基于八叉树网格技术的相场法金属凝固过程组织模拟的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
凝固过程组织模拟能够在晶粒以及更细小的尺寸上模拟铸件凝固的微观演变过程,实现铸件凝固组织以及力学性能的预测,逐渐成为成形过程模拟的一个研究热点。相场法作为一种数值模拟方法,采用扩散界面模型,将界面处理成为一定厚度的连续界面,而避免了追踪复杂界面,因而在凝固过程组织模拟中被应用的越来越广泛,包括从纯金属到多元合金,二维到三维,共晶到包晶等。但是该方法对计算量的要求一直是限制其进一步发展的一个重要瓶颈,本文研究的主要目标即为提高相场法进行凝固组织模拟的计算效率以及计算能力。
     本文首先从网格相互关系,数据结构,组建规则,遍历操作以及自适应网格等五个方面重点研究了八叉树自适应网格技术,同时构建了用于本文研究的相场法数学模型体系,具体包括纯金属相场模型,二元合金相场模型,各向异性处理技术以及本研究首次提出的多晶粒处理技术等;在讨论了基于八叉树网格一阶以及多阶导数离散技术的基础上,采用有限差分方法创造性的完成了基于八叉树网格的相场、浓度场以及温度场控制方程的离散和求解等工作,首次提出了在八叉树网格中巧妙的运用搜索层数值相同单元进行数值计算的方法,解决了温度导热系数与溶质传导系统量级不统一导致计算时间加长的问题;借助距离场生成技术完成了任意三维形状八叉树网格生成的研究工作,并给出了八叉树网格后处理显示中的网格节点坐标以及节点数值的处理方法,还对八叉树网格遍历以及自适应算法的并行计算技术进行了研究。
     其次,采用八叉树自适应网格技术对纯金属单个等轴晶晶粒生长过程进行了数值模拟研究,与均匀网格数值模拟结果对比不仅证明了八叉树网格技术进行凝固组织模拟的可行性,同时也说明该技术在提高计算效率和计算能力的巨大优势,同时还分析了该技术的并行效率以及八叉树网格参数对凝固组织模拟结果的影响。对于等轴晶以及柱状晶的热物性参数对晶粒相貌生长影响进行了研究,并采用理论分析很好的解释了研究结果的变化规律;利用八叉树自适应网格技术的优势,对多个晶粒的等轴晶以及柱状晶生长过程进行数值模拟,模拟结果表明了该技术能很好的应用于此方面的研究。
     再次,采用八叉树网格技术对二元合金等温凝固、非等温凝固两个方面进行了数值模拟工作,研究结果表明该技术能够很好的用于二元合金的凝固过程模拟数值实验,还通过二元合金凝固的微观偏析这一指数的变化规律从侧面证明了本技术应用于二元合金凝固组织模拟的准确性;在此基础上采用该技术对多个二元合金柱状晶生长过程进行了数值模拟,模拟结果表明了该技术同样适合于在此方面的研究。
     最后,本文通过有机物溶液结晶实验以及实际浇注铝合金铸件金相实验,从纯金属以及二元合金两个方面对该技术进行凝固组织模拟结果进行了验证,结果表明本模拟结果在柱状晶生长中的熔断现象以及二元合金凝固树枝晶的生长与实验结果能够较好的吻合。
The numerical simulation of the solidification microstructure is subject to a growingbody of research because of the ability of showing the processing of the solidificationmicrostructure transformation in grains as well as finer size, predicting the microstructureof the casting and evaluating the mechanical properties of the casting. Based on the diffuseinterface model which makes the interface as a continuous interface with certain thicknessand avoids to track the complicated interface, the phase-field method as a numericalsimulation tool is applied widely in the numerical simulation of the solidificationmicrostructure, including from the pure metal to the multicomponent alloy, from the twodimension to three dimension, from the eutectic to peritectic and so on. The computationused for this method is the bottleneck for its further development. And the focus of thispaper is how to improve the computation efficiency and reduce the computation resourcewhen the phase field method is used for the numerical simulation of the solidificationmicrostructure.
