单机架可逆冷轧低碳铝镇静钢组织与深冲性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低碳铝镇静钢作为一种优质的碳素结构钢,具有优异的深冲性能和较低的强度,适于冲制4mm以下的各种形状复杂的冷冲压构件,如车身、驾驶室、各种仪表及机器外壳等。随着市场竞争日益激烈,为满足对不同厚度规格低碳铝镇静钢板的需求,需要为各厚度规格钢板制订最优的生产工艺,优化深冲性能,降低成本。近年来,关于连续冷轧及相应的退火等工艺参数对低碳铝镇静钢深冲性能影响的研究报道较多,而关于可逆冷轧过程中钢板内部组织结构的演变规律,压下率和相应的退火工艺参数等对钢板深冲性能影响的报道较少。开展可逆冷轧生产低碳铝镇静钢的研究工作,能够探讨钢板轧制过程中真实的受力状态及变形规律,为研究冶金生产过程中钢板组织性能和织构的演变规律提供了可能,更好的应用于不同厚度规格钢板生产工艺参数的制订,具有重要的理论意义和应用价值。
     本文以可逆冷轧生产的低碳铝镇静钢为研究对象,利用X射线衍射(XRD)、电子背散射衍射(EBSD)、扫描电镜(SEM)、透射电镜(TEM)、光学显微镜(OM)以及拉伸试验等测试方法,深入系统地研究了冶金工艺参数及酸溶铝含量对低碳铝镇静钢组织和深冲性能的影响。
     通过利用铜丝定点标记法对可逆冷轧生产过程中钢板变形规律的研究发现,可逆轧制时,钢板往复通过轧机,剪应力方向也随之发生相反的变化,剪应力没有因为轧制道次的增加而加剧,各道次可逆冷轧之后,都没有强烈的剪切变形发生,各压下率低碳铝镇静钢钢板的心部及表层的变形模式都为压缩变形,心部及表层的显微组织及织构情况相似。退火后,基体组织都为“饼形”的沿轧向伸长的再结晶晶粒。
     研究了不同冷轧压下率低碳铝镇静钢的组织、织构和性能后发现,冷轧压下率对深冲性能各项指标的影响都不大。由于可逆轧制时钢带在轧机后多次往复通过对织构的形成造成了一定的影响,不同于连续轧制后的织构情况。从宏观织构情况可以看出,各压下率钢板的有利织构{111}、不利织构{100}和高斯织构{110}所占的百分含量及其相应的α、γ线织构取向密度在冶金生产过程中的变化情况都较为一致。然而压下率对钢板的微观组织结构有一定的影响,随着压下率的增加,有利的显微取向织构密度升高,不利的显微取向织构密度降低,这是由于随着压下率的不同,冷轧过程中发生碎化及退火过程中发生再结晶转变的能力不同所造成的。
     研究了不同冷轧压下率低碳铝镇静钢板的退火再结晶规律发现,在4小时恒时退火过程中,再结晶温度随压下率的升高而降低,压下率为40%,52%,59%,64%,72%和81%的试验钢所对应的再结晶温度分别为602℃,600℃,596℃,590℃C,576℃和572℃。在610℃恒温退火过程中,再结晶保温时间随压下率的升高而减少,上述各压下率的钢板的再结晶保温时间分别为117分钟,80分钟,42分钟,18分钟,9分钟和5分钟。但在700℃恒温退火过程中,再结晶几乎不需要孕育期,并且压下率对再结晶的影响很小。通过理论推导可以计算不同冷轧压下率低碳铝镇静钢恒时及恒温条件下的再结晶温度及保温时间,计算结果与本文试验结果吻合度较高。
     采用EBSD技术对64%压下率的冷轧板在退火再结晶过程中的微观组织和织构演变规律进行了深入研究,结果表明在退火再结晶过程中,再结晶晶粒优先生长方向为轧向,晶粒长大为扁平的“饼形”。从取向图中看到,{111}取向晶粒在退火再结晶过程中优先形核及长大,其织构形成具有定向形核的特点。在取向密度图中还可以看到,再结晶组织中的晶粒取向织构沿α和γ取向线的特征分布,从再结晶初期到再结晶刚完成时,基本没有发生变化,只有强度发生了一些变化。说明低碳铝镇静钢最终的退火再结晶织构主要特征在再结晶初期就决定了,即再结晶初期的形核特点就决定了最终的再结晶织构特征。
     压下率为64%的冷轧试样中小角度晶界所占比例高达90.7%,因为其含有大量小角度的亚晶,随着退火再结晶过程的进行,小角度晶界从490℃退火时的88%降低到610℃退火时的5.1%,这是由于与变形基体呈大角度晶界的再结晶晶核消耗了基体中具有相近取向的变形亚晶而长大的缘故。再结晶晶粒长大阶段晶粒尺寸的增加是通过大晶粒吞并小晶粒来实现的,小尺寸晶粒由于曲率大,单位体积内晶粒的表面积大,能量高,不稳定,容易被大尺寸晶粒吞并,因此,不同于再结晶阶段的驱动力来自形变储能,晶粒长大阶段晶粒尺寸增加的驱动力来自晶界表面能量的降低。
     通过研究退火温度对68%和75%压下率低碳铝镇静钢板组织性能影响的研究发现,退火温度在660~720℃之间时对钢板的r值及屈服强度和抗拉强度都有一定的影响,但退火温度对强度的影响更加明显,强度随退火温度的升高而降低。通过深冲性能对比发现,68%-75%压下率低碳铝镇静冷轧板较适宜退火温度范围为680℃-700℃,较低压下率的冷轧板(68%)为提高其深冲性能应选择较高的退火温度(700℃),使退火再结晶过程充分进行,而较高压下率的冷轧板(75%)为节省资源,降低成本应选择该范围内较低的退火温度(680℃)。
     研究了酸溶铝含量对组织性能的影响。结果表明:酸溶铝含量为0.1%的低碳铝镇静钢,屈服强度和抗拉强度过高,分别为257MPa和336MPa,而塑性应变比为0.84,失去了深冲性能,而且各取向织构在冶金生产过程中没有明显的密度变化,退火后有利的{111}取向织构密度仍十分低,这主要是由于低熔点的铝粒子在冶金生产过程中的反复固溶析出造成的;而酸溶铝含量为0.021%的低碳铝镇静钢强度较低,塑性应变比为1.19,性能优异,且有利织构在退火后明显增加。因此,酸溶铝的质量分数应控制在0.021%左右是较为合适的。
The aluminum killed low-carbon steel sheets, deoxidized by adding aluminum, are one of high quality carbon structural steel sheets. They are widely used for automobile manufactory, building industry and packaging industry because of their good formability and low strength. However, most scholars paid their attentions to recrystallization behavior of continually cold rolling steel sheets and their annealing processing parameters, but few are concerned with the influence of cold rolling reduction ratios on recrystallization behavior of reversely cold rolling steel sheets and their annealing processing parameters. With the development of modern industry, demands of the steel sheets owned different thickness specifications become increasingly pronounced. So making the most appropriate production parameters for different steel sheets, saving energy-consumption and reducing cost are the hotspots in research field at present.
