家鸡SSR和MHC位点的进化关系及群体遗传结构分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
DNA分子多态性为鉴定物种的遗传多样性和群体结构提供了重要信息。在研究各种家养动物的群体内遗传多样性和群体间遗传关系和结构中,微卫星DNA标记(SSR)是应用最为广泛的遗传标记之一。迄今为止,有许多研究应用这些中性基因座对来自全世界各大洲和不同生产、管理及历史背景的家鸡群体遗传多样性和群体遗传结构进行了评估和分析,发现群体遗传结构与它们的地理分布基本一致,而遗传多样性水平则与其管理背景相关。鸡主要组织相容性复合物(MHC)位于鸡16号染色体上,是基因组中最高变异区域。MHC区域编码的基因在免疫系统内起到主要作用,许多MHC基因编码的蛋白参与抗原与T细胞呈递过程。所以研究MHC区域的多样性有助于理解病原与宿主间的相互作用。目前,尽管MHC区域的受选择的性质还不清楚,但已有三种假设,如杂合优势、稀有等位基因优势和波动选择,用于解释MHC的高度遗传多样性。本研究旨在比较MHC区域多态性和常染色体微卫星体系所代表的基因组水平遗传多样性和群体结构的异同,探索MHC的进化机制,评价MHC区域的遗传多样性是否适用于研究群体的遗传关系。本研究通过对来自不同大洲、不同背景及培育历史的25个家鸡和野生原鸡群体进行研究,主要结果如下:
     1.采用7个MHC微卫星基因座对500份家鸡和原鸡样品进行遗传多样性分析,在25个群体中共发现了94个等位基因,其中在基因座LEI0258、GAB0001和MHC0371上检测到的等位基因数最多,分别为43、12和12个;除了MCW0312、MHC-D和MHC-T的多态信息含量(PIC)较低外,其他各基因座的PIC均大于0.5,呈现较高的多态性;MHC基因座的期望杂合度与群体间的FST呈显著的负相关(R2=-0.9629)。
     2.将MHC区域单个基因座和单倍型水平上的NA、HO和HE与29个常染色体微卫星基因座所代表的基因组水平上的遗传多样性进行比较,发现大多数群体MHC区域的遗传多样性要明显高于基因组水平;但是也有个别特殊群体相反,例如按血系B15进行定向培育的实验品系R22。
     3.通过估测群体间的遗传分化,表明各大洲地方群体间在MHC区域所表现的变异要小于29个基因座所代表基因组水平上的变异;基因组水平与MHC区域的FST之间无相关性(MHClocus-wise vs29SSR, R2=0.4128; MHC haplotype vs29SSR, R2=0.3145)。
     4.在群体遗传结构分析中,25个群体在基因组水平上的变异遵循着地理来源和管理历史的差异;而MHC区域的变异则没有体现出上述特征。
     5.为了验证以上试验结果,本研究又开展了相关验证试验,即采用大样本量、大地理距离和管理背景差距的5个群体,深入分析MHC的群体结构特征,进一步印证了上述结果。
Molecular polymorphisms in DNA are an important source of information to characterize andclassify genetic resources. Microsatellites DNA markers have been widely used to assess geneticdiversity within and genetic relationship between populations in all major farm animal species includingchicken in the past20years. Many previous studies used this marker system in a world-wide collectionof chicken breeds originated from various continents and of different management and productionsystems. Using these markers, which are assumed to be neutral to selection, it has been shown that thebreeds cluster according to their geographic location but vary in the degree of genetic diversity independence to their breeding and management histories. The chicken major histocompatibility complex(MHC) is located on the micro-chromosome16and is described as the most variable region in thegenome. The genes of MHC play a central role in the immune system. Particularly, proteins encoded byMHC genes involved in the antigen presentation to T cells. Therefore describing the geneticpolymorphism in this region is crucial in understanding host-pathogen interaction. Although the natureof selection to MHC diversity remains unclear, three major hypotheses have been put forward, such asheterozygote advantage, negative frequency dependence (rare allele advantage) and fluctuating selection.The aim of current study is to quantify different forces that affect the evolution of MHC in chicken byassessing the relationship of MHC diversity in relation to the overall genetic clusters that wereidentified using autosomal microsatellites in chicken. In this study,25populations collected fromdifferent continents, production and management systems were genotyped and the major summary ofresults is as follows:
     1. Based on seven MHC microsatellites, the genetic diversity of500individuals from domesticchicken and red Jungle fowl were assessed. Totally,94alleles were identified. The most polymorphicmarkers were LEI0258, GAB0001and MHC0371which had43,12and12observed alleles, respectively.Most of markers carried high polymorphism information content (PIC>0.5) except for MCW0312,MHC-D and MHC-T among25populations, indicating rich genetic variation at these loci. A negativecorrelation (R2=-0.9629) was observed between pairwise genetic differentiation (FST) and expectedheterozygosity (HE) at MHC loci.
     2. In comparison with the genome-wide genetic diversity measured using29autosomalmicrosatellites, MHC region, either at single locus and haplotype level, showed relatively high NA, HOand HEamong most of the populations. However, exceptions were present in some unique lines, such asthe R22that was developed following the directional selection for homozygous B15serotype.
     3. Pairwise genetic differentiation revealed a lower genetic variation at seven MHC loci than at29genome-wide markers between populations among the continents. There was no correlation betweenthese two sets of FSTestimates (MHC locus-wise vs29SSR, R2=0.4128; MHC haplotype vs29SSR,R2=0.3145).
     4. Population genetic structuring patterns suggested a rather different evolutionary process of MHCregion compared with the alignment of geographic origin and management history to the genetic differentiation among these populations unveiled using29autosomal markers.
     5. In order to verify the above observations, we chosen five populations with large number ofsamples, well separated geographic locations and unique managemental histories to analyze theirpopulation genetic structure at MHC loci. A similar picture of genetic variation was eventually obtainedto validate the major findings of this study based on various statistical tests.