     Firstly, the adaptive mesh technology based on octree is research with the five aspectsof the relationship, the data structure, formation rules, the traversal operation and theadaptive mesh. The mathematical model of the phase field method is established includingthe pure metal model, the binary alloy model, the anisotropic and the multi-graintechnology. The control equation of the phase field, the concentration and the temperatureare discretization by the technology of the first and multi-order derivative gained in theoctree mesh. The method which the computation is done on the same level value cells isfirst proposed in this research. And it can solve the problem which the diffusion coefficientof the temperature and the concentration is not the same order. Based on the distancetechnology, this research gives the adaptive mesh generation mesh based on the octree.The method to obtain the position and the value of the mesh point in the post processorand the parallel computing techniques are also discussed in this research.
     Secondly, the numerical simulation results of the single equiaxed grain growth of thepure metal are given. Contrast with the results using the uniform mesh, it can conclude thephase field with the adaptive mesh based on the octree which established in this paper hasthe ability not only to do the simulation of the solidification microstructure, but a greatimprovement for the computation and reduction the resource. The efficiency of the parallel and the affection of mesh parameters to the solidification microstructure are also discussedin this paper. Then this research gives the research on the relationship of thethermophysical parameters with the dendritic morphology of the equiaxed and columnargrains.
     Thirdly, this paper gives the research on the numerical simulation of the isothermaland non-isothermal solidification of the binary alloy. It can be gained from the results thatthe phase-field model with adaptive mesh based on the octree can be applied well to thesimulation of the solidification microstructure of the binary alloy. And the variation of themicrosegregation of the binary alloy from the simulation results and the simulation resultsof the multi-columnar grains growth also gives the conclusion.
     At last, two experiments including the organic solution crystallization and themetallographic experiment of the aluminium alloy casting are used to verify thesimulation results of the solidification microstructure of the pure metal and the binaryalloy. It is showed the simulation results and the experimental results are comparable inthe fuse of the columnar grain of the pure metal and the dendritic growth of the binaryalloy.
引文
[1] Oldfield W. A quantitative approach to casting solidification: freezing of cast iron,ASM Trans,1966,59(2):945~960
    [2] Hunt J D. Steady state columnar and equiaxed growth of dendrites and eutectic.Materials Science and Engineering,1984,65(1):75~83
    [3] Rappaz M, Thevoz P. Solute diffusion model for equiaxed dendritic growth:analytical solution. Acta Metallurgica,1987,35(12):2929~2933
    [4] Thevoz P, Desbiolles J L, Rappaz M. Modeling of equiaxed microstructureformation in casting. Metallurgical and Materials Transactions A,1989,20(2):311~322
    [5]吴孟武.压铸镁合金凝固组织的实验研究及数值模拟:[博士学位论文].清华大学,2012
    [6]丁恒敏.铸造合金的微观组织模拟:[博士学位论文].华中科技大学,2005