     The research objects in this article are low-carbon aluminium killed steel sheets by reversely cold rolling. Influence of metallurgy process parameters and acid soluble aluminum content on microstructure and deep drawability of the steel sheets are studied systematically by using X-ray diffraction (XRD), electron back scattering diffraction (EBSD), scanning electron microscope (SEM), transmission electron microscopy (TEM), optical microscope (OM) and tensile testing machine.
     The research on deformation law of steel sheets during reversely cold rolling process by copper wire fixed-point notation shows that shear stress and shear deformation don't increase obviously with increasing reduction ratios. Because steel sheets reciprocate through rolling mill, shear stress direction is also changed correspondingly. Deformation mechanism in surface and core of steel sheets are all compressed during reversely rooling process, so microstructure is homogeneous in thickness direction. The microstructure is composed of pie recrystallization grains along rolling elongation after annealing process. Volume fraction of{111} orientation textures is dominant and good for deep drawability of the steel sheets.
     The study on microstructure and deep drawability of steel sheets owned different cold rolling reduction ratios shows that reduction ratios have a little influence on deep drawability. Though the rolling plane isn't changed, the rolling direction has been completely reversed after every reversely rolling pass. So the orientation texures are different from those by continually rolling. Seen from macro-textures measured using XRD, volume fractions of favorable{111}, unfavorable{100} and{110} orientation textures hasn't yet been changed obviously with reduction ratios. However, reduction ratios have some influences on micro-textures measured using EBSD. The quantity of favorable micro textures increases and unfavorable micro textures decreases as reduction ratios increase. It mainly because steel sheets owned different reduction ratios have different fragmentation degrees of grains in cold rolling process and recrystallization driving forces in annealing process.
     Study on recrystallization law of steel sheets owned different cold rolling reduction ratios shows that as cold rolling reduction ratio increases from40%to81%, recrystallization temperature of steel sheets decreases from602℃to572℃during isochronal annealing for4h, and recrystallization holding time of steel sheets reduces from117min to5min during isothermal annealing at610℃. However, recrystallization process doesn't need incubation period during isothermal annealing at700℃, and reduction ratios have less influence on recrystalization. Recrystallization temperatures and holding time of the steel sheets with different reduction ratios during different annealing processes all can be calculated using the experiment results in this paper.
     The Microstructure of steel sheets owned64%reduction ratios was examined by EBSD technology. The results show that preferentially growing direction of recrystallization grains is rolling direction and equiaxed grains grow into cake-type grains during recrystallization process.{111} orientation grains preferentially nucleate and grow up. Not only that, characteristic distributions of grain orientation in α and γ orientation line haven't been changed obviously from early to just finishing recrystallization stage. So formation mechanism of texture can be explained by directional nucleation.