引文
1.安瑞生,谭声江,陈晓峰,微卫星DNA在分子遗传标记研究中的应用.昆虫知识,2002,39:165-172
    2.包文斌,束婧婷,王存波等,中国家鸡和红色原鸡mtDNA控制区遗传多态性及系统进化分析.畜牧兽医学报,2008,39:1449-1459
    3.曾盛诚,国内外11个鸡群体的遗传多样性分析[硕士学位论文].北京:中国农科院,2009
    4.陈国宏,季从亮,王敏强等,12个中国地方鸡种群体遗传结构及遗传多样性分析.畜牧兽医学报,2006,37:105-111
    5.楚秋霞,南阳牛BoLA-DRA基因克隆、序列分析及表达[硕士学位论文].杨凌:西北农林科技大学,2010
    6.杜志强,曲鲁江,李显耀等,藏鸡群体遗传特性研究.遗传,2004,26:167-171
    7.傅衍,牛冬,罗静等,中国家鸡的起源探讨.遗传学报,2001,28:411-417
    8.傅衍,牛冬,阮晖等,丝羽乌骨鸡与其它鸡种遗传关系的研究.中国畜牧杂志,2002,1:5
    9.高焕,串联重复序列的物种差异及其生物功能.动物学研究,2005,26:555-556
    10.高玉时,唐修君,屠云洁等,基于线粒体COⅠ基因15个鸡种的DNA编码研究.中国农业科学,2011,44:587-594
    11.贡潘偏抽,刘丽仙,李大林等,基于线粒体DNA控制区(mtDNA D-loop)序列分析瓢鸡的遗传多样性.云南农业大学学报,2011,26:211-214
    12.顾玉兰,刘小林,张建勤,文昌鸡群体内遗传变异分析.西南农业学报,2008,17:28-31
    13.郭秀丽,代红星,李祥龙等.不同物种MHC-DQA1基因部分序列的生物信息学分析.中国畜牧兽医,2007,34:65-67
    14.何超,聂庆华,张细权,用Z染色体SNP标记分析鸡的遗传多样性,中国畜牧兽医学会畜禽遗传标记分学会.第十次全国畜禽遗传标记研讨会论文集.北京:中国农业科学院北京畜牧兽医研究所,2006,
    15.何柯,红腹锦鸡SSR和II类MHC位点的分离及群体遗传结构分析[博士学位论文].杭州:浙江大学,2012
    16.黄啸宇,王亚新,MHC结构与功能研究新进展.生命的化学,1994,14:11-13
    17.孔令勇,王林云,猪的MHC对繁殖性能的影响.畜牧与兽医,1994,26:85-87
    18.李波,梅花鹿(Cervusnippon) MHC-DRB基因多态性及其与产茸性能关系的研究[硕士学位论文].哈尔滨:东北林业大学,2003
    19.李国勤,卢立志,王得前,鸡MHC与传染性疾病遗传抗性的相关性研究进展..遗传,2006,28:893-898
    20.李尚民,原新延,戴国俊,鸡主要组织相容性复合体与抗病育种.国外畜牧学:猪与禽,2007,27:70-72
    21.李显耀,曲鲁江,杨宁,利用微卫星标记分析蛋鸡配套系的遗传关系.遗传学报,2004,31:1351-1355.
    22.廖承红,王华伟,梁浩等,文昌鸡线粒体DNA控制区序列遗传多样性分析.广东农业科学,2012,12:145-147
    23.孟青龙,李金莲,石有斐等,通过PCR-SSCP检测乌珠穆沁马ELA-DQA第二外显子的多态性.中国畜牧杂志,2007,43:10-12
    24.欧阳建华,袁立,孙汉等,中国泰和乌鸡MHC与其繁殖性能相关的研究.江西农业大学学报,2000,22:98-101
    25.曲鲁江,李显耀,徐桂芳等,利用微卫星标记分析中国地方鸡种的遗传多样性.中国科学C辑:生命科学,2006,36:17-26
    26.邵伟伟,两种果蝠微卫星位点筛选及通用性研究.硕士学位论文,桂林:广西师范大学,2008
    27.宋春红,陈红菊,马月辉等,中国6个地方鸡品种的母系起源.畜牧兽医学报,2007,38:735-740
    28.唐修君,高玉时,屠云洁等,基于线粒体COⅠ基因的2个新发现鸡种资源DNA编码研究.中国畜牧兽医,2011,38:133-136
    29.徐日福,李奎,陈国宏,鸡MHC B-LBⅡ新等位基因检测及多态性研究.畜牧兽医学报,2006,36:1247-1255.
    30.徐日福,李奎,陈国宏,中国地方鸡种MHCB-LBⅡ新等位基因的遗传多态性研究.遗传学报,2007,34:109-118
    31.徐日福,中国部分地方鸡种MHC B-LBⅡ,BG基因变异及其群体遗传结构研究[硕士学位论文].武汉:华中农业大学,2005
    32.杨国锋,张家桦,赵有璋,微卫星DNA标记在川渝山羊品种遗传多样性研究中的应用.四川畜牧兽医,成都:四川人民出版社,2006,3:36-37
    33.杨文娟,鸡MHC I类基因遗传多态性研究[硕士学位论文].兰州:甘肃农业大学,2012
    34.姚娜,中国部分地方猪种obese基因遗传多样性研究及藏猪obese基因高效原核表达[硕士学位论文].北京:中国农科院,2009
    35.叶朗惠,霍金龙,苗永旺等,尼西鸡遗传多样性微卫星标记分析.动物学研究,2006,27:68-74
    36.张婷,MHC及其在动物遗传育种方面的应用.贵州畜牧兽医,2008
    37. Aarnink A., Jacquelin B., Dauba A., et al., MHC polymorphism in Caribbean African greenmonkeys.Immunogenetics2014
    38. Afanassieff M., Goto R. M., Ha J., et al., At least one class I gene in restriction fragment pattern-Y(Rfp-Y), the second MHC gene cluster in the chicken, is transcribed, polymorphic, and showsdivergent specialization in antigen binding region. The Journal of Immunology2001,166:3324-3333.
    39. Aguilar A., Roemer G., Debenham S., et al., High MHC diversity maintained by balancingselection in an otherwise genetically monomorphic mammal. PNAS2004,101:3049-3494
    40. Alcaide M., Edwards S.V., Negro J.J., et al., Characterization, polymorphism, and evolution ofMHC class II B genes in birds of prey. Journal of Molecular Evolution2007,65:541-554
    41. Alf ldi J., Di Palma F.,Grabherr M., et al., The genome of the green anole lizard and acomparative analysis with birds and mammals. Nature2011,477:587-591
    42. Allen C.P., and Gilmour D.G., The B blood group system of chickens. III. The effects of twoheterozygous genotypes on the survival and egg production of multiple crosses. Genetics1962,47:1711-1718.
    43. Amos B., Schlotterer C., Tautz D., Social Structure of pilot whales revealed by analytical DNAprofiling. Science,1995,260:670-672.
    44. Anderson S., Bankier A.T., Barrellb G., et al., Sequence and organization of the humanmitochondrial genome. Nature1981,290:457-465.
    45. Andolfatto P., Adaptive hitchhiking effects on genome variability.Current Opinion in Genetics andDevelopment2001,11:635-641
    46. Ankra-Badu G.A.,Aggrey S.E., Identification of candidate genes at quantitative trait loci onchicken chromosome Z using orthologous comparison of chicken,mouse,and human genomes. InSilico Biology2005,5:593-604.
