定向钻井BHA力学分析及井斜控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文根据定向井下部钻具工作状态,建立了下部钻具双重非线性力学分析模型,该模型除考虑钻具结构、井眼形态、各种外载荷等因素外,还考虑了钻具与井壁的初始间隙和随机多向接触摩擦、钻具自重分力和钻压引起的纵向弯曲。采用有限元法中的梁单元和多向接触摩擦间隙元,对钻具的双重非线性力学模型进行求解,为下部钻具力学分析提供了一种实用的计算方法。通过定向井常用钻具井斜性能影响因素分析,得到了近钻头稳定器与钻头间距的短距离变化,能够改变钻具井斜性能,为变距稳定器的设计和应用提供了可靠的理论依据。通过5口斜直井的现场试验表明,变距稳定器能够由地面调整钻压或泵压来改变稳定器至钻头距离,使钻具井斜性能发生变化,实现了定向井旋转钻井时的井斜连续控制。
According to the work state of bottom hole assembly (BHA) in the directional well, the nonlinear mechanics model of BHA is presented in the paper. In the model, it is considered that the BHA structure, hole trajectory, various loads, the initial gap and contact friction between BHA and hole wall, and also the vertical bending to be caused by the BHA weight and drill pressure. In order to solve the model, the beam element and multi-directional contact gap element are adopted, which present a method so as to analyze the force and deformation of BHA. Through the inclined capacity analysis of BHA to be affected by various parameters, it is shown that the distance between drill bit and the first stabilizer to be changed a little, the inclined capacity of BHA can be changed, which provide the theory for the various distance stabilizer (VDS) to be designed and applied in drill engineer. The VDS has been used in 5 inclined straight wells. The test results show that the VDS work principle is reliable and the structure is reasonable, the distance between drill bit and the stabilizer can be changed by adjusting the drill pressure and pump pressure at the well head, which make the inclined capacity of BHA change, thus the continuous control of well bore inclination during rotary directional drilling was achieved.
引文
[1] 高德利.井眼轨迹控制问题的力学分析方法.石油学报,1996.1(1)
    [2] Chen Y. C. et al, An Anlysis of Tubing and Casing Buckling in Horizontal Well. Houston, Texas: 1989. OCT6037
    [3] 白家祉、苏义脑.井斜控制理论与实践.北京:石油工业出版社,1990
    [4] Rafie, S. et al, Application of a BHA Analysis Program in Directional Drilling. IADC/SPE Conf. Dallas, 1986, SPE14765
    [5] Ho H. S.. An Improved Modeling Program for Computing the Torque and Drag in Directional and Deep Wells. SPE Ann. Tech. Conf. Oct. 1988, SPE 18407
    [6] Millheim K. et al. Bottomhole Assembly Analysis Using the Finite Element Method. JPT, Feb. 1987, P265~274
    [7] Toutain, P.. Analyzing Drillstring Behavior. Word Oil, 1981, Part Ⅰ: June, PartⅡ: July, Part Ⅲ: sprt.
    [8] 张学鸿、刘巨保.整体钻柱力学接触有限元分析.石油学报,1992(3)
    [9] 张学鸿、刘巨保.水平井钻柱接触问题的间隙元法.计算结构力学及其应用,1992(4)
    [10] 刘巨保编者.石油设备有限元分析.北京:石油工业出版社,1996,P61~72
    [11] 王珍应,徐铭陶.钻柱纵向受迫振动的广义传递矩阵法.石油学报,1990,11(3):107~114
    [12] Fereidoun Abbassion. Application of Stability Approach to Torsional and Lateral Bit Dynamics. SPE Drilling & Completion, June 1998, P99-107
    [13] 张光伟.钻柱与井壁振动碰撞特性的有限元分析.西安石油学报,1996.11(6)
    [14] 高宝奎,高德利.偶合振动对钻柱疲劳的影响.石油大学学报(自然科学版),1996.10(5)
    [15] 吕英民等.钻柱隔振理论及钻井效率分析.石油大学学报(自然科学版),1997.8(4)
    [16] 陈浩,陈祖锡.用有限元法对下部钻具组合的动态分析.石油学报,1991,12(3).:121~127