     Number fraction of low misorientation angle boundary (LMAB<15°) of cold rolling steel sheets owned64%reduction ratio reaches up to90.7%, because its microstructure contains a lot of subgrains with LMAB. As annealing tmeperatures increase from490℃to610℃, number fraction of LMAB decreases from88.0%to5.1%after annealing for4h. This is because recrystallization nucleuses owned great misorientation angle boundary (GMAB) grow up by consuming sub-grains owned similar orientation in recrystallization process. Increase of grain size is accomplished by annexing smaller grains in grain growth stage. Because smaller grains own larger curvature and surface area in per unit volume, they have higher energy and are annexed easily by larger grains. So the driving force coming from reducing of grain boundary surface energy is different from deformation storage energy in recrystallization stage.
     Study on the deep drawability of steel sheets owned68%and75%reduction ratios after annealing with different temperatures shows that annealing temperatures have some influences on r value, yield strength and tensile strength of the steel sheets. The optimal temperatures are680℃-700℃for the steel sheets owned68%-75%reduction ratios. Higher annealing temperatures (700℃) should be selected for the steel sheets owned lower reduction ratios (68%) in order to fully recrystallization. Lower annealing temperatures (680℃) should be selected for the steel sheets owned higher reduction ratios (75%) in order to save resources and reduce the cost.
     Effect of acid-soluble aluminium content on microstructure and deep drawability of the steel sheets have been researched. The results show that yield strength and tensile strength have already reached to257MPa and336MPa, respectively, for the steel sheets owned more acid-soluble (mass fraction0.1%). Moreover, the plastic strain ratio is0.84shows the steel sheets have almost lost theirs deep drawability. Textures haven't been changed obviously during metallurgical process. Volume fraction of favorable{111} orientation texture is still very low after anneling. This is mainly because aluminum particles owned low melting point generate in the steel sheets. The aluminum particles are dissolved and precipitated over and over again during metallurgical production process. They appear in the steel sheets in forms of small droplets when temperatures are higher than its melting point. This has severe influences on deep drawability of the steel sheets. However, yield and tensile strength of the steel sheets owned less acid-soluble aluminium (mass fraction0.021%) is190MPa and282MPa, respectively. The plastic strain ratio is1.19. Favorable textures have been increased obviously after annealing process. The deep drawability of the steel sheets is very excellent. Therefore, the mass fraction of acid-soluble should be about0.021%in this paper.
引文
[1]H. Takechi. Metallurgical aspects on interstitial free sheet steel from industrial viewpoints[J]. ISIJ. Int.,1994,34:1-8.
    [2]Y. Hayakawa, M. Muraki, J.A. Szpunar. The changes of grain boundary character distribution during the secondary recrystallization of electrical steel[J]. Acta Mater.,1998,46:1063-1073.
    [3]Y. Song, Y. Yan, R. Zhang, et al. Manufacture of the die of an automobile deck part based on rapid prototyping and rapid tooling technology[J]. Mater. Process. Technol.,2002,120:237-242.
    [4]康永林.现代汽车板的质量控制与成形性[M].北京:冶金工业出版社,1999.
    [5]殷瑞钰.中国薄板坯连铸连轧的进展与展望[J].钢铁.2006,(7):1-6.
    [6]R. K. Rav, J. J. Jonas, R. E. Hook. Cold rolling and annealing textures in low carbon and extra low carbon steels[J]. International Materials Reviews,1994,39(4):129-172.
    [7]H. Zhao, S. C. Rama, G. C. Barber, et at. Experimental study of deep drawability of hot rolled IF steel [J]. Journal of Materials Processing Technology,2002,128(1-3):73-79.
    [8]高霖,王先进,凤佩华.W08Al深冲钢板的织构分析[J].钢铁研究学报.1994,6(3):27-32.
    [9]S. Katsuhiro. Reaction mechanism between alumina immersion nozzle and low carbon steel[J]. ISIJ International,1994,34(10):802-809.
    [10]K. J. Saburo. Thermo dynamic fundamentals for alumina content control of oxide inclusions in Mn-Si deoxidation of molten Steel[J]. ISIJ International,1999,39(7):664.
    [11]王先进等.薄板成形性能[M],北京:北京钢铁学院1987.
    [12]V. J. Martinez, J. I. Verdeja, J. A. Pero-Sanz. Interstitial free steel influence of a-phase hot-rolling and cold-rolling reduction to obtain extra-deep drawing quality [J]. Mater. Charact. 2001,46:45-53.
    [13]Q. Liu, X. Huang, D. J. Lloyd, et al. Microstructure and strength of commercial purity aluminium (AA 1200) cold-rolled to large strains[J]. Acta Mater.2002,50:3789-3802.
    [14]W. T. Lankford, S. C. Snyder, L. A. Bauscher. New criteria for predicting the presperformance of deep drawing sheets[J]. Transactions of American Society of Metals,1950, (42):1197-1208.
    [15]吴文志.塑性各向异性比值r和加工硬化指数n与金属薄板冲压性能的关系[J].钢铁研究,1975,(4):21-38.
    [16]李贺杰,赵劲松,等.IF钢(无间隙原子钢)的发展应用及展望[J].唐山学院学报,2008,21(4):2-8.