    47. Antao T., Lopes A., Lopes R.J., et al., A workbench to detect molecular adaptation based on aFST-outlier method. BMC Bioinformatics2008,9:323.
    48. Babik W., Pabijan M., Radwan J., Contrasting patterns of variation in MHC loci in the Alpine newt.Molecular Ecology2008,17:2339-2355.
    49. Bacon L.D., Influence of the major histocompatability complex on disease resistance andproductivity. Poultry Science1987,66:802-811.
    50. Balloux F., Lugon-Moulin N., The estimation of population differentiation with microsatellitemarkers. Molecular Ecology2002,11:155-165.
    51. Beck S., Geraghty D., Inoko H., et al., Complete sequence and gene map of a human majorhistocompatibility complex. Nature1999,401:921-923.
    52. Beckmann J.S., Weber J.L., Survey of human and rat microsatellites. Genomics1992,12:627-631
    53. Bematchez L., Landry C., MHC studies in nonmodel vertebrates: what have we learned aboutnatural selection in15years? Journal of Evolutionary Biology2003,16:363-377.
    54. Benedict A.A., Pollard L.W., Maurer P.H.,. Genetic control of immune responses in chicken.Immunogenetics1977,4:199-204.
    55. Bjorkman P.J., Parham P., Structure, function, and diversity of class I major histocompatibilitycomplex molecules. Annual Review of Biochemistry1990,59:253-288.
    56. Blankenship S.M., May B., Hedgecock D., Evolution of a perfect simple sequence repeat locus inthe context of its flanking sequence. Molecular Biology and Evolution2002,19:1943-1951.
    57. Bloom S.E., Bacon L.D., Linkage of the major histocompatibility (B) complex and the nucleolarorganizer in the chicken. Journal of Heredity1985,76:147-154.
    58. Bloom S.M.D.,. Muscarella D., A Constant and variable features of avian chromosomes.Manipulation of the Avian Genome1993,12:39-60.
    59. Bodzsar N., Eding H., Revay T., et al., Genetic diversity of Hungarian indigenous chicken breedsbased on microsatellite markers. Animal Genetics2009,40:516-523.
    60. Bonneaud C., Perez-Trise, J., Federici, P., et al., Major histocompatibility alleles associated withlocal resistance to malaria in a passerine. Evolution2006,60:383-389.
    61. Bowcock A.M., Ruiz-Lineares A., Tonfohrde J., et al., High resolution of human evolutionary treeswith polymorphic microsatellites. Nature1994,368:455-457.
    62. Bowen B.W., Clark A.M., Abreu-Grobois F.A., et al., Global phylogeography of the ridley seaturtles (Lepidochelys. spp) as inferred from mitochondrial DNA sequences. Genetica1997,101:179-189.
    63. Briles W., Allen C.P., Millen T., The B blood group system of chickens. I. Heterozygosity inclosed populations. Genetics1957,42:631-648.
    64. Briles W., Briles R.W., McGibbon W., et al., Identification of B alloalleles associated withresistance to Marek's disease.Commission of the European Communities1978,10.395-416.
    65. Briles W., Bumstead N., Ewert D., et al., Nomenclature for chicken major histocompatibility.Immunogenetics1982,15:441-447.
    66. Briles W., McGibbon M., Irwin M., On multiple alleles effecting cellular antigens in the chicken.Genetics1950,35:633-652.
    67. Briles W., McGibbon W., Irwin M., Studies of the time of development of cellular antigens in thechicken. Genetics1948b,33:97.
    68. Briles W.E., Allen C.P., The B blood group system of chickens. II. The effects of genotype onlivability and egg production in seven commercial inbred lines. Genetics1961,46:1273-1293.
    69. Briles W.E., Briles R.W., Identification of haplotypes of the chicken major histocompatibilitycomplex (B). Immunogenetics1982,15:449-459.
    70. Briles W.E., Goto R.M., Auffray C., et al., A polymorphic system related to but geneticallyindependent of the chicken major histocompatibility complex. Immunogenetics1993,37:408-414.
    71. Briles, W. Induced hemolytic disease in chicks. Genetics1948a,33:96.
    72. Brock G.J., Anderson N.H., Monckton D.G., Cis-acting modifiers of expanded CAG/CTG tripletrepeat expandability: association with flanking GC content and proximity to CpG islands. HumanMolecular Genetics1999,8:1061-1067.
    73. Brouwer L., Komdeur J., Richardson D.S., Heterozygosityfitness correlations in a bottleneckedisland species: a case study on the Seychelles warbler. Molecular Ecology2007,16:3134–3144.
    74. Brown A.C., Smith L.P., Kgosana L., et al., Homodimerization of the Meq viral oncoprotein isnecessary for induction of T-cell lymphoma by Marek's disease virus. Journal of Virology2009,83:11142-11151.
    75. Brown L.Y., Brown S.A., Alanine tracts: the expanding story of human illness and trinucleotiderepeats. Trends in Genetics2004,20:51-58.
    76. Bruford M.W., Chessman, D.T., Coote, T., et al., Microsatellites and their application toconservation genetics. In Smith TB, Wayne, R.K.(ed.). Oxford University Press Oxford1996
    77. Bruford M.W., Wayne R.K., Microsatellites and their application to population genetic studies.Current Opinion in Genetics&Development1993,3:939-943.
    78. Burnside J., Liou S.S., Cogbur N.L.A., Molecular cloning of the chicken growth hormone receptorcomplementary deoxyri-bonucleic acid: mutation of the gene in sex-linked dwarf chickens.Endocrinology1991,128:3183-3192.
    79. Cammen, K., Hoffman, J.I., Knapp, L.A., et al., Geographic variation of the majorhistocompatibility complex in Eastern Atlantic grey seals (Halichoerus grypus). Molecular Ecology2011,20:740-752
    80. Canapa A., Cerioni P.N., Barucca M., et al., A centromeric satellite DNA may be involved inheterochromatin compactness in gobiid fishes. Chromosome Research2002,10:297-304
    81. Castro L.F.C., Furlong R.F., Holland P.W.H., An antecedent of the MHC-linked genomic regionin amphioxus. Immunogenetics2004,55:782-784
    82. Cereb N., Hughes A.L., Yang S.Y., Locus-specific conservation of the HLA class I introns byintra-locus homogenization. Immunogenetics1997,47:30-36.
    83. Chang C.S., Chen C.F., Berthouly-Salazar, C., et al., A global analysis of molecular markers andphylogenetic traits in local chicken breeds in Taiwan. Animal Genetics2011,43:172-182
    84. Chantry-Darmon C., Urien C., De Rochambeau H., et al., A first-generation microsatellite-based integrated genetic and cytogenetic map for the European rabbit (Oryctolagus cuniculus) andlocalization of angora and albino. Animal Genetics2006,37:335-341
    85. Charlesworth B., Nordborg M., Charlesworth D., The effects of local selection, balancedpolymorphism and background selection on equilibrium patterns of genetic diversity in subdividedpopulations. Molecular Research1997,70:155-174.
