好氧颗粒污泥的培养及其实现同步硝化反硝化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统的废水生物处理工艺多以含碳有机物和悬浮固体为主要处理目标,而对废水中的氮、磷等营养物质的去除重视不够。据统计,我国目前城市污水处理率仅有5%左右,且绝大多数城市污水处理厂不具备脱氮除磷的能力。过多的氮、磷化合物进入天然水体不仅使得水环境质量恶化,影响渔业、旅游业、养殖业的发展,而且还对人体健康以及动、植物的生存产生严重的危害。因此,无论是从国际发展趋势来看,还是我国现实水污染状况出发,控制水体的富营养化,研究污水脱氮,探索适合我国国情且经济有效的脱氮工艺和方法,已成为亟待开展的研究课题。
     本课题立足于国内外生物脱氮研究的最新研究成果,改变传统的研究思路,从单纯的革新处理工艺方法解决同步生物脱氮过程中矛盾关系的研究方向转变到培养高活性具有生物脱氮能力的好氧颗粒污泥。实验通过对SBR反应系统中COD/NH_(3-)N比、溶解氧、酸碱度等运行条件进行调控,培养具有同步硝化反硝化脱氮,兼有高效去除有机物能力的好氧颗粒污泥,对其形成机理进行初步探讨,并对其实现同步硝化反硝化作初步研究。
     实验结果表明通过对运行过程的有效调控和污泥的定向驯化,经过约2个月的培养,在SBR反应器内活性污泥凝聚成团,形成了高活性且具有良好同步硝化反硝化能力好氧颗粒。好氧颗粒污泥外观呈橙黄色,表面光滑,近似圆形或椭圆形,粒径一般为0.5~1.0mm,粒度分析结果表明粒径在1.0mm左右的颗粒占全部污泥颗粒的20%以上。颗粒污泥浓度MLSS达到10g/L左右,沉降指数SVI约32.5mL/g,沉降速度约在25~40m/h之间,沉降性能良好,其有效生物量远远高于一般的好氧活性污泥。
     实验中在进水碳氮比为6,反应器内DO为3mg/L的条件下,COD和NH_3-N的去除率分别在83.6%~92.8%和82.3%~98.5%之间,同时出水中NO_3~--N、NO_2~--N浓度均维持在低于1mg/L的范围内,说明存在好氧颗粒污泥的SBR反应器内发生
    
     的是同步硝化反硝化反应,而不是一般活性污泥SBR反应器内发生的顺序式硝化
     反硝化反应。
     好氧颗粒污泥具有良好的水力强度,相对较高的容积负荷,良好的沉降性能,
     并不需要额外的沉淀系统。对模拟生活污水中氮及COD很好的去除效果,显示出
     好氧污泥颗粒化技术具有良好的应用前景。
For recent decades, especially in China, the main objective for wastewater biological treatment by conventional technology was only to remove organic materials containing carbon compounds and suspended solids, less attentions were paid to removal of other nutritious substances such as nitrogen, phosphorus. According to the statistics, only about 5 percent of the municipal wastewater at present in China was treated, few of which had been dealt with nitrogen and phosphorus. The entrances of overmuch nitrogen and/or phosphorus compounds to natural water bodies not only made the quality of water environment deteriorated and affected the development of fish culture, tour industry and poultry raising, but also seriously harmed human health and the survival of animal and plant.
    With the development of water pollution control both internationally and domestically, it had become a hotspot to do the research on how to control the water bodies eutrophication caused by nitrogen and phosphorus, and how to remove efficiently the nitrogen and phosphorus as well as how to develop a special technics used for nitrogen and phosphorus removal, which were suitable to the situation of our country, economically and effectively.
    Based on the latest research findings on biological nitrogen removal in both domestic and abroad, this research changed the traditional idea from solving the ambivalent relationship in simultaneous biological nitrogen removal course by simply reforming the treatment techniques to focusing on cultivation of aerobic granular sludge capable of removing simultaneously and efficiently nitrogen and organic materials in Sequencing Batch Reactor (SBR) by controlling the operation conditions such as the ratio of COD to NH/-N, dissolved oxygen (DO), alkalinity acidity, and exploring basically the formation mechanism of it as well as its' behavior of simultaneous nitrification and denitrification.
    The experimental results showed that aerobic granular sludge with high activity of simultaneous nitrification and denitrification could be formed in around 2 months by effectively controlling the operation cycle and purposefully cultivation in SBR with inoculation of normal activated sludge from municipal wastewater treatment plant. Aerobic granular sludge formed with averagely 0.5-1.0 mm in diameter and well settle-ability (the sedimentation rate is between 25m/s and 40 m/s) appeared in orange yellow, smooth and approximate roundness or ellipse, and the results of
    