    [17]J. Hirsch, K. Luke, M. Hatherly. Mechanism of deformation and development of rolling texture in polycrystalline FCC metals-III. The influence of slip in homogenElties and twinning[J]. Acta Metall,1988,36(11):2862-2927.
    [18]W. B. Hutehinson. Developmentand control of annealing textures in low-carbon steels[J]. International Metals Reviews,1984,29(1):24-39.
    [19]王作成,冶金因素对超低碳高强度IF钢组织及性能影响的研究[D].博士学位论文.北京:北京科技大学,1994.
    [20]W. B. Morrison. The effect of grain size on the Stress-Strain relationship in Low-Carbon Steel[J]. ASM Ttans. Quart.,1966,59(4):823-846.
    [21]陈襄武.炼钢过程的脱氧[M].北京:冶金工业出版社,1991.
    [22]Z. Q. Han, K. K. Cai, B. C. Liu. Prediction and analysis on formation of internal cracks in continuously cast slabs by mathematical models[J]. ISIJ International,2001,41(12):1473-1480.
    [23]刘阳春,傅杰,吴华杰,等.薄板坯连铸连轧低碳铝镇静钢中酸溶铝的作用研究[J].钢铁,2007,42(1):23-26.
    [24]刘永铨.钢的热处理[M].北京:冶金工业出版社,1981.
    [25]J. D. Waston, R. H. Davies. The effect of nitrogen on the machinability of low-carbon, free-machining steels[J]. Journal of Applied Metalworking,1984,3(2):110-119.
    [26]何天科.攀钢低碳铝镇静钢板坯连铸生产实践[J].连铸,2004,(5):1.
    [27]李炯伟,张怀军,赵永旺,等.低碳铝镇静钢的冶炼与浇铸[J].安徽工业大学学报,2005,22(4):660-663.
    [28]霍向东,柳得橹,王元立,等.CSP工艺生产的低碳钢中纳米尺寸硫化物[J].钢铁,2005,40(8):60-64.
    [29]H. Yaguchi. Manganese sulfide precipitation in low-carbon resulfurized free-machining steel[J]. Metall. Trans. A,1986,17(11):2080-2083.
    [30]J. Wei, G. Yan, Z. H. Tisn, et al. Improvement of CSP castability in low carbon Al-killed steel[J]. Journal of University of Science and Technology Beijing,2005,27(6):666-670.
    [31]Y. Wang, S. Sridhar. The effect of gas flow rate on the evolution of the surface oxide on a molten low carbon Al Killed Steel[J]. Journal of Materials Science,2005,40(9-10):2179-2184.
    [32]H. Yaguchi. Effect of MnS inclusion size on machinability of low-carbon, leaded, resulfurized free-machining steel[J]. Journal of Applied Metalworking,1986,4(3):214-225.
    [33]李云,李宏,徐志荣,等SPHC钢LF精炼过程的抑制回硅与脱硫研究[J].钢铁,2007,42(2):28-30.
    [34]王明合,胡黎宁,田新中,等.低碳低硅铝镇静钢的生产实践[J].炼钢,2004,20(5):33-36.
    [35]I. Barin, O. Knack. Thermo dynamic properties of inorganic substances[M]. Berlin:Springer Verlag,1977.
    [36]曲英.炼钢学原理[M].北京:冶金工业出版社,1980.
    [37]胡文豪,袁永,刘骁,等.酸溶铝在钢中行为的探讨[J].钢铁,2003,38(7):42-44.
    [38]周刚.薄板钢中酸溶铝的控制[J].湖南冶金,2006,34(1):25-29.
    [39]资料汇编.高效连铸技术在我国的发展与措施.国内外高效连铸技术资料汇编,1997.
    [40]霍向东.薄板坯连铸连轧低碳钢的晶粒细化和析出相研究[D].北京:北京科技大学,2004.
    [41]王爱东,赵建平,徐海芳.唐钢薄板坯连铸用中间罐流场分析[J].连铸,2005,(2):17-18.
    [42]刘云旭.金属热处理原理[M].北京:机械工业出版社,1981,31-32.
    [43]D. L. Liu, X. D. Huo, Y. L. Wang, et al. Aspects of Microstructure in Low Carbon Steels Produced by the CSP Process[J]. J. Univ. Sci. and Tech. Beijing,2003,10(4):1-6.
    [44]蔡开科,程士富.连续铸钢原理与工艺[M].北京:冶金工业出版社,1999.
    [45]冯端.金属物理学[M].北京:科学出版社,1990.
    [46]胡文豪,袁用.酸溶铝在钢中行为的探讨钢铁[J].钢铁,2003,(7):42-44
    [47]李成栋.低碳铝镇静钢酸溶铝控制[J].钢铁,1983,18(6):25-30.
    [48]刘衡,王中丙.电炉-CSP短流程生产过程中的技术整合[J].2002年全国炼钢、连铸生产技术会议论文集,1999.
    [49]曲英.炼钢学原理[M].北京:冶金工业出版社,1980.
    [50]孙文山.残铝在35CrNi3MoV钢中的作用[J].兵工学报,1996,17(3):238-242.
    [51]贾玉华,张治广,赵艳军,等.酸溶铝在ML08A1钢中行为的研究[J].2004,2:12-14.