    86. Charruau P., Femandes C., Orozco-tenvengel P., et al., Phylogeography, genetic structure andpopulation divergence time of cheetahs in Africa and Asia: evidence for long-term geographicisolates. Molecular Ecology2011,20:706-724.
    87. Chaves L.D., Krueth S.B., Reed K.M., Defining the turkey MHC: sequence and genes of the Blocus. The Journal of Immunology2009,183:6530
    88. Chazara O., Huul-Madsen H.R., Chang, C.S., et al., Correlation in chicken between the makerLEI0258alleles and Major histocompatibility Complex sequences. BMC Proceedings2011b,5:s29.
    89. Chazara O., Tixier-Boichard M., Morin V., et al.,. Organisation and diversity of the class II DMregion of the chicken MHC. Molecular Immunology2011a,48:1263-1271.
    90. Chazara O., Chang C.S., Bruneau N., et al., Diversity and evolution of the highly polymorphictandem repeat LEI0258in the chicken MHC-B region. Immunogenetics2013,65:447–459
    91. Chen H.J., Yue Y.S., Fan X.Z, et al., Analysis of genetic diversity of Shandong indigenous chickenbreeds using microsatellite markers. Aeta Genetica Sinica2003,30:855-860.
    92. Chen Y.Y., Zhang Y.Y., Zhang H.M., et al., Natural selection coupled with intragenic recombinationshapes diversity patterns in the Major Histocompatibility Complex class II genes of the giant panda.Journal of Experimental Zoology Part B: Molecular and Developmental Evolution2011,314:208-223.
    93. Cheng H.H., Crittenden L.B., Microsatellite markers for genetic mapping in the chicken. PoultryScience1994,73:539-546.
    94. Cheng H.H., Mapping the chicken genome. Poultry science1997,76:1101-1107
    95. Chew J.S., Oliveira C., Wright J.M., et al., Molecular and cytogenetic analysis of the telomeric(TTAGGG) n repetitive sequences in the Nile tilapia, Oreochromis niloticus (Teleostei: Cichlidae).Chromosoma2002,111:45-52
    96. Childers C., Newkirk H., Honeycutt D., et al., Comparative analysis of the bovine MHC class libsequence1identifies inversion breakpoints and three unexpected genes. Animal Genetics2006,37:121-129.
    97. Chistiakov D.A., Hellemans B., Volckaert F.A.M., Microsatellites and their genomic distribution,evolution, ftinction and applications: a review with special reference to fish genetics. Aquaculture2006,255:1-29
    98. Cohen S., Strong positive selection and habitat-specific amino acid substitution patterns in MHCfrom an estuarine fish under intense pollution stress. Molecular Biology and Evolution2002,19:1870-1880.
    99. Collias N.E., Collias E.C., Social organization of a red junglefowl, Gallus gallus, populationrelated to evolution theory. Animal Behaviour1996,51:1337-1354.
    100. Collin H., Burri R., Comtesse F., et al., Combining molecular evolution and environmentalgenomics to unravel adaptive processes of MHC class IIB diversity in European minnows(Phoxinus phoxinus). Ecology Evolution2013,3:2568-2585
    101. Coppage M., Iqbal A., Ahmad A., et al., Leukemia specific loss of heterozygosity of MHC in aCLL patient: disease state impacts timing of confirmatory typing. Human Immunology2013,74:41-44.
    102. Cordeiro G.M., Casu R., Mclntyre C.L., et al., Microsatellite markers from sugarcane (Saccharumspp.) ESTs cross transferable to erianthus and sorghum. Plant Science2001,160:1115-1123
    103. Crawford R.D., Poultry breeding and genetics.Poultry breeding and genetics1990,01:1123.
    104. Crooijmans R.P.M.A., Van Kampen A.J, Vander Poel J.J., et al., Highly polymorphicmicrosatellite markers in poultry. Animal Genetics1993,24:441-443.
    105. Crooijmans R.P., Van Oers. A., Strijk J.A., et al., Preliminary linkage map of the chicken (Gallusdomesticus) genome based on microsatellite markers:77new markers mapped. Poulty Science1996,75:746-754.
    106. Crooijmans R.P.M.A., Dijkhof R.J.M., van der Poel, J.J., et al., New microsatellite markers inchicken optimized for automated fluorescent genotyping. Animal Genetics1997,28:427-437.
    107. Cuc N.T.K., H.Simianer H., Eding H.V., et al., Assessing genetic diversity of Vitnamese localchicken breeds using microsatellite. Animal Genetics2010,41:545-547
    108. Daum J.M, Davis L.R., Bigler L., et al., Hybrid advantage in skin peptide immune defenses ofwater frogs (Pelophylax esculentus) at risk from emerging pathogens. Infection, Genetics andEvolution2012,12:1854-1864.
    109. David R., Noelle E., Opportunities for detection and use of QTL influencing seasonal reproductionin sheep: a review. Genetics Selection Evolution2005,37: S39-S53
    110. De Boer R.J., Borghans J.A.M., van Boven M., et al., Heterozygote advantage fails to explain thehigh degree of polymorphism of the MHC. Immunogenetics2004,55:725-731Debenham S.L.,Hart E.A., Ashurst J.L., et al., Genomic sequence of the class II region of the canine MHC:comparison with the MHC of other mammalian species. Genomics2005,85:48-59
    111. Delany M.E., Genetic diversity and conservation of poultry. In: Poultry Genetics, Breeding andBiotechnology (Ed. by W.M. Muir&S.E. Aggrey), PP.257-281. CABI publishing CABInternational, Trowbridge, UK.2003
    112. Di Rienzo A., Peterson A.C., Garza J.C., et al., Mutational processes of simple-sequence repeat lociin human populations. PNAS1994,91:3166-3170.
    113. Earl D.A., vonHoldt B.M., STRUCTURE HARVESTER: a website and program for visualizingSTRUCTURE output and implementing the Evanno method. Conservation Genetics Resources2012,4:359-361
    114. Eizaguirre C., Lenz T.L., Kalbe M., et al.,. Rapid and adaptive evolution of MHC genes underparasite selection in experimental vertebrate populations. Nature Communications2012,3:621
    115. Ekblom R., Ether S.A., Parjacobsson P., et al., Spatialpattern of MHC classII variation in the greatsnipe (Gallinagomedia). Molecular Ecology2007,16:1439~1451.
    116. Ekblom R., Saether S.A., Jacohsson, P., et al., Spatial pattern of MHC class II variation in the greatsnipe (Gallinago media). Molecular Ecology2007,16:1439-1451.