    
    
    particle-dimension analysis showed that above 20 percent of granules were about 1 .0mm in diameter. The Mixed Liquid Suspended Solids (MLSS) and the Sludge Volumetric Index (SVI) of the granular sludge system were above 4.5g/L and about 32.5, respectively, which indicated a higher concentration of effective biomass than normal aerobic activated sludge process.
    With the ratio of carbon to nitrogen in influent 6 and the DO in the reactor less than 3mg/L, the removal rates of COD and NH3-N reached 83.6%~92.8% and 82.3%~98.5%, respectively, in the aerobic granules SBR system, and in the meantime the concentration of NO3--N, NO2--N in effluent were all under Img/L, which shown that simultaneous nitrification and denitrification (SND) rather than sequential nitrification and denitrfication (SQND) occurred in the aerobic granular sludge SBR.
    With the advantages in high water shear intension and volumetric loading capacity,
    well settling performance and unnecessary clarifier system, as well as a high efficiency in nitrogen and COD removal for the synthetic domestic wastewater, a good application perspective of the aerobic granulation system could be predicted.
引文
[1] 郑兴灿,李亚新.污水除磷脱氮技术.第一版.北京:中国建筑工业出版社,1998.
    [2] 刘连成.中国湖泊富营养化的现状分析.灾害学,1997,12(3):61~65.
    [3] 汪大翚,徐新华,宋爽.工业废水处理中专项污染物处理手册.第一版.北京:化学工业出版社,2000.
    [4] 楼台方,夏中明.氮与水质富营养化.氮肥设计,1996,34(5):61~62.
    [5] 谢雄飞,肖锦.水体富营养化问题评述.四川环境,2000,19(2):22~25.
    [6] 钱谨.上海部分城市污水处理厂现状调查.环境检测管理与技术,1997,9(3):22~24.
    [7] 陈坚.环境生物技术.第一版.北京:中国轻工业出版社,1999.
    [8] 国家环境保护总局.中国环境公报.2001.
    [9] 陈莉.德国城市污水处理现状.四川环境,2000,19(1):73~76.
    [10] 耿朝安,张洪林.废水生物处理发展与实践.第一版.沈阳:东北大学出版社,1997.
    [11] 沈耀良,王宝贞.废水生物处理新技术——理论与应用.第一版.北京:中国环境科学出版社,1999.
    [12] 周少奇,周吉林.生物脱氮新技术研究进展.环境污染治理技术与设备,2000,1(6):11~18.
    [13] 冯叶成,王建龙,钱易.生物脱氮新工艺研究进展.微生物学通报,2001,28(4):88~91.
    [14] 王建龙.生物脱氮新工艺及其技术原理.中国给水排水,2000,16(2):25~28.
    [15] Kshirsagar M, Gupta A B and Gupta S K. Aerobic denitrification studies on activated sludge mixed with Thiosphaera pantotropha. Environ. Tech., 1995, 16(1): 35~43.
    [16] Castigneti D and Hollocher T C. Heterotrophic nitrification among denitrifiers. Appl. Environ. Microbiol., 1984,47(4): 620~623.
    [17] Robertson L A, van Niel E J, Torremans R M, et al. Simultaneous nitrification and denitrification in aerobic chemostat cultures of Thiosphaera pantotropha. Appl. Environ. Microbiol., 1988, 54(11): 2812~2818.
    