    [7]郑洪亮.基于宏—微观模型的球墨铸铁凝固过程数值模拟:[博士学位论文].山东大学,2007
    [8] Qin R S, Bhadeshia H K. Phase field method. Materials Science and Technology,2010,26(7):803~811
    [9] Moelans N. Phase-field simulations of grain growth in materials containingsecond-phase particles: PhD thesis, Katholieke Universiteit Leuven,2006
    [10] Moelans N, Blanpain B, Wollants P. An introduction to phase-field modeling ofmicrostructure evolution. Calphad-computer Coupling of Phase Diagrams andThermochemistry,2008,32(2):268~294
    [11] Chen L Q. Phase-field models for microstructure evolution. Annul Review ofMaterials Research,2002,32:113~140
    [12] Halperin B I, Hohenberg P C, Ma S. Renormalization-group methods for criticaldynamics: I. Recursion relations and effects of energy conservation. PhysicalReview B,1974,10(1):139~153
    [13] Kobayashi R. Modeling and numerical simulations of dendritic crystal growth.Physica D: Nonlinear Phenomena,1993,63(3):410~423
    [14] Wheeler A A, Boettinger W J, Mcfadden G B. Phase-field model of solute trappingduring solidification. Physical Review E,1993,47(3):1893~1909
    [15] Karma A, Rappel W J. Numerical simulation of three-dimensional dendritic growth.Physical Review Letters,1996,77(19):4050~4053
    [16] Karma A, Rappel W J. Quantitative phase-field modeling of dendritic growth in twoand three dimensions. Physical Review E,1998,57(4):4323~4349
    [17] Beckermann C, Diepers H J, Steinbach I, et al. Modeling melt convection inphase-field simulations of solidification. Journal of Computational Physics,1999,154(2):468~496
    [18] Nestler B, Wheeler A A. A multi-phase-field model of eutectic and peritectic alloys:numerical simulation of growth structures. Physica D: Nonlinear Phenomena,2000,138(1):114~133
    [19] Nestler B, Wheeler A A, Ratke L, et al. Phase-field model for solidification of amonotectic alloy with convection. Physica D: Nonlinear Phenomena,2000,141(1):133~154
    [20] Fix G J. In Free Boundary Problems: Theory and Applications. Boston: Ptiman,1983.580~589
    [21] Caginalp G, Fife P C. Elliptic problems involving phase boundaries satisfying acurvature condition. IMA Journal of Applied Mathematics,1987,38(3):195~217
    [22] Kobayashi R. A numerical approach to three-dimensional dendritic solidification.Experimental Mathematics,1994,3(1):59~81
    [23] Wheeler A A, Murray B T, Schaefer R J. Computation of dendrites using a phasefield model. Physica D: Nonlinear Phenomena,1993,66(1):243~262
    [24] Karma A, Rappel W J. Phase-field method for computationally efficient modelingof solidification with arbitrary interface kinetics. Physical Review E,1996,53(4):3017~3020
    [25] Bragard J, Karma A, Lee Y H, et al. Linking phase-field and atomistic simulationsto model dendritic solidification in highly undercooled melts. Interface Science,2002,10(2):121~136
    [26] Karma A, Lee Y H, Plapp M. Three-dimensional dendrite-tip morphology at lowundercooling. Physical Review E,2000,61(4):3996~4006
    [27] Karma A, Rappel W J. Quantitative phase-field modeling of dendritic growth in twoand three dimensions. Physical Review E,1998,57(4):4323~4349
    [28] Karma A, Rappel W J. Phase-field simulation of three-dimensional dendrites: Ismicroscopic solvability theory correct? Journal of Crystal Growth,1997,174(1-4):54~64
    [29] Karma A, Rappel W J. Phase-field method for computationally efficient modelingof solidification with arbitrary interface kinetics. Physical Review E,1996,53(4):3017~3020