    117. Ekblom R., Stapley J., Ball D.A., et al., Genetic mapping of the major histocompatibility complexin the zebra finch (Taeniopygia guttata). Immunogenetics2010,63:523-530.
    118. Ellegren H., Microsatellite mutations in the germ line: implications for evolutionary inference.Trends in Genetics2000,16:551-558
    119. El-Sayed Y.S., Mohamed O.I., Ashry K.M., et al., Using species-specific repeat and PCR-RFLP intyping of DNA derived from blood of human and animal species. Forensic Science, Medicine, andPathology2010,6:158-164
    120. Epplen C., Melmer G., Siedlaczck I., et al., On the essence of "meaningless" simple repetitive DNAin eukaryote genomes. Experientia-basel-supplementum1993,67:29-29.
    121. Eriksson J., Larson G., Gunna Rsson U., et al., Identification of the yellow skin gene reveals ahybrid origin of the domestic chicken. PLOS Genetics2008,4: e1000010.
    122. Evanno G., Regnaut S., Goudet J., Detecting the number of clusters of individuals using thesoftware STRUCTURE: a simulation study. Molecular Ecology2005,14:2611-2620
    123. Excoffier L., Analysis of Population Subdivision. In: Balding D, Bishop M, Cannings C, editors.Handbook of Statistical Genetics,2nd Edition2003, New York: John Wiley&Sons, Ltd. pp.713-750.
    124. Excoffier L., Lischer H.E.L., Arlequin3.5: A new series of programs to perform populationgenetics analyses under Linux and Windows. Molecular Ecology Resources2010,10:564-567.
    125. Fabregat I., Koch K.S., Aoki T., et al., Functional pleiotropy of an intramolecular triplex-formingfragment from the3'-UTR of the rat Pigr gene. Physiological Genomics2001,5:53-65.
    126. Ferrero M., Blanco-Aguiar J.A., Lougheed S.C., et al., Phylogeography and genetic structure of thered-legged partridge (Alectoris rufa): more evidence for refugia within the Iberian glacial refugium.Molecular Ecology2011,20:2628-2642.
    127. Figueroa F., Gunther E., Klein J., MHC polymorphism pre-dating speciation. Nature1998,335:265-267
    128. Flajnik M.F., Molecular cloning of C4gene and identification of the class III complement region inthe shark MHC. The Journal of Immunology2003,171:2461
    129. Forsberg L.A., Dannewite J., Petersson E., et al Influence of genetic dissimilarity in thereproductive success and mate choice of brown trout-females fishing for optimal MHCdissimilarity. Journal of Evolutionary Biology2007,20:1859-1869.
    130. Forstmeier W., Schielzeth H., Schneider M., Development of polymorphic microsatellite markersfor the zebra finch (Taeniopygia guttata). Molecular Ecology Notes2007,7:1026-1028.
    131. Fraser B.A., Ramnarine I.W., Neff, B.D., Selection at the MHC class IIB locus across guppy(poecilia reticulata) populations. Heredity2010,104:155-167.
    132. Fu Y., Wen T.J., Ronin Y.I., Genetic dissection of intermated recombinant inbred lines using a newgenetic map of maize. Genetics2006,174:1671-1683.
    133. Fulton J.E., Juul-Madsen H.R., Ashwell C.M., et al., Molecular genotype identification of theGallus gallus major histocompatibility complex. Immunogenetics2006,58:407-421.
    134. Fumihito A., Miyake T., Sumi S., et al., One subspecies of the red junglefowl (Gallus gallus gallus)suffices as the matri-archic ancestor of all domestic breeds. PNAS1994,91:12505-12509.
    135. Fumihito A., Miyake T., Takada M., et al., Monophyletic origin and unique dispersal patterns ofdomestic fowls. PNAS1996,93:6792-6795.
    136. Gao J., Liu K., Liu H., et al., A complete DNA sequence map of the ovine MajorHistocompatibility Complex. BMC Genomics2010,11:466
    137. Goto R., Miyada C.G., Young S., et al., Isolation of a cDNA clone from the BG subregion of thechicken histocompatibility (B) complex. Immunogenetics1988,27:102-109.
    138. Goudet J., FSTAT (version.1.2): a computer program to calculate F-statistics. Hereditary1995,86:485-486.
    139. Granevitze Z., Hillel J., Chen G.H., et al., Genetic diversity within chicken populations fromdifferent continents and management histories. Animal Genetics2007,38:576-583.
    140. Granevitze Z., Hillel J., Feldman M., et al., Genetic structure of a wide-spectrum chicken genepool. Animal Genetics2009,40:686-693.
    141. Gregory S.G., Sekhon M., Schein J., et al., A physical map of the mouse genome. Nature2002,418:743-750
    142. Griffin D., Robertson L., Tempest H., et al., Whole genome comparative studies between chickenand turkey and their implications for avian genome evolution. BMC Genomics2008,9:168.
    143. Groenen M.A., Megens H.J., Zare Y., et al., The development and characterization of a60K SNPchip for chicken. BMC Genomics2011,12:274.
    144. Groenen M.A.M., Wahlberg P., Foglio M., et al., A high-density SNP-based linkage map of thechicken genome reveals sequence features correlated with recombination rate. Genome Research2009,19:510-519.
    145. Guan X., Geng T., Silva P., et al., Mitochondrial DNA sequence and haplotype variation analysis inthe chicken (Gallus gallus). Journal of Hereditary2007,98:723-726.
    146. Guillemot F., Billault A., Pourquie O., et al,. A molecular map of the chicken majorhistocompatibility complex: the class II beta genes are closely linked to the class I genes and thenucleolar organizer. The EMBO Journal1988,7:2775-2785.
    147. Gur-Arie R., Cohen C.J., Eitan Y., et al., Simple sequence repeats in Escherichia coli: abundance,distribution, composition, and polymorphism. Genome Research2000,10:62-71
    148. Haasl R.J., Payseur B.A., Microsatellites as targets of natural selection. Molecular BiologyEvoluation2013.30:285-298.
    149. Haeri M., Read L.R., Wilkie B.N., et al., Identification of peptides associated with chicken majorhistocompatibility complex class II molecules of B21and B19haplotypes. Immunogenetics2005,56:854-859.
    150. Hála K., Chaussé A.M., Bourlet Y., et al,. Attempt to detect recombination between BF and BLgenes within the chicken B complex by serological typing, in vitro MLR, and RFLP analyses.Immunogenetics1988,28:433-438.
    151. Hála.K., Boyd R., Wick G., Chicken major histocompatibility complex and disease. ScandinavianJournal of Immunology1981,14:607-616.