    [52]雍岐龙,刘清友,刘苏,等.硫化锰在钢中的Ostwald熟化过程的控制性元素的理论分析 [J].特殊钢,2004,25(6):7-9.
    [53]A. Godfrey, D.J. Jensen, N. Hansen. Slip pattern, microstructure and local crystallography in an aluminium single crystal of copper orientation{112}<111>[J]. Acta Mater.1998,46:835-848.
    [54]A.L.M. Costa, A.C.C. Reis, L. Kestens, M.S. Andrade. Ultra grain refinement and hardening of IF-steel during accumulative roll-bonding[J]. Mater. Sci. Eng. A,2005,406:279-285.
    [55]董苑华,朱超云,邓深,等.DC系列钢轧制工艺试验[J].柳钢科技.2011(5):19-22.
    [56]傅作宝.冷轧薄钢板生产.北京:冶金工业出版社[M].2005.
    [57]M. Fukuda. The Effect of Carbon Content Against r-Value Cold Reductions Relations in Steel Sheets[J]. Journal of Iron Steel Institute Japan,1967,53(4):559.
    [58]朱传运,余挺进,迪林,等.铝镇静钢板坯连铸的保护浇注技术[J].工业加热,2007,36(6):65-67.
    [59]景钦广,康永林,孙建林,等.微合金元素硼对08A1钢再结晶织构的影响[J].钢铁研究学报.2008,20(1):44-49.
    [60]陈方玉,陈希来,桂美文SPCD钢热轧板板面条带状缺陷分析[J].武钢技术.2007,45(5):4-8.
    [61]王宝昆,刘海霞,金自力.退火工艺对基于CSP条件冷轧低碳钢板组织和微区织构的影响[J].内蒙古科技大学学报,2010,29(2):150-154.
    [62]张树堂.薄板坯连铸连轧生产冷轧用低碳热轧带钢的力学性能[J].钢铁研究学报,2005,17(6):10-16.
    [63]齐建群,董春雨,赵志毅.冷轧压下率对SPCC钢板组织和性能的影响[J].工艺装备,2007,(4):30-33.
    [64]K. Tanikawa, Y. Hosoya, T. Koike. Strain aging properties of Extra-low carbon bake hardenable cold rolled steel sheets[J]. NKK Technical Report,1994,145:25-32.
    [65]王大勇.本钢冷轧厂单机架六辊可逆轧机技术装备及工艺[J].本钢技术,2007,(3):18-21.
    [66]T. Senuma, K. Kawasaki. Texture formation in Ti-bearing IF steel sheets throughout the rolling and annealing processes in terms of the influence of hot rolling conditions on deep drawability[J]. ISIJ International,1994,34(1):51-60.
    [67]P. N. Richards. Solution and precipitation of carbon and nitrogen during sheet galvanizing of low carbon steel[J]. Trans. Quart Amer Soc Metals,1965,58(4):611-619
    [68]E. Emadoddin, A. Akbarzadeh, G. Daneshi. Effect of cold rolling reduction and intereritical annealing temperature on the bulk texture of two TRIP-aided steel sheets[J]. Journal of Materials Processing Technology,2008,203(1-3):293-300.
    [69]I. L. Dillamore, C. J. F. Smith, T. W. Wtson. Oriented nucleation in the formation of annealing textures in iron[J]. Met. Sci. J.,1967,1(3):49-54.
    [70]王昭东,李自刚,何晓明,等.冷轧压下量对铁素体区热轧Ti-IF钢冷轧板的再结晶织构特点和深冲性能的影响[J].金属学报,2000,36(6):613-617.
    [71]X. Zhao, J. Z. Xu, Z. D. Liang, et al. Improvements of the crystallographic approach to plastic strain ratio in deep drawing steel sheets[J]. Chinese Science Bulletin,1996,41(19): 1606-1609.
    [72]金蕾,王利,张丕军.罩式炉退火工艺及平整对低碳铝镇静钢板抗时效性能的影响[J].宝钢技术,2003,(5):48-52.
    [73]朱涛,张开坚,易礼君,等.热轧工艺参数对08A1钢相变点的影响[J].轧钢.1999,(4):24-27.
    [74]赵鸿金,陈荣清.终轧及卷取温度对热轧SP325钢板织构与深冲性能的影响[J].东北大学学报,1994,15(4):374-378.
    [75]T. Otsuka, T. Tanabe. Hydrogen diffusion and trapping process around MnS precipitates in alpha Fe examined by tritium autoradiography[J]. Journal of Alloys and Compounds,2007,446: 655-659.
    [76]J. Shinozaki, I. Muto, T. Omura, et al. Local dissolution of MnS inclusion and microstructural distribution of absorbed hydrogen in carbon steel[J]. Journal of The Electrochemical Society,2011, 158(9):C302-C309.
    [77]余驰斌,罗年高,赵刚,等.热轧工艺对CSP低碳钢冷轧板成形性能的影响[J].武汉科技大学学报.2008,31(5):526-530.