    [30] Karma A, Rappel W J. Numerical simulation of three-dimensional dendritic growth.Physical Review Letters,1996,77(19):4050~4053
    [31] Steinbach I, Pezzolla F, Nestler B, et al. A phase field concept for multiphasesystems. Physica D: Nonlinear Phenomena,1996,94(3):135~147
    [32] Steinbach I, Beckermann C, Kauerauf B, et al. Three-dimensional modeling ofequiaxed dendritic growth on a mesoscopic scale. Acta Materialia,1999,47(3):971~982
    [33] T O Nhardt R, Amberg G. Dendritic growth of randomly oriented nuclei in a shearflow. Journal of Crystal Growth,2000,213(1):161~187
    [34] T O Nhardt R, Amberg G. Phase-field simulation of dendritic growth in a shearflow. Journal of Crystal Growth,1998,194(3):406~425
    [35] Anderson D M, Mcfadden G B, Wheeler A A. A phase-field model of solidificationwith convection. Physica D: Nonlinear Phenomena,2000,135(1):175~194
    [36] Lu Y, Beckermann C, Ramirez J C. Three-dimensional phase-field simulations ofthe effect of convection on free dendritic growth. Journal of Crystal Growth,2005,280(1–2):320~334
    [37] Lu Y, Beckermann C, Karma A. Convection effects in three-dimensional dendriticgrowth. Proc. ASME IMECE (Boston, MA),2002
    [38] Tong X, Beckermann C, Karma A, et al. Phase-field simulations of dendritic crystalgrowth in a forced flow. Physical Review E,2001,63(0616016Part1)
    [39] Beckermann C, Diepers H J, Steinbach I, et al. Modeling melt convection inphase-field simulations of solidification. Journal of Materials Science&Technology,1999,154(2):468~496
    [40] Jeong J H, Dantzig J A, Goldenfeld N. Dendritic growth with fluid flow in purematerials. Metallurgical and Materials Transactions A,2003,34(3):459~466
    [41] Jeong J H, Goldenfeld N, Dantzig J A. Phase field model for three-dimensionaldendritic growth with fluid flow. Physical Review E,2001,64(0416024Part1)
    [42] Zhang Y T, Li D Z, Li Y Y, et al. Numerical simulations of equiaxed dendritegrowth using phase field method. Journal of Materials Science&Technology,2002,18(1):51~53
    [43]于艳梅,杨根仓,赵达文,等.过冷熔体中枝晶生长的相场法数值模拟.物理学报,2001,(12):2423~2428
    [44]于艳梅.过冷熔体中枝晶生长的相场法数值模拟:[博士学位论文].西北工业大学,2002
    [45] Liu J F, Liu R X, Chen L L. Numerical simulation of solidification microstructureand effects of phase-field parameters on grain growth morphologies. Journal ofMaterials Science&Technology,2005,21(6):921~924
    [46]刘晶峰.过冷熔体枝晶生长的计算机模拟仿真:[博士学位论文].华中科技大学,2006
    [47]袁训锋,丁雨田.强制对流作用下多晶粒生长的相场模拟.材料导报,2011,(4):115~118
    [48]王军伟,朱昌盛,王智平,等.层流作用下随机取向多晶粒生长的相场法模拟(英文). Transactions of Nonferrous Metals Society of China,2011,(7):1620~1626
    [49] Wheeler A A, Boettinger W J, Mcfadden G B. Phase-field model of solute trappingduring solidification. Physical Review E,1993,47(3):1893~1909
    [50] Wheeler A A, Boettinger W J, Mcfadden G B. Phase-field model for isothermalphase transition in binary alloys. Physical Review E,1992,45(10):7424~7439
    [51] Kim S G, Kim W T, Suzuki T. Phase-field model for binary alloys. Physical ReviewE,1999,60(6):7186~7197
    [52] Boettinger W J, Wheeler A A, Murray B T, et al. Prediction of solute trapping athigh solidification rates using a diffuse interface phase-field theory of alloysolidification. Materials Science and Engineering: A,1994,178(1):217~223