    [17] 高宝奎,高德利.钻柱涡动及其应用.石油大学学报(自然科学版),1997.1(1)
    [18] 张其昌,吕英民.下部钻具组合的几何非线性动态特性分析.石油大学学报(自然科学版),1996.7(3)
    [19] K.K.Millheim,M.C.Apostal. The effect of bottom hole assembly dynamics on the trajectory of a bit. JPT, Dec 1981(SPE9222): 2323~2337
    [20] Brown E.T., Green S. J. and Sinha K.P.. The Infuelence of Rock Anisotropy on Hole Deviation in Rotary Drilling—A Review, International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abastracts, Vol. 18, 1981, P387~401
    [21] Mclamore R. T. The Role of Rock Strength Anisotropy in Natural Hole Deviation, SPE 3229
    [22] 王宝新,许岱文,程存志.弯外壳动力钻具造斜率的几何分析与计算.石油钻采工艺,1994.16(1)
    [23] 辽河石油勘探局,大庆石油学院.稠油油藏水平井优化设计技术研究.国家《八五》重点项目科学技术报告,1995.5.15,专题编号:85-204-04-1
    
    
    [24] Callas N. P. and Calls R. L. Boundary Value Problem is Solved. OGJ. Dec.15,1980
    [25] Michel Birades and Robert Fenoul. A Microcomputer Program for Prediction of Bottomhole Assembly Trajectory. SPE Drilling Engineering, June 1988 P167~172, SPE15285
    [26] Brakel J. D. and Azar J. J. Prediction of Wellbore Trajectory Considering Bottomhole Assembly and Drill-Bit Dynamics, SPE Drilling Engineering June 1989, P109~118, SPE 16172
    [27] 苏义脑,白家祉.定向井轨道控制中的地层力分析与验证.石油学报,1991(1)
    [28] Ho H. S. Prediction of Drilling Trajectory in Pirectiknal Wells Via New Rock-Bit in Anisotorpic Rock, SPE 10642, 1987
    [29] 高德利,刘希圣.钻头与地层相互作用新模型.石油钻采工艺,1987(2)
    [30] 张建群,阎铁.钻头与地层相互作用分析及井眼轨道控制.石油学报,1991(4)
    [31] Gray K.E. and Armstrong F. Two-Dimensional Study of Rock Breakage in Drag-Bit Drilling at atmospheric Pressure, JPT, Jan. 1962, P93~98
    [32] Millheim K. K. and Warren T. Side Cutting Characteristics of Rock Bits and Stabilizer While Drilling, SPE 7518
    [33] 白家祉,苏义脑.井斜控制理论与实践.北京:石油工业出版社,1991.4.P245~258
    [34] 吕英民,于永南,蔡强康.根据新的钻头-岩石相互作用模型预测井眼轨迹.石油学报,1992(3)
    [35] 张学鸿,刘巨保.定向井转盘钻进中井底钻具组合优选.科研鉴定材料,1991.12
    [36] 杨金华,刘长生.控制井眼轨迹的新工具.石油科技动态,1987,(10).1~14
    [37] 李扬译.最新式的井下钻具组合.国外钻井技术,1988,3(2).32~35
    [38] 彭贵译.用新型多角度遥控弯接头有效控制和校正井眼轨迹是影响全世界的一项措施[刊,译,英].国外钻技术,1988,3(2).P35~38
    [39] 王启译.用新工具钻水平井.国外钻井技术,1989,4(6).1~3
    [40] 于连江,陈国良.弯壳体螺杆钻具.石油矿场机械.1995,24(5).12~14
    [41] 刘文占.钻具稳定器.专利号CN2167182Y,1994.6.1.
    [42] 刘春文,刘子春.井斜控制器.专利号CN2096627U,1992.2.19
    [43] 陈武.改善水平钻井的遥控弯头.钻采工艺,1990,13(2).77~79
    [44] 符达良,易先忠.国外井下动力钻具的新发展.石油机械技术水平调研报告集(1989.12)
    [45] 狄勤丰,张绍魁.一种旋转导向工具设计方案及其旋转导向功能的实现.石油钻采工艺,1998(3)
    [46] Sandro Poll and Franco Donati. Advanced tools for advanced wells: Rotary closed-loop drilling system results of prototype field testing. SPE Drilling & Completion, June 1998, P67~72
    [47] 张书明,任俊.多功能井下钻头接头.专利号CN2092596U,1992.1.8
    [48] 高德利,丁岗.下部钻具组合技术接头.专利号CN2129333Y,1993.4.7
    [49] 刘修善等.井眼轨道设计理论与描述方法.黑龙江科学技术出版社,1993.5
    [50] 钟万勰等.计算杆系结构力学.水利电力出版社,1980
    [51] 宋天霞等.非线性结构有限元计算.华中理工大学出版社,1996
    [52] 张汝清.非线性有限元法.重庆大学出版社,1990
    [53] 高得利,刘希圣,徐秉业.井眼轨迹控制.东营:石油大学出版社,1994

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700