    
    [18] Kuenen J G and Robertson ⅠA. Combined nitrification-denitrification process. FEMS Microbiol. Rev., 1994, 15(2): 109~117.
    [19] Munch E V, Lant P and Keller J. Simultaneous nitrification and denitrification in bench-scale sequencing batch reactors. Wat. Res., 1996, 30(2): 277~284.
    [20] Zhao H W, Mavinic D S, Oldham W K, et al. Controlling factors for simultaneous nitrification and denitrification in a two-stage intermittent aeration process treating domestic sewage. Wat. Res., 1999, 33(4): 961~970.
    [21] 李锋,朱南文,李树平,等.有氧情况下同时硝化/反硝化的反应动力学模式.中国给水排水,1999,15(6):58~60.
    [22] 吕锡武,稻森悠平,水落元之.同步硝化反硝化脱氮及处理过程中N_2O的控制研究.东南大学学报(自然科学版),2001,31(1):95~99.
    [23] 胡宇华,丁富新,范轶,等.有机碳源对同时硝化/反硝化(SND)过程的影响.环境工程,2001,19(4):17~20.
    [24] Watanabe Y, Masuda S and Ishiguro M. Simultaneous nitrification and denitrification in a micro-aerobic biofilms. Wat. Sci. Tech., 1992, 26(3-4): 511~522.
    [25] Lee H J, Bae J H and Cho K M. Simultaneous nitrification and denitrification in a mixed methanotrophic culture. Biotech. Lett., 2001, 23: 935~941.
    [26] Daigger G T and Littleton H X. Orbal 氧化沟同时硝化/反硝化及生物除磷的机理研究.中国给水排水,1999,15(3):1~6.
    [27] Rittmann B E and Langeland W E. Simultaneous nitrification and denitrification in single-channel oxidation ditches. J. WPCF, 1985, 57(4): 300~308.
    [28] Pochana K and Keller J. Study of factors affecting simultaneous nitrification and denitrification(SND). Wat. Sci. Tech., 1999, 39(6): 61~68.
    [29] Voet J P. Removal of nitrogen from highly nitrogenous wastewater. J. WPCF, 1975, 47(4): 394~398.
    [30] 袁江林,彭党聪,王志盈.短程硝化—反硝化生物脱氮.中国给水排水,2000,16(2):29~31.
    [31] 张鹏,周琪,屈计宁,等.同时硝化反硝化研究进展.重庆环境科学,2001,23(6):20~24.
    [32] Jetten M S M, Horn S J and van Loosdrecht M C M. Towards a more sustainable municipal wastewater treatment system. Wat. Sci. Tech., 1997, 35(9): 171
    
    180.
    [33] Broda E. Two Kinds of Lithotrophs Missing in Nature. Z. Allg. Mikrobiol. 1997, 58: 1746~1763.
    [34] 王建龙.氨的厌氧氧化.生命的化学,1997,31(12):1955~1962.
    [35] Mulder A, van de Graaf and Robertson L A. Anaerobic ammonium oxidation discovered in a denitrifying fiuidized bed reactor. FEMS Microbiol. Ecol., 1995, 16: 177~183.
    [36] Van de Graaf, Mulder A and de Bruijin P. Anaerobic oxidation of ammonium is a biologically mediated process. Appl. Environ. Microbiol., 1995, 61(11): 1246~1251.
    [37] Straous M, Kuenen J G and Jetten M S M. Key physiology of Anaerobic Ammonium oxidation. Appl. Environ. Microbiol., 1999, 65(11): 3248~3250.
    [38] Straous M, van Gerven E, Zheng P, et al. Ammonium removal from concentrated waste streams with the anaerobic ammonium oxidation(ANAMMOX) process in different configurations. Wat. Res., 1997, 31(8): 1955~1962.
    [39] Van de Graaf, Mulder A and de Bruijin P. Autotrophic growth of anaerobic ammonium oxidation microorganism in a fluidized bed reactor. Microbiology, 1996, 142(8): 2187~2196.
    [40] 邹联沛,张立秋,王宝贞,等.MBR中DO对同步硝化反硝化的影响.中国给水排水,2001,17(6):10~14.
    [41] 邹联沛,刘旭东,王宝贞,等.MBR中影响同步硝化反硝化的生态因子.环境科学,2001,22(4):52~55.
    [42] 赵玲,张之源.复合SBR中同步硝化反硝化现象及其脱氮效果.工业用水与废水,2002,33(2):4~6.
    [43] 曹国民,赵庆祥,龚剑丽,等.固定化微生物在好氧条件下同时硝化和反硝化.环境工程,2000,18(5):17~19.
    [44] 曹国民,张彤,龚剑丽,等.固定化细胞单级生物脱氮.中国环境科学,2000,20(3):237~240.
    [45] Kokufuta E, Shimohashi M and Nakamura I. Simultaneously occurring nitrification and denitrification under oxygen gradient by polyelectrolyte complex-coimmobilized Nitrosomonas europaea and Paracoccus denitrificans cells. Biotech. Bioeng., 1988, 31(4): 382~384.
    