    [53] Warren J A, Boettinger W J. Prediction of dendritic growth and microsegregationpatterns in a binary alloy using the phase-field method. Acta Metallurgica etMaterialia,1995,43(2):689~703
    [54] Boettinger W J, A. Warren J. Simulation of the cell to plane front transition duringdirectional solidification at high velocity. Journal of Crystal Growth,1999,200(3–4):583~591
    [55] Boettinger W J, Warren J A. The phase-field method: simulation of alloy dendriticsolidification during recalescence. Metallurgical and Materials Transactions A,1996,27(3):657~669
    [56] Warren J A, Murray B T. Ostwald ripening and coalescence of a binary alloy in twodimensions using a phase-field model. Modelling and Simulation in MaterialsScience and Engineering,1999,4(2):215~229
    [57] Bi Z, Sekerka R F. Phase-field model of solidification of a binary alloy. Physica A:Statistical Mechanics and its Applications,1998,261(1–2):95~106
    [58] Loginova I, Amberg G, Agren J. Phase-field simulations of non-isothermal binaryalloy solidification. Acta Materialia,2001,49(4):573~581
    [59] Tiaden J, Nestler B, Diepers H J, et al. The multiphase-field model with anintegrated concept for modelling solute diffusion. Physica D: Nonlinear Phenomena,1998,115(1):73~86
    [60] Karma A. Phase-field formulation for quantitative modeling of alloy solidification.Physical Review Letters,2001,87(11):115701
    [61] Echebarria B, Folch R, Karma A, et al. Quantitative phase-field model of alloysolidification. Physical Review E,2004,70(6):61604
    [62] Haxhimali T, Karma A, Gonzales F, et al. Orientation selection in dendriticevolution. Nature Materials,2006,5(8):660~664
    [63] Loginova I, Aa Gren J, Amberg G. On the formation of Widmanstatten ferrite inbinary Fe-C-phase-field approach. Acta Materialia,2004,52(13):4055~4063
    [64] Singer H M, Singer I, Jacot A. Phase-field simulations of α→γ precipitationsand transition to massive transformation in the Ti--Al alloy. Acta Materialia,2009,57(1):116~124
    [65] Fan J, Greenwood M, Haataja M, et al. Phase-field simulations of velocity selectionin rapidly solidified binary alloys. Physical Review E,2006,74(3):31602
    [66] Suzuki T, Ode M, Kim S G, et al. Phase-field model of dendritic growth. Journal ofCrystal Growth,2002,237:125~131
    [67] Kobayashi H, Ode M, Gyoon Kim S, et al. Phase-field model for solidification ofternary alloys coupled with thermodynamic database. Scripta Materialia,2003,48(6):689~694
    [68] Qing C, Ning M, Kaisheng W, et al. Quantitative phase field modeling ofdiffusion-controlled precipitate growth and dissolution in Ti-Al-V. ScriptaMaterialia,2004,50(4):471~476
    [69] Cha P R, Yeon D H, Yoon J K. A phase field model for isothermal solidification ofmulticomponent alloys. Acta Materialia,2001,49(16):3295~3307
    [70] Cha P R, Yeon D H, Yoon J K. Phase-field model for multicomponent alloysolidification. Journal of Crystal Growth,2005,274(1):281~293
    [71] Danilov D, Nestler B. Phase-field simulations of solidification in binary and ternarysystems using a finite element method. Journal of Crystal Growth,2005,275(1):e177~e182
    [72] Qin R S, Wallach E R. A phase-field model coupled with a thermodynamic database.Acta Materialia,2003,51(20):6199~6210
    [73] Qin R S, Wallach E R. Phase-field simulation of semisolid metal processing underconditions of laminar and turbulent flow. Materials Science and Engineering: A,2003,357(1):45~54