    [78]刘兴全,刘雅政,洪继要.卷取温度和冷轧压下率对CSP流程深冲板组织性能的影响[J].钢铁研究学报,2009,21(2):18-22.
    [79]赵家骏.冷轧带钢生产问答[M].北京:冶金工业出版社,1988.
    [80]李虎兴.冷轧窄带钢生产[M].北京:冶金工业出版社,1995.
    [81]西德钢铁工程师协会编著,武汉钢铁设计院情报科等译,冷轧带钢生产[M].北京:机械工业出版社,1983.
    [82]王新云,赵嘉蓉,刘昊,等Nb, Ti低合金高强度冷轧薄板退火工艺对机械性能的影响[J].金属成形工艺,2001,19(6):5-8.
    [83]H. J. Fetch, E. Hellstern, Z. Fu, et al. Nanocrystalline metals prepared by high-energy ball milling[J]. Metall. Trans. A,1990,21 A:2333-2337.
    [84]R. Saha, R. K. Ray. Microstructural and textural changes in a severely cold rolled boron-added interstitial-free steel[J]. Scr. Mater.2007,57:841-844.
    [85]G.P. Dinda, H. Rosner, G. Wilde. Synthesis of bulk nanostructured materials by repeated cold-rolling[J]. Mater. Sci. Eng. A,2005,410-411:328-331.
    [86]常东华,周晓,魏佰友.塑性应变比r值的测定和应用[J].理化检验-物理分册,2006,42(8):401-403.
    [87]X. B. Zhao, K. Lucke. Geometric model and applied method for the calculation of grain size distributions[J]. Acta Metall. Sin.1993,6:46-52.
    [88]A. Martinez-de-Guerenu, F. Arizti, M. Diaz-Fuentes, I. Gutierrez. Recovery during annealing in a cold rolled low carbon steel. Part 1:Kinetics and microstructural characterization[J]. Acta Mater.2004,52:3657-3664.
    [89]毛卫民.金属材料的晶体学织构与各向异性[M].北京:科学出版社,2002.
    [90]Y. Z. Liu, J. H. Sun, L. Y. Zhou, et al. Experiment investigation of deep-drawing sheet texture evolution[J]. Journal of Materials Processing Technology,2003,140(1-3):509-513.
    [91]鲁茨,迈耶.带钢轧制过程中材料性能的优化[M].赵辉译.北京:冶金工业出版社,1996.
    [92]邢淑清,麻永林,金自力,等.冷轧低碳深冲钢板退火织构的蚀坑法测定[J].包头钢铁学院学报,2005,24(3):266-268.
    [93]李华,郭雯.立方晶系晶体晶面位向的蚀坑判定法[J].金属功能材料,1997,23(2):82-86.
    [94]U. Schlippenbach, F. Emren, K. Liicke. Investigation of the development of the cold rolling texture in deep drawing steels by ODF-analysis[J]. Acta Metallurgica,1986,34(7):1289-1301
    [95]F. Emren, U. Schlippenbach, K. Lilcke. Investigation of the development of the cold rolling texture in deep drawing steels by ODF-analysis[J]. Acta Metallurgica,1986,34(11):2105-2117.
    [96]B. Hutchinson, E. Lindh. In:T. Sakuma ed., Proceedings of international forum on physical metallurgy of IF steels[C]. Tokyo, Japan:The Iron and Steel Institute of Japan,1994:127-140.
    [97]N. Hashimoto. Texture evolution of IF steel due to recrystallization[J]. ISIJ International, 1998,38(6):617-624.
    [98]T. Urabe, J. J. Jonas. Modeling texture change during the recrystallization of an IF steel[J]. ISIJ International,1994,34(S):435-442.
    [99]P. Gangli, T. Sakuma ed., Proceedings of International Forum on Physical Metallurgy of IF Steels[C]. Tokyo, Japan:The Iron and Steel Institute of Japan,1994:95-98.
    [100]W. B. Hutchinson. Development and control of annealing textures in low-carbon steels[J]. International Metals Reviews,1984,29(18):25-42.
    [101]Y. Meyzaud. In:Proceedings of the 5th International Conference on Texture of Materials[C]. Berlin, Germany:Springer-Verlag,1978:243-253.
    [102]P Gangli, L. Kestens, J. J. Jonas. The role of coincident site lattice boundaries duringselective growth in interstitial-free steels[J]. Metallurgical and Materials Transactions A, 1996,27(8):2178-2186.
    [103]D. N. Lee, et al. In:Proceedings of the 11th International Conference on Texture of Materials[C]. Xi'an, China:International Academic Publishers (Beijing),1996:503-508.
    [104]Y B. Park, D. N. Lee, G. Gottstein. In:Proceedings of the 11th International Conference onTexture of Materials[C]. Xi'an, China:International Academic Publishers (Beijing),1996: 531-536.
    [105]Y B. Park, D.N. Lee, G. Gottstein. Evolution of recrystallization textures from cold rolling textures in interstitial free steels[J]. Materials Science and Technology,1997,13(4):289-298.
    [106]崔德理,IF钢再结晶过程组织及织构演变规律探索[D].博士后研究工作报告,北京科技大学,1995.