    
    [46] Tanaka K, Sumina T, Nakamura H et al. Application of nitrification by cells immobilized in polyethylene glycol. Prog. Biotech., 1996, 11(immobilized cells): 622~632.
    [47] 李从娜,吕锡武,稻森悠平.同步硝化反硝化脱氮研究.给水排水,2001,27(1):22~24.
    [48] 耿金菊,刘登如,华兆哲,等.好氧脱氮微生物的混合培养条件.应用与环境微生物学报,2002,8(1):78~82.
    [49] Gupta S K and Raja S M. Simultaneous nitrification and denitrification in a roating biological contactor. Environ. Tech., 1994, 15(2): 145~153.
    [50] 竺建荣,刘纯新.好氧颗粒污泥的培养及理化特性研究.环境科学,1999,20(2):38~41.
    [51] 周律,王宝泉,于泮池.投加颗粒活性炭加快UASB反应器颗粒化进程的研究.中国给水排水,1996,12(5):16~19.
    [52] Lettinga G, van Velsen A F M, Hobma S W, et al. Use of the Upflow sludge blanket (USB) reactor concept for biological wastewater treatment, especially for anaerobic treatment. Biotech. Bioeng., 1980, 22: 699~734.
    [53] De Beer D, van der Heuvel J C and Ottengraf S P P. Microelectrode measurements in nitrifying aggregates. Appl. Environ.. Microbiol., 1993, 59, 573~579.
    [54] Tijhuis L, van Loosdrecht M C M and Heijnen J J. Formation and growth of heterotrophic aerobic biofilms on small suspended particles in airlift reactors. Biotech. Bioeng., 1994, 44(5): 595~608.
    [55] Van Benthum W A J, garrido-Fern(?)ndez J M, Tijbuis L, et al. Formation and detachment of biofilms and granules in nitrifying biofilm airlift suspension reactor. Biotech. Prog., 1996, 12(6): 764~772.
    [56] 卢然超,张晓健,张悦,等.SBR工艺运行条件对好氧污泥颗粒化和除磷效果的影响.环境科学,2001,21(2):87~90.
    [57] 卢然超,张晓健,张悦,等.SBR工艺污泥颗粒化对生物脱氮除磷特性的研究.环境科学学报,2001,21(5):577~581.
    [58] Morgenroth E, Shedenent T, van Loosdrecht M C M, et al. Aerobic granulation in a sequencing batch reactor. Wat. Res., 1997, 31(12): 3191~3194.
    [59] Tay J H, Liu Q S and Liu Y. The effects of shear force on the formation, structure and metabolism of aerobic granules. Appl. Microbiol. Biotech., 2001, 57: 227~
    
    233.
    [60] Beun J J, van Loosdrecht M C M and Heijnen J J. Aerobic granulation. Wat. Sci. Tech., 2000, 41(4): 41~48.
    [61] Tijhuis L, van Loosdrecht M C M and Heijnen J J. Formation and Growth of Heterotrophic Aerobic Biofilms on Small Suspended Particles in Airlift Reactors. Biotech. Bioeng., 1994, 44(5): 595~608.
    [62] Beun J J, Hendriks A, van Loosdrecht M C M, et al. Aerobic granulation in a sequencing batchreactor. Wat. Res., 1999, 33(10): 2283~2290.
    [63] 曹国民,赵庆祥,张彤.单级生物脱氮技术的进展.中国给水排水,2000,16(2):20~24.
    [64] 吕锡武,李峰,稻森悠平,等.氨氮废水处理过程中的好氧反硝化研究.给水排水,2000,26(4):17~20.
    [65] Pochana K, Keller J and Lant P. Model development for simultaneous nitrification and denitrification. Wat. Sci. Tech., 1999, 39(1): 235~243.
    [66] Tay J H, Show K Y and Jeyaseelan S. Effects of media characteristics on performance ofupflow anaerobic packed-bedreactors. J. Environ. Eng., 1996, 122(6): 469~476.
    [67] 林钧安,高锦梁,洪健.实用生物电子显微术.第一版.辽宁:辽宁科学技术出版社,1989.
    [68] Tay J H, Liu Q S and Liu Y. Microscopic observation of aerobic granulation in sequential aerobic sludge blanket reactor. J. Appl. Microbiol., 2001, 91. 168~175.
    [69] 国家环保局编委会.水和废水监测分析方法.第三版.北京:中国环境科学出版社,1997.
    [70] 顾夏声,黄铭荣.水处理工程.第一版.北京:清华大学出版社,1985.
    [71] Schmidt J E, Ahring B K, Granulation in thermophilic upflow anaerobic sludge blanket(UASB) reactors, Antonie van Leeuwenhoek., 1995, 68(4): 339~344,
    [72] 白晓慧.利用好氧颗粒污泥实现同步硝化反硝化.中国给水排水,2002,18(2):26~28.
    [73] 陈坚,王强,堵国成.好氧颗粒污泥的形成及其性质.无锡轻工大学学报,2002,31(3):317~326.
    [74] Tay J H and Xu H L. Molecular mechanism of granulation..I: H~+ translocation
    