    [74] Wu K, Chang Y A, Wang Y. Simulating interdiffusion microstructures inNi--Al--Cr diffusion couples: a phase field approach coupled with CALPHADdatabase. Scripta Materialia,2004,50(8):1145~1150
    [75] Steinbach I, B O Ttger B, Eiken J, et al. Calphad and phase-field modeling: asuccessful liaison. Journal of Phase Equilibria and Diffusion,2007,28(1):101~106
    [76] Steinbach I, Pezzolla F. A generalized field method for multiphase transformationsusing interface fields. Physica D: Nonlinear Phenomena,1999,134(4):385~393
    [77] Hecht U, Granasy L, Pusztai T, et al. Multiphase solidification in multicomponentalloys. Materials Science and Engineering: R: Reports,2004,46(1):1~49
    [78] Qin R S, Wallach E R, Thomson R C. A phase-field model for the solidification ofmulticomponent and multiphase alloys. Journal of Crystal Growth,2005,279(1):163~169
    [79] Kim S G. A phase-field model with antitrapping current for multicomponent alloyswith arbitrary thermodynamic properties. Acta Materialia,2007,55(13):4391~4399
    [80] B O Ttger B, Eiken J, Steinbach I. Phase field simulation of equiaxed solidificationin technical alloys. Acta Materialia,2006,54(10):2697~2704
    [81] Ebrahimi Z, Rezende J L, Kundin J. Phase-field modeling of microelasticallycontrolled eutectic lamellar growth in a Ti-Fe system. Journal of Crystal Growth,2012,349(1):36~42
    [82] Choudhury A, Reuther K, Wesner E, et al. Comparison of phase-field and cellularautomaton models for dendritic solidification in Al--Cu alloy. ComputationalMaterials Science,2012,55:263~268
    [83]张光跃,荆涛,柳百成,等.铝合金枝晶生长形貌数值模拟研究.铸造,2002,(12):764~766
    [84]赵代平,荆涛,柳百成.相场方法模拟铝合金三维枝晶生长.物理学报,2003,(7):1737~1742
    [85] Wang M, Jing T, Liu B. Phase-field simulations of dendrite morphologies andselected evolution of primary α-Mg phases during the solidification of Mg-richMg-Al-based alloys. Scripta Materialia,2009,61(8):777~780
    [86]李梅娥,杨根仓,周尧和.二元合金高速定向凝固过程的相场法数值模拟.物理学报,2005,(1):454~459
    [87] Yu X L, Li F G, Ren Y C, et al. Phase-field simulation of microstructural evolutionduring preparation of semi-solid metal by electromagnetic stirring method. Journalof Materials Science&Technology,2006,22(4):441~446
    [88]朱耀产.二元共晶层片生长的多相场法数值模拟:[博士学位论文].西北工业大学,2007
    [89] Luo B C, Wang H P, Wei B B. Phase field simulation of monotectic transformationfor liquid Ni-Cu-Pb alloys. Chinese Science Bulletin,2009,54(2):183~188
    [90] Li J J, Wang J C, Xu Q, et al. Comparison of Johnson-Mehl-Avrami-Kologoromov(JMAK) kinetics with a phase field simulation for polycrystalline solidification.Acta Materialia,2007,55(3):825~832
    [91] Li J, Wang Z, Yang Y, et al. Competitive grain growth in directional solidificationinvestigated by phase field simulation. IOP Conference Series: Materials Scienceand Engineering,2012,(33):012098
    [92] Wang Z J, Li J J, Wang J C, et al. Phase field modeling the selection mechanism ofprimary dendritic spacing in directional solidification. Acta Materialia,2012,60(5):1957~1964
    [93] Wang Z J, Li J J, Wang J C. Predicting growth direction of tilted dendritic arraysduring directional solidification. Journal of Crystal Growth,2011,328(1):108~113
    [94] Wang Z J, Wang J C, Yang G C. Phase field investigation on cellular tip splittingduring directional solidification. Scripta Materialia,2009,61(9):915~918