    [107]I. L. Dillamore, C. J. E. Smith, T W. Watson. Oriented nucleation in the formation of annealing textures in iron[J]. Metal Science Journal,1967,1:49-54.
    [108]B. Hutchinson, D. Artymowicz. Mechanisms and modeling of microstructure texture evolution in interstitial-free steel sheets[J], ISIJ International,2001,41(6):533-541.
    [109]I. Samajdar, B. Verlinden, P V Houtte. Texture changes through grain growth in Ti-bearing IF-steel investigated by orientation imaging microscopy and X-ray diffraction[J]. ISIJ International,1997,37(10):1010-1016.
    [110]S. Satoh, et al. Effect of precipitate dispersion on recrystallization texture of Nb steel sheet [J]. Transactions of the ISIJ,1986,26:737-743.
    [111]M. Hillert. On the theory of normal and abnormal grain growth[J]. Acta Metallurgica,1965, 13(3):227-238.
    [112]X. ZHAO, Z. C. HU, L. ZUO. Effects of external electric field on AlN precipitation and recrystallization texture of deep-drawing 08A1 killed steel sheet[J]. J. Mater. Sci. Technol.,2006, 22(6):747-750.
    [113]R. K. RAV, J. J. Jonas. Transformation textures in steels[J]. Int Met Rev,1990,35(6):1-36.
    [114]刘浩,陈晓,吴润,等.再结晶退火对含磷冷轧高强度钢板显微组织的影响[J].武汉科技大学学报:自然科学版,2006,29(5):449-451.
    [115]崔德理,康永林,金山同,等.IF钢织构控制[J].北京科技大学学报,1993,15(增):24-29.
    [116]R.K. Ray, J.J. Jonas, R.E. Hook. Cold rolling and annealing textures in low carbon and extra low carbon steels[J]. Int. Mater. Rev,1994,39:129-172.
    [117]F. Gao, B.Y. Song, Y.R. Xu, K.N. Xia. Substructural changes during hot deformation of an Fe-26Cr ferritic stainless steel[J]. Metall. Trans. A,2000,31 A:21-27.
    [118]M. Y. Hu, J. P. An, Y. B. Park. Development of microstructure and texture in cross roed and recryctallized low carbon proceedings[J]. ICOTOM,1996,11(1):461-465.
    [119]B. Hutchinson, D. Artymowicz. Mechanisms and modeling of microstructure texture evolution in interstitial-free steel sheets[J]. ISIJ Inter,2001,41(6):533-541.
    [120]P. Gangli, L. Kestens, J. J. Jonas. The role of coincident site lattice boundaries during selective growth in interstitial-free steels[J]. Metallurgical and Materials Transactions A,1996, 27(8):2178-2186.
    [121]戚正凤.金属材料热处理原理[M].北京:冶金工业出版社,1989.
    [122]毛卫民,赵新兵.金属的再结晶与晶粒长大[M].北京:冶金工业出版社,1994.
    [123]R.Z. Wang, T.C. Lei. Substructural evolution of ferrite in a low carbon steel during hot deformation in (F+A) two-phase range[J]. Scr. Metall. Mater,1993,28:629-632.
    [124]R. Saha, R.K. Ray. Formation of nano-to ultrafine grains in a severely cold rolled interstitial free steel[J]. Mater. Sci. Eng. A,2007,459:223-226.
    [125]R.Z. Wang, T.C. Lei. Dynamic recrystallization of ferrite in a low carbon steel during hot rolling in (F+A) two-phase range[J]. Scr. Metall. Mater,1994,31:1193-1196.
    [126]H. Yua, Y. L. KANGA, Z. Z. Zhao, et al. Microstructural characteristics and texture of hot strip low carbon steel produced by flexible thin slab rolling with warm rolling technology[J]. Materials Characterization,2006,56(2):158-164.
    [127]鲁茨·迈耶,赵辉译.带钢轧制过程中材料性能的优化[M].北京:冶金工业出版社,1996.
    [128]毛卫民.金属材料的晶体学织构与各向异性[M].北京:科学出版社,2002.
    [129]毛卫民,赵新兵.金属的再结晶与晶粒长大[M].北京:冶金工业出版社,1994.
    [130]刘国勋.金属学原理[M].北京:冶金工业出版社,1979.
    [131]叶卫平,勾亚峰.加热速率和形变量对IF钢再结晶温度的影响.金属热处理[J].2001,(3):19-20.
    [132]R. Z. WANG, T. C. LEI. Substructural evolution of ferrite in a low carbon steel during hot deformation in (F+A) two-phase range[J]. Scr Metall Mater,1993,28(5):629-632.
    [133]MARTINEZ-DE-GUERENU, F. ARIZTI, M. DIAZ-FUENTES, et al. Recovery during annealing in a cold rolled low carbon steel[J]. Acta Materialia,2004,52(12):3657-3664.
    [134]R. Z. WANG, T. C. LEI. Dynamic recrystallization of ferrite in a low carbon steel during hot rolling in the (F+A) two-phase range[J]. Scr Metall Mater,1994,31(9):1193-1196.