    dehydration theory. J. Environ. Eng., 2000, 126(5): 403~410.
    [75] Schmidt J E, Ahring B K, Granular sludge formation in upflow anaerobic sludge blanket(UASB)reactors, Biotech, Bioeng, 1996, 49(3): 229~246,
    [76] Liu Y and Tay J H. The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge. Wat. Res. 2002, 36(7): 1653~1665.
    [77] Grotenhuis J T C, Kisselsup M J C, Plugge C M, et al. Role of substrate concentration in particle size distribution of methanogenic granular sludge in UASB reactors. Wat. Res. 1991, 25(1): 21~27.
    [78] 陈坚,李春生,伦世仪.厌氧颗粒污泥的形成机制.中国环境科学,1993,13(5):334~338.
    [79] 郭晓磊,胡勇有,高孔荣.厌氧颗粒污泥及其形成机理.给水排水,2000,26(1)33~37.
    [80] Schramm A, Larsen L H, Revsbech N P, et al. Biofilm structure and function of a nitrifying biofilm as determined by microelectrodes and fluorescent oligonucleotide probes. Wat. Sci. Tech., 1997, 36(1): 263~270.
    [81] Bishop P L. Biofilm structure and kinetics. Wat. Sci. Tech., 1997, 36(1):287~294.
    [82] Patureau D, Bernet N, Delgenes J P, et al. Effect of dissolved oxygen and carbon-nitrogen loads on denitrification by an aerobic consortium. Appl. Microbiol. Biotech., 2000, 54(4): 535~543.
    [83] Su J J, Lin B Y, Lin J, et al. Isolation of an aerobic denitrifying bacterial strain NS-2 from the activated sludge of piggery wastewater treatment systems in Taiwan possessing denitrification under 92% oxygen atmosphere. J. Appl. Microbiol., 2001, 91(5): 853~860.
    [84] Su J J, Liu BY and Liu C Y. Comparison of aerobic denitrification under high oxygen atmosphere by Thiosphaera pantotropha ATCC 35512 and Pseudomonas stutzeri SU2 newly isolated from the activated sludge of a piggery wastewater treatment system. J. Appl. Microbiol., 2001, 90(3): 457~459.
    [85] Robertson L A and Kuenen J G. Combined heterotrophic nitrification and aerobic denitrification in Thiosphaera pantotropha and other bacteria. Antonie van Leeuwenhoek, 1990, 57(3): 139~152.
    [86] M(?)ller E B, Stouthamer A H and Vanverseveld H W. Simultaneous NH_3 Oxidation
    
    and N_2 Production at Reduced O_2 Tensions by Sewage Sludge Subcultured with Chemolithotrophic Medium. Biodegradation, 1995, 6(4): 339-349.
    [87] 竺建荣,刘纯新,何建中,等.厌-好氧交替工艺的生物除磷特性.环境科学学报,1999,19(4):394~398.
    [88] Kuba T, v Loosdrecht M C M, Brandse F A, et al. Occurrence of denitrifying phosphorus removing bacteria in modified UCT-type wastewater treatment plants. Wat. Res. 1997, 31(4): 777~786.
    [89] Kuba T, v Loosdrecht M C M and Heijnen J J. Phosphorus and nitrogen removal with minimal CODrequirement by integration of denitrifying dephosphatation and nitrification inatwo-sludgesystem. Wat. Res. 1996, 30(7): 1701~1710.
    [90] Mino T, v Loosdrecht M C M and Heijnen J J. Microbiology and biochemistry of the enhanced biological phosphate removal process. Wat. Res. 1998, 32(11): 3193~3207.
    [91] 周康群,黄小丹,杜林,等.反硝化聚磷一体化设备中的聚磷菌.环境污染与防治,2002,24(3):132~134.
    [92] 王春英,隋军,赵庆良.反硝化聚磷机理试验.环境污染治理技术与设备,2002,3(6):65~68.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700