    [95] Li X Z, Guo J J, Su Y Q, et al. Phase-field simulation of dendritic growth for binaryalloys with complicate solution models. Transactions of Nonferrous Metals Societyof China,2005,15(4):769~776
    [96]王狂飞. Ti-Al合金定向凝固组织演化的数值模拟:[博士学位论文].哈尔滨工业大学,2007
    [97]崔红保,历长云,王狂飞,等.相场法模拟Marangoni对流对Cu-Pb过偏晶合金组织演化的影响.铸造,2008,(11):1176~1180
    [98] Xue X, Tang J J. Numerical simulation of boundary heat flow effects on directionalsolidification microstructure of a binary alloy. China Foundry,2010,7(3):253~258
    [99]汤进军.基于Thermo-Calc热力学计算Al-Cu共晶合金微观组织模拟及实验验证:
    [博士学位论文].哈尔滨工业大学,2010
    [100] Xue X, Tang J. Numerical simulation of microstructure and microsegregation inNi-Cu alloy under isothermal condition. Journal of Materials Science&Technology,2008(3):391~394
    [101]龙文元.铝合金凝固过程枝晶生长的相场法数值模拟:[博士学位论文].华中科技大学,2004
    [102]龙文元,蔡启舟,魏伯康,等.合金凝固过程再辉现象的数值模拟.铸造,2005,(11):39~42
    [103] Ding H, Chen L, Liu R. Micro-description of the solute-field and the phase-fieldmodel for isothermal phasetransition in binary alloys. Acta MetallurgicaSinica(English Letters),2004(6):835~839
    [104]邱万里.相场法模拟Al-Cu合金枝晶生长的参数优化:[硕士学位论文].华中科技大学,2005
    [105]冯力. Fe-C-P三元合金等温凝固过程相场法模拟:[硕士学位论文].兰州理工大学,2007
    [106]冯力,王智平,路阳,等.多元合金多晶粒的枝晶生长非等温相场模拟.铸造,2009,(5):462~465
    [107] Braun R J, Murray B T. Adaptive phase-field computations of dendritic crystalgrowth. Journal of Crystal Growth,1997,174(1-4):41~53
    [108] Provatas N, Goldenfeld N, Dantzig J. Efficient computation of dendriticmicrostructures using adaptive mesh refinement. Physical Review Letters,1998,80(15):3308~3311
    [109] Provatas N, Goldenfeld N, Dantzig J. Adaptive Mesh Refinement Computation ofSolidification Microstructures Using Dynamic Data Structures. Journal ofComputational Physics,1999,148(1):265~290
    [110] Provatas N, Greenwood M, Athreya B, et al. Multiscale modeling of solidification:phase-field methods to adaptive mesh refinement. International Journal of ModernPhysics B,2005,19(31):4525~4565
    [111] Zhao P, Vénere M, Heinrich J C, et al. Modeling dendritic growth of a binary alloy.Journal of Computational Physics,2003,188(2):434~461
    [112] Takaki T, Fukuoka T, Tomita Y. Phase-field simulation during directionalsolidification of a binary alloy using adaptive finite element method. Journal ofCrystal Growth,2005,283(1-2):263~278
    [113] Lan C W, Liu C C, Hsu C M. An adaptive finite volume method for incompressibleheat flow problems in solidification. Journal of Computational Physics,2002,178(2):464~497
    [114] Lan C W, Chang Y C, Shih C J. Adaptive phase field simulation of non-isothermalfree dendritic growth of a binary alloy. Acta Materialia,2003,51(7):1857~1869
    [115] Lan C W, Shih C J, Lee M H. Quantitative phase field simulation of deep cells indirectional solidification of an alloy. Acta Materialia,2005,53(8):2285~2294
    [116] Lan C W, Lee M H, Chuang M H, et al. Phase field modeling of convective andmorphological instability during directional solidification of an alloy. Journal ofCrystal Growth,2006,295(2):202~208
    [117] Chen P, Tsai Y L, Lan C W. Phase field modeling of growth competition of silicongrains. Acta Materialia,2008,56(15):4114~4122
    [118] Chen C C, Tsai Y L, Lan C W. Adaptive phase field simulation of dendritic crystalgrowth in a forced flow:2D vs3D morphologies. International Journal of Heat andMass Transfer,2009,52(5):1158~1166