    [135]F. GAO, Y. R. XU, B. Y. SONG, et al. Substructural changes during hot deformation of an Fe-26Cr ferritic stainless steel[J]. Metall and mater Trans A,2000,31(1):21-27.
    [136]H. YAGI, N. TSUJI, Y. SAITO. Dynamic recrystallization in 18%Cr ferritic steel[J]. Tetsu-To-Hagane,2000,86(5):349-356.
    [137]A. BELYAKOV, R. KAIBYSHEV, R. ZARIPOVA. High-temperature mechanism of dynamic recrystallization of ferrite steel[J]. Mater. Sci. Forum,1993,113-115(5):385-390.
    [138]王新云,赵嘉蓉,刘浩,等Nb、Ti低合金高强度冷轧薄板退火工艺对机械性能的影响[J].金属成形工艺,2001,19(6):6-8.
    [139]刘浩,陈晓,吴润,等.再结晶退火对含磷冷轧高强度钢板显微组织的影响[J].武汉科技大学学报:自然科学版,2006,29(5):449-451.
    [140]X. ZHAO, Z. C. HU, L. ZUO. Effects of external electric field on AlN precipitation and recrystallization texture of deep-drawing 08A1 killed steel sheet[J]. Mater. Sci. Technol.,2006, 22(6):747-750.
    [141]涂光棋.冲模技术[M].北京:机械工业出版社,2002.
    [142]唐荻,谷春阳,王先进,等.退火温度及平整量对03Al钢板组织性能的影响[J].钢铁,1999,34(12):47-51
    [143]A. BELYAKOV, R. KAIBYSHEV, R. ZARIPOVA. High-temperature mechanism of dynamic recrystallization of ferrite steel[J]. Mater. Sci. Forum,1993; 113-115:385-390.
    [144]F. GAO, Y. XU, B. SONG, et al. Substructural changes during hot deformation of an Fe-26Cr ferritic stainless steel[J]. Metall Trans A,2000,31(1):21-27.
    [145]A.G.盖伊,J.J.赫仑.物理冶金原理[M].北京:机械工业出版社,1981.
    [146]永千.金属学基础[M].北京:冶金工业出版社,1986.
    [147]J. Park, J. A. Szpunar. Effect of initial grain size on texture evolution and magnetic properties in nonoriented electrical steels[J]. Journal of magnetism and magnetic materials,2009, 321(13),1928-1932.
    [148]J. Park, J. A. Szpunar. Evolution of recrystallization texture in nonoriented electrical steels[J]. Acta Materialia,2003,51(11),3037-3051.
    [149]于凤云,王轶农,蒋奇武.深冲IF钢再结晶{111)纤维织构形成机制探讨[J].材料科学与工艺,2008,16(5):724-727.
    [150]李一鸣.CSP条件下冷轧低碳钢板组织和再结晶织构演变规律的研究[D].硕士学位论文,内蒙古:内蒙古科技大学,2009.
    [151]R. L. Every, M. Hatherly. Oriented nucleation in low-carbon steels[J]. Texture,1974,1(3): 183-194.
    [152]N. Rajmoban, Y. Hayakawa, J. A. SzPunar, et at. Neutron diffraction method for stored energy measurement in inierstitial free steel[J]. Acta Materialia,1997,45(6):2485-2494.
    [153]R. K. Rav, J. J. Jonas, R. E. Hook. Cold rolling and annealing textures in low carbon and extra low carbon steels[J]. International Materials Reviews,1994,39(4):129-172.
    [154]马胜梅,金自立,任慧平,等.CSP薄板冷轧退火组织和织构的研究[J].内蒙古科技大学学报,2007,26(1):37-41.
    [155]L. K. Tung, M. Z. Qvadir, B. J. Duggan. A novel rolling-annealing cycle for enhanced deep drawing properties in IF steels[J]. Key Engineering Materials,2002,223-236(1):437-442.
    [156]H. Zhao, S. C. Rama, G. C. Barber, et at. Experimental study of deep drawability of hot rolled IF steel[J]. Journal of Materials Processing Technology,2002,128(1-3):73-79.
    [157]查先进,严亚兰.冷轧宽带钢连续退火炉与罩式退火炉的比较研究[J].冶金信息,1999, 1:17-19.
    [158]松原波羲,大须贺立美,小指军夫等.采用控制轧制法生产高强度高韧性钢板[J].铁钢,1972,58:1848-1860.
    [159]J. W. Flowers Jr., S. P. Karas. Coalescence of sulfides during secondary growth in 3% silicon-iron[J]. J.Appl Phys,1967,38(3):1085-1086.
    [160]N. Ryum, O. Hunderi. On the Analytic Description of Normal Grain Growth[J]. Acta Metall., 1989,37(5):1375-1379.
    [161]W. M. Swift. Kinetics of MnS precipitate coarsening in 3pct Si-Fe sheet[J]. Metall Trans., 1973,4(1):153-157.
    [162]于浩.CSP热轧低碳钢板组织细化与强化机理研究[D].博士学位论文,北京:北京科技大学,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700