.H., Xin, Y., Qian, L.H., Tong, J.X., Zhao, H.P., and Wang, J. (2006b). [Advances in plant proteomics. Ⅱ. Application of proteome techniques to plant biology research]. Yi Chuan 28,1633-1648.
    Saiki, R.K., Gelfand, D.H., Stoffel, S., Scharf, S.J., Higuchi, R., Horn, G.T., Mullis, K.B., and Erlich, H.A. (1988). Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239, 487-491.
    Shammas, F.V., Heikkila, R., and Osland, A. (2001). Fluorescence-based method for measuring and determining the mechanisms of recombination in
    quantitative PCR. Clin Chim Acta 304,19-28.
    Skoog, F., and Miller, C.O. (1957). Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp Soc Exp Biol 54,118-130.
    Smith, T.K., Long, C.M., Bowman, B., and Manos, M.M. (1990). Using cosolvents to enhance PCR amplification. Amplifications 5,16-17.
    Speksnijder, A.G., Kowalchuk, G.A., De Jong, S., Kline, E., Stephen, J.R., and Laanbroek, H.J. (2001). Microvariation artifacts introduced by PCR and cloning of closely related 16S rRNA gene sequences. Appl Environ Microbiol 67,469-472.
    Stoutjesdijk, P.A., Singh, S.P., Liu, Q., Hurlstone, C.J., Waterhouse, P.A., and Green, A.G (2002). hpRNA-mediated targeting of the Arabidopsis FAD2 gene gives highly efficient and stable silencing. Plant Physiol 129,1723-1731.
    Sugiyama, M. (1999). Organogenesis in vitro. Curr Opin Plant Biol 2,61-64.
    Teo, W.L., Kumar, P.P., Goh, C.J., and Swarup, S. (2001). The expression of Brostm, a KNOTTED 1-like gene, marks the cell type and timing of in vitro shoot induction in Brassica oleracea. Plant Molecular Biology 46,567-580.
    Thompson, J.R., Marcelino, L.A., and Polz, M.F. (2002). Heteroduplexes in mixed-template amplifications:formation, consequence and elimination by 'reconditioning PCR'Nucleic Acids Research 30,2083-2088.
    Tonge, R., Shaw, J., Middleton, B., Rowlinson, R., Rayner, S., Young, J., Pognan, F., Hawkins, E., Currie, I., and Davison, M. (2001). Validation and development of fluorescence two-dimensional differential gel electrophoresis proteomics technology. Proteomics 1,377-396.
    Torres-Ruiz, R.A., Lohner, A., and Jurgens, G.(1996). The GURKE gene is required for normal organization of the apical region in the Arabidopsis embryo. Plant J 10,1005-1016.
    Tripathi, B.N., Bhatt, I., and Dietz, K.J. (2009). Peroxiredoxins:a less studied component of hydrogen peroxide detoxification in photosynthetic organisms. Protoplasma 235,3-15.
    Ueda, M., Matsui, K., Ishiguro, S., Sano, R., Wada, T., Paponov, I., Palme, K., and Okada, K. (2004). The HALTED ROOT gene encoding the 26S proteasome subunit RPT2a is essential for the maintenance of Arabidopsis meristems. Development 131,2101-2111.
    Velculescu, V.E., Zhang, L., Vogelstein, B., and Kinzler, K.W. (1995). Serial Analysis of Gene-Expression. Science 270,484-487.
    von Wolff, M., Karl, C., Linder, D., BeierHellwig, K., and Beier, H.M. (1997). High-resolution two-dimensional electrophoresis of uterine secretion proteins using immobilized pH gradients. Geburtshilfe Und Frauenheilkunde 57, 376-382.
    Wang, G.C.-Y., and Wang, Y. (1997). Frequency of Formation of Chimeric Molecules as a Consequence of PCR Coamplification of 16S rRNA Genes from Mixed Bacterial Genomes. APPLIED AND ENVIRONMENTAL MICROBIOLOGY 63,4645-4650.
    Wang, G.C., and Wang, Y. (1996). The frequency of chimeric molecules as a
    consequence of PCR co-amplification of 16S rRNA genes from different bacterial species. Microbiology 142 (Pt 5),1107-1114.
    Wasinger, V.C., Cordwell, S.J., Cerpa-Poljak, A., Yan, J.X., Gooley, A.A., Wilkins, M.R., Duncan, M.W., Harris, R., Williams, K.L., and Humphery-Smith, I. (1995). Progress with gene-product mapping of the Mollicutes:Mycoplasma genitalium. Electrophoresis 16,1090-1094.
    Wesley, S.V., Helliwell, C.A., Smith, N.A., Wang, M.B., Rouse, D.T., Liu, Q., Gooding, P.S., Singh, S.P., Abbott, D., Stoutjesdijk, P.A., Robinson, S.P., Gleave, A.P., Green, A.G., and Waterhouse, P.M. (2001). Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J 27, 581-590.
    Wildgruber, R., Harder, A., Obermaier, C., Boguth, G, Weiss, W., Fey, S.J., Larsen, P.M., and Gorg, A. (2000). Towards higher resolution: Two-dimensional Electrophoresis of Saccharomyces cerevisiae proteins using overlapping narrow immobilized pH gradients. Electrophoresis 21,2610-2616.
    Wilson, K.A., McManus, M.T., Gordon, M.E., and Jordan, T.W. (2002). The proteomics of senescence in leaves of white clover, Trifolium repens (L.). Proteomics 2,1114-1122.
    Winship, P.R. (1989). An improved method for directly sequencing PCR amplified material using dimethyl sulphoxide. Nucleic Acids Res 17,1266.
    Wodicka, L., Dong, H., Mittmann, M., Ho, M.H., and Lockhart, D.J. (1997). Genome-wide expression monitoring in Saccharomyces cerevisiae. Nat Biotechnol 15,1359-1367.
    Wysocka-Diller, J.W., Helariutta, Y., Fukaki, H., Malamy, J.E., and Benfey, P.N. (2000). Molecular analysis of SCARECROW function reveals a radial patterning mechanism common to root and shoot. Development 127,595-603.
    Yamaguchi, T., Nagasawa, N., Kawasaki, S., Matsuoka, M., Nagato, Y., and Hirano, H.Y. (2004). The YABBY gene DROOPING LEAF regulates carpel specification and midrib development in Oryza sativa. Plant Cell 16,500-509.
    Yan, J.X., Wait, R., Berkelman, T., Harry, R.A., Westbrook, J.A., Wheeler, C.H., and Dunn, M.J. (2000). A modified silver staining protocol for visualization of proteins compatible with matrix-assisted laser desorption/ionization and electrospray ionization-mass spectrometry. Electrophoresis 21,3666-3672.
    Yasutani, I., Ozawa, S., Nishida, T., Sugiyama, M., and Komamine, A. (1994). Isolation of Temperature-Sensitive Mutants of Arabidopsis-Thaliana That Are Defective in the Redifferentiation of Shoots. Plant Physiology 105,815-822.
    Yin, L., Lan, Y., and Zhu, L. (2008). Analysis of the protein expression profiling during rice callus differentiation under different plant hormone conditions. Plant Mol Biol 68,597-617.
    Yin, L., Tao, Y., Zhao, K., Shao, J., Li, X., Liu, G., Liu, S., and Zhu, L. (2007). Proteomic and transcriptomic analysis of rice mature seed-derived callus differentiation. Proteomics 7,755-768.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700