    [119] Chen C C, Lan C W. Efficient adaptive three-dimensional phase-field simulation ofdendritic crystal growth from various supercoolings using rescaling. Journal ofCrystal Growth,2009,311(3):702~706
    [120] Chen C C, Lan C W. Efficient adaptive three-dimensional phase field simulation offree dendritic growth under natural convection. Journal of Crystal Growth,2010,312(8):1437~1442
    [121] Tsai Y L, Chen C C, Lan C W. Three-dimensional adaptive phase field modeling ofdirectional solidification of a binary alloy:2D--3D transitions. International Journalof Heat and Mass Transfer,2010,53(9):2272~2283
    [122] Yeh S Y, Chen C C, Lan C W. Adaptive phase field modeling of grain boundarydiffusion. Journal of Crystal Growth,2011,318(1):46~50
    [123] Lin H K, Chen C C, Lan C W. Adaptive three-dimensional phase-field modeling ofdendritic crystal growth with high anisotropy. Journal of Crystal Growth,2011,318(1):51~54
    [124] Yeh S Y, Chen C C, Lan C W. Phase field modeling of morphological instabilitynear grain boundary during directional solidification of a binary alloy: The humpformation. Journal of Crystal Growth,2011,324(1):296~303
    [125]赵达文.过冷熔体凝固的相场法自适应有限元模拟:[博士学位论文].西北工业大学,2006
    [126]薛贤杰.基于自适应有限元方法的三元合金晶体生长相场模拟:[硕士学位论文].上海交通大学,2007
    [127]陈云,康秀红,李殿中.自由枝晶生长相场模型的自适应有限元法模拟.物理学报,2009,(1):390~398
    [128] George W L, Warren J A. A parallel3D dendritic growth simulator using thephase-field method. Journal of Computational Physics,2002,177(2):264~283
    [129] Nestler B. A3D parallel simulator for crystal growth and solidification in complexalloy systems. Journal of Crystal Growth,2005,275(1-2): E273~E278
    [130] Yamanaka A, Aoki T, Ogawa S, et al. GPU-accelerated phase-field simulation ofdendritic solidification in a binary alloy. Journal of Crystal Growth,2011,318(1):40~45
    [131] Green J R, Jimack P K, Mullis A M, et al. An adaptive, multilevel scheme for theimplicit solution of three-dimensional phase-field equations. Numerical Methods forPartial Differential Equations,2011,27(1):106~120
    [132] Gruber J, Ma N, Wang Y, et al. Sparse data structure and algorithm for the phasefield method. Modelling and Simulation in Materials Science and Engineering,2006,14(7):1189~1195
    [133] Li J R, Calhoun D, Brush L. Efficient thermal field computation in phase-fieldmodels. Journal of Computational Physics,2009,228(24):8945~8957
    [134]赵代平,荆涛.用捕获液态改进的相场方法模拟三维枝晶生长.金属学报,2002,(12):1238~1240
    [135] Khokhlov A M. Fully threaded tree algorithms for adaptive refinement fluiddynamics simulations. Journal of Computational Physics,1998,143(2):519~543
    [136] Popinet S. Gerris: a tree-based adaptive solver for the incompressible Eulerequations in complex geometries. Journal of Computational Physics,2003,190(2):572~600
    [137] Boettinger W J, Warren J A, Beckermann C, et al. Phase-Field Simulation ofSolidification. Annual Review of Materials Research,2002,32(1):163~194
    [138] Osher S, Sethian J A. Fronts propagating with curvature-dependent speed:algorithms based on Hamilton-Jacobi formulations. Journal of ComputationalPhysics,1988,79(1):12~49
    [139]严蔚敏,吴伟民.数据结构: C语言版清华大学出版社有限公司,1997.
    [140]介万奇,周尧和.柱状晶向等轴晶转变过程的模拟实验研究.西北工业大学学报,1988,(1):29~40
    [141] Sun Q, Zhang Y T, Cui H X, et al. Phase field modeling of multiple dendrite growthof Al-Si binary alloy under isothermal solidification. China Foundry,2008,5(4):265~267

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700