    152. Hamada H., Petrino M.G., Kakunaga T., A novel repeated element with Z-DNA-forming potentialis widely found in evolutionarily diverse eukaryotic genomes. PNAS1982,79:6465
    153. Hancock J.M., Microsatellites and other simple sequences: genomic context and mutationalmechanisms. In: Microsatellites: evolution and applications (eds. Goldstein DB, Schl.tterer C)[M],Oxford: Oxford University Press.1999
    154. Hansson B., Westerberg L., On the correlation between heterozygosity and fitness in naturalpopulations. Molecular Ecology2002,11:2467-2474.
    155. Harr B., Kauer M., Schlotterer C., Hitchhiking mapping: a population-based fine-mapping strategyfor adaptive mutations in Drosophila melanogaster. PNAS2002,99:12949.
    156. He L.P., Wan Q.H., Fang S.Q., Development of novel microsatellite loci and assessment of geneticdiversity in the endangered Crested Ibis, Nipponia Nippon. Conservation Genetics2006,7:157-160
    157. He X.L., Ding C.Q., Han J.L., Lack of Structural Variation but Extensive Length Polymorphismsand Heteroplasmic Length Variations in the Mitochondrial DNA Control Region of Highly InbredCrested Ibis, Nipponia nippon. PLoS ONE2013,8:e66324
    158. Hedrick P.W., Balancing selection and MHC. Genetica1999,104:207-214.
    159. Hedrick P.W., Kim T.J., Parker K.M., Parasite resistance and genetic variation in the endangeredGila topminnow. Animal Conservation2001,4:103-109.
    160. Hedrick P.W., Parker K.M., Lee R.N., Using microsatellite and MHC variation to identify species,ESUs, and Mus in the endangered Sonoran topminnow. Molecular Ecology2001,10:1399-1412.
    161. Hedrick P.W., Thomson G., Evidence for balancing selection at HLA. Genetics1983,104:449
    162. Hee C.S., Gao S., Loll B., et al., Structure of a classical MHC class I molecule that binds“non-classical” ligands. PLoS Biology2010,8(12):e1000557
    163. Herrmann B, Henke W (1999) DNA preservation: a microsatellite-DNA study on ancient skeletalremains. Electrophoresis20:1722-1728
    164. Hillel J., Groenen M.A., Tixie R-Boicha R.D.M., et al., Biodiversity of52chicken populationsassessed by microsatellite typing of DNA pools. Genetic. Selection. Evolution2003,35:553-557.
    165. Hillier L.D.W., Miller W., Bimey E., et al., Sequence and comparative analysis of the chickengenome provide unique perspectives on vertebrate evolution. Nature2004,432:695-716.
    166. Hillier L.D.W., Miller W., Birney E., et al., Sequence and comparative analysis of the chickengenome provide unique perspectives on vertebrate evolution. Nature2004,432:695-716.
    167. Hudson R.R., Gene genealogies and the coalescent proces, pp.1-44in Oxford Surveys inEvolutionary Biology, edited by Futuyama, and J. D. Antonovics. Oxford University Press, NewYork.1990
    168. Hughes A., Nei M., Models of host-parasite interaction and MHC polymorphism. Genetics1992,132:863.
    169. Hughes A.L., Yeager M., Natural selection at major histocompatibility complex loci of vertebrates.Annual Review of Genetics1998,32:415-435
    170. Hunt H.D., Fulton J.E., Analysis of polymorphisms in the major expressed class I locus (BF IV) ofthe chicken. Immunogenetics1998,47:456-467.
    171. Ilmonen P., Penn D.J., Damjanovich K., et al., Major histocompatibility complex heterozygosityreduces fitness in experimentally infected mice. Genetics2007,176:2501-2508.
    172. Inoue-Murayama M., Kayang B., Kimura K., et al., Chicken microsatellite primers are not efficientmarkers for Japanese quail. Animal Genetics2001,32:7-11
    173. Izadi F., A molecular genetic survey of immune response genes and biodiversity of industrial andnon-industrial chickens.[Ph.D. thesis]. The university of British Columbia.2011
    174. Jaari S., Li M.H., Merila J., A first-generation microsatellite-based genetic linkage map of theSiberian jay (Perisoreus infaustus): insights into avian genome evolution. BMC Genomics2009,10.1.
    175. Jacob J.P., Milne S., Beck S., et al., The major and a minor class II β-chain (B-LB) gene flank theTapasin gene in the BF/BL region of the chicken major histocompatibility complex.Immunogenetics2000,51:138-147.
    176. Jarne P., Lagoda P.J.L., Microsatellites, from molecules to populations and back. Trends in Ecology&Evolution1996,11:424-429
    177. Jasinska A., Michlewski G., De Mezer M., et al., Structures of trinucleotide repeats in humantranscripts and their functional implications. Nucleic Acids Research2003,31:5463
    178. Jing W., Wang X.L., Lan H., et al., Eleven novel microsatellite markers for the Chinese alligator(Alligator sinensis). Conservation Genetics2009,10:543-546
    179. Johnson O., Jon B., Chaz H., et al., Genetic diversity and population structure of Glossinapallidipes in Uganda and western Kenya. Parasites Vectors2011,28:122.
    180. Jun T.H., Rouf Mian M., Michel A.P., Genetic mapping revealed two loci for soybean aphidresistance in PI56730IB, Theoretical and Applied Genetics2012,124:13-22.
    181. Kaestle F.A., Horsburgh K., Ancient DNA in anthropology: methods, applications, and ethics.American Journal of Physical Anthropology2002,119:92-130.
    182. Kandpal R.P., Kandpal G., Weissman S.M., Construction of libraries enriched for sequence repeatsand jumping clones, and hybridization selection for region-specific markers. PNAS1994,91:88.
    183. Kanginakud R.U.S., Metta M.,Jakati R.D., et al., Genetic evidence from Indian red jungle fowlcorroborates multiple domestication of modern day chicken.BMC Evolutionary Biology2008,10:
    174.
    184. Karagyozov L., Kalcheva I.D., Chapman V.M., Construction of random small-insert genomiclibraries highly enriched for simple sequence repeats. Nucleic Acids Research199321:3911.
    185. Karakoz I., Kreji J., Hala K., et al,. Genetic determination of tuberculin hypersensitivity in chickeninbred lines. European journal of Immunology1974,4:545-548.
    186. Kaufman J., Jacob J., Shaw I., et al., Gene organisation determines evolution of function in thechicken MHC. Immunological Review1999,167:101-117.
    187. Kaufman J., Milne S., G bel T.W., et al., The chicken B locus is a minimal essential majorhistocompatibility complex. Nature1999,401:923-925.
    188. Kaufman J., The avian MHC. In: Davison, F., Kasper, B., Schat, K.A., editors. Avian immunology.London: Academic Press, Elsevier Ltd. P.159-181.2008
    189. Keller L.F., Waller D.M., Inbreeding effects in wild populations. Trends in Ecology and Evolution2002,17:230-241.
    190. Kelley J., Walter L., Trowsdale J., Comparative genomics of major histocompatibility complexes.Immunogenetics2005,56:683-695
    191. Kelly, L., The little chicken book. Caledon, Ontario: Blue Barn Publishing.2006
    192. Kimura M., Crow J.F., The number of alleles that can be maintained in a finite population.Genetics1964,49:725-738.
    193. Kimura M., Ohta T., Stepwise mutation model and distribution of allelic frequencies in a finitepopulation. PNAS1978,75:2868-2872.
    194. Klein J., Natural history of the major histocompatibility complex. Wiley New York.1986
    195. Kondo S., Kubota S., Mukudai Y., et al., Hypoxic regulation of stability of connective tissuegrowth factor/CCN2mRNA by3'-untranslated region interacting with a cellular protein in humanchondrosarcoma cells. Oncogene2005,25:1099-1110.
    196. Kuroda N., Figueroa F., O'huigin C., et al., Evidence that the separation of Mhc class II from classI loci in the zebrafish, Danio rerio, occurred by translocation. Immunogenetics2002,54:418-430
    197. Lawler A., In search of the wild chicken. Science2012,338:1020-1024.
    198. Lawler A., In Search of the Wild Chicken. Science2012,338:1020-1024.
    199. Levinson G., Gutman G.A., High frequencies of short frameshifts in poly-CA/TG tandem repeatsborne by bacteriophage M13in Escherichia coli K-12. Nucleic Acids Research1987,15:5323-5338.
    200. Li J.Z., Absher D.M., Tang, R.T., Worldwide human relationships inferred from genome-widepatterns of variation. Science2008,319:1100-1104.
    201. Li L., Zhou X., Chen X., Characterization and Evolution of MHC Class II B Genes in Ardeid Birds.Journal of Molecular Evolution2011,1:10.
    202. Li R., Fan W., Tian G., et al., The sequence and de novo assembly of the giant panda genome.Nature2009,463:311-317.
    203. Li W.H., Ere-Walker A., Molecular evolution. Sinauer Associates Sunderland:1997
    204. Li X., He X.L.,. Han J.L., No specific primer can independently amplify the complete Exon2ofchicken BLB1or BLB2genes. International Journal of Poultry Science2010,9:192-197.
    205. Li Y., Fahima T., Korol A.B., et al., Microsatellite diversity correlated with ecological-edaphic andgenetic factors in three microsites of wild emmer wheat in North Israel. Molecular Biology andEvolution2000,17:851-862.
    206. Li Y., Fahima T., Roder M., Genetic effects on microsatellite diversity in wild emmer wheat(Triticum dicoccoides) at the Yehudiyya microsite, Israel. Heredity2003,90:150-156.
    207. Li Y.C., Korol A.B., Fahima T., Microsatellites: genomic distribution, putative functions andmutational mechanisms: a review. Molecular Ecology2002,11:2453-2465.
    208. Li YC, Korol A.B., Fahima T., et al., Microsatellites within genes: structure, function, andevolution. Molecular Biology and Evolution2004,21:991-1007.
    209. Lin Z., Thomas N.J., Wang Y., et al., Deletions within a CA-repeat-rich region of intron4of thehuman SP-B gene affect mRNA splicing. Biochemical Journal2005,389:403
    210. Lith H.A., Zutphen L.F.M., Characterization of rabbit DNA micros extracted from the EMBLnucleotide sequence database. Animal Genetics1996,27:387-395
    211. Liu L., Dybvig K., Panangala V.S., et al., GAA trinucleotide repeat region regulates M9/pMGAgene expression in Mycoplasma gallisepticum. Infection and immunity2000,68:871-876.
    212. Liu Y.P., Wu G.S., Yao Y.G., Multiple maternal origins of chickens: Out of the Asian jungles.Molecular Phylogenetics and Evolution2006,38:12-19.
    213. Liu Z., Crooijmans R., Poel J.J., Use of chicken microsatellite markers in turkey: a pessimisticview. Animal Genetics1996,27:191-193.
    214. Liu Z.G., Lei C.Z., Luo J., et al., Genetic variability of mtDNA sequences in Chinese nativechicken breeds. Asian-Aus-tralasian Journal of Animal Sciences2004,17:903-909.
    215. Loiseau C., Richard M., Garnier S., Diversifying selection on MHC class I in the house sparrow(Passer domesticus). Molecular Ecology2009,18:1331-1340.
    216. MacHugh D.E., Loftus R.T., Cunningham P., et al., Genetic structure of seven European cattlebreeds assessed using20microsatellite markers. Animal Genetics1998,29:333-340.
    217. Maillard J.C., Berthier D., Chantal I.,et al., Selection assisted by a BoLA-DR/DQ haplotypeagainst susceptibility to bovine dermatophilosis. Genetics Selection Evolution2003,35:193-200.
    218. Mainguy J., Worley K., Cote S.D., et al., Low MHC DRB class II diversity in the mountain goat:past bottlenecks and possible role of pathogens and parasites. Conservation Genetics2007,8:885-891.
    219. Mansour M., Wright J.R., Pohajdak B., Cloning, sequencing and characterization of the tilapiainsulin gene. Comparative Biochemistry and Physiology Part B: Biochemistry and MolecularBiology1998,121:291-297.
    220. Marano R.J., Brankov M., Rakoczy P.E., Discovery of a Novel Control Element within the5'-Untranslated Region of the Vascular Endothelial Growth Factor. Journal of Biological Chemistry2004,279:37808.
    221. Mccartney M.A., Acevedo J., Heredia C., et al., Genetic mosaic in a marine species flock.Molecular Ecology2003,12:2963-2973.
    222. McClelland E.E., Granger D.L., Potts W.K., Major histocompatibility complex-dependentsusceptibility to Cryptococcus neoformans in mice. Infection and Immunity2003,71:4815–4817.
    223. McConnell S.K., Dawson D.A., Wardle A., et al., The isolation and mapping of19tetra nucleotidemicrosatellite markers in the chicken. Animal Genetics1999,30:183-189
    224. McGhee J.R., Mestecky J., Dertzbaugh M.T., et al., The mucosal immune system: fromfundamental concepts to vaccine development. Vaccine1992,10:75-88.
    225. McQueen H.A., Fantes J., Cross S.H., et al,. CpG islands of chicken are concentrated onmicrochromosomes. Nature genetics1996,12:321-324.
    226. Melloul D., Marshak S., Cerasi E., Regulation of insulin gene transcription. Diabetologia2002,45:309-326.
    227. Meloni R., Albanese V., Ravassard P., et al., A tetranucleotide polymorphic microsatellite,located in the first intron of the tyrosine hydroxylase gene, acts as a transcription regulatoryelement in vitro. Human Molecular Genetics1998,7:423.
    228. Metzgar D., Bytof J., Wills C., Selection against frameshift mutations limits microsatelliteexpansion in coding DNA. Genome Research2000,10:72-80
    229. Meyer M., Gaudieri S., Rhodes D., et al., Cluster of TRIM genes in the human MHC class I regionsharing the B30.2domain. Tissue Antigens2003,61:63-71.
    230. Miao Y.W., Peng M.S., Wu G.S., et al., Chicken domestication: an updated perspective based onmitochondrial genomes. Heredity2012,110:277-282.
    231. Miggiano V., Birgen I., Pink J., The mixed leukocyte reaction in chickens. Evidence for control bythe major histocompatibility complex. European Journal of Immunology1974,4:397-401.
    232. Milinski M., The major histocompatibility complex, sexual selection, and mate choice. Annu. Rev.Ecol. Evol. Syst2006,37:159-186
    233. Miller H.C., Belov K., Daugherty C.H., Characterization of MHC class II genes from an ancientreptile lineage, Sphenodon (tuatara). Immunogenetics2005,57:883-891.
    234. Miller H.C., Belov K., Daugherty C.H., MHC class I genes in the tuatara (Sphenodon spp.):evolution of the MHC in an ancient reptilian order. Molecular Biology and Evolution2006,23:949-956
    235. Miller H.C., Lambert D.M., Gene duplication and gene conversion in class II MHC genes of NewZealand robins (Petroicidae). Immunogenetics2004a,56:178-191.
    236. Miller M.M., Bacon L.D., Hala K., et al., Nomenclature for the chicken major histocompatibility(B and Y) complex. Immunogenetics2004,56:261-279.
    237. Miller M.M., Goto R., Young S., et al., Immunoglobulin variable-region-like domains of diversesequence within the major histocompatibility complex of the chicken. PNAS1991,88:4377-4381.
    238. Miller M.M., Goto R.M., Bernot A., et al., Two MHC class I and two MHC class II genes map tothe chicken Rfp-Y system outside the B complex. PNAS1994,91:4397-4401.
    239. Miller M.M., Goto R.M., Taylor R.L., et al., Assignment of Rfp-Y to the chicken majorhistocompatibility complex/NOR microchromosome and evidence for high-frequencyrecombination associated with the nucleolar organizer region. PNAS1996,93:3958-3962.
    240. Milner C.M., Campbell R.D., Genetic organization of the human MHC class III region. FrontBioscience2001,6:914-926.
    241. Mirkin S.M., Expandable DNA repeats and human disease. Nature2007,447:932-940
    242. Mona S., Crestanello B., Bankhead-Dronnet S., et al.,Disentangling the effects of recombination,selection, and demography on the genetic variation at a major histocompatibility complex class IIgene in the alpine chamois. Molecular Ecology2008,17:4053-4067.
    243. Moran C., Microsatellite repeats in pig (Sus domestica) and chicken (Gallus domesticus) genomes.Journal of Heredity1993,84:274.
    244. Morris K.M., Kirby K., Beatty J.A., et al., Development of MHC-Linked Microsatellite Markers inthe Domestic Cat and Their Use to Evaluate MHC Diversity in Domestic Cats, Cheetahs, and GirLions. Journal of Heredit2014,10.1093/jhered/esu017
    245. Moutou K.A., Koutsogiannouli E.A., Stamatis C., et al., Domestication does not narrow MHCdiversity in Sus scrofa. Immunogenetics2013,65:195-209.
    246. Muir W.M., Wong G.K., Zhang Y., et al,. Genome-wide assessment of worldwide chicken SNPgenetic diversity indicates significant absence of rare alleles in commercial breeds. PNAS2008,105:17312-17317.
    247. Napierala M., Dere R., Vetcher A., Structure-dependent recombination hot spot activity ofGAA-TTC sequences from intron1of the Friedreich's ataxia gene. Journal of BiologicalChemistry2004,279:6444
    248. Nauta M.J., Weissing F.J., Constrains on allele size at microsatellite loci: implications for geneticdifferentiation. Genetics1996,143:1021-1032.
    249. Nei M, Gojobori T., Simple methods for estimating the numbers of synonymous andnonsynonymous nucleotide substitutions. Molecular Biology and Evolution1986,3:418.
    250. Nishibo R.I.M, Shimogi R.I.T, Hayashi T., et al., Molecular evidence for hybridization of speciesin the genus Gallus except for Gallus varius. Animal Genetics2005,36:367-375.
    251. Niskanen A.K., Kennedy L.J., Ruokonen M., et al., Balancing selection and heterozygoteadvantage in major histocompatibility complex loci of the bottlenecked Finnish wolf population.Molecular Evaluation,2014,23:875-89.
    252. Nonaka M., Namikawa C., Kato Y., et al., Major histocompatibility complex gene mapping in theamphibian Xenopus implies a primordial organization. PNAS1997,94:5789.
    253. Norris A.T., Bradley D.G., Cunningham E.P., Parentage and relatedness determination in farmedAtlantic salmon (Salmo salar) using microsatellite markers. Aquaculture2000,182:73-83.
    254. O’ Neill A.M., Livant E.J., Ewald S.J., The chicken BF1(classical MHC class I) gene showsevidence of selection for diversity in expression and in promoter and signal peptide regions.Immunogenetics2009,61:289-302.
    255. Ohta T., Kimura M., The model of mutation appropriate to estimate the number ofelectrophoretically detectable alleles in a genetic population. Genetic Research1973,22:201-204.
    256. Ohta Y., Goetz W., Hossain M.Z., Ancestral organization of the MHC revealed in the amphibianXenopus. The Journal of Immunology2006,176:3674.
    257. Oliver M.K., Telfer S., Piertney S.B., Major histocompatibility complex (MHC) heterozygotesuperiority to natural multi-parasite infections in the water vole (Arvicola terrestris). Proceedingsof the Royal Society of London Series B: Biological Science2009,276:1119-1128.
    258. O'reilly P., Canino M., Bailey K., et al., Inverse relationship between FST and microsatellitepolymorphism in the marine fish, walleye pollock (Theragra chalcogramma): implications forresolving weak population structure. Molecular Ecology2004,13:1799-1814
    259. Owen J.P., Delany M.E., Mullens B.A., MHC haplotype involvement in avian resistance to anectoparasite. Immunogenetics2008,60:621-631.
    260. Park S.D.E., Trypanotolerance in West African Cattle and the Population Genetic Effects ofSelection [Ph.D. thesis] University of Dublin.2001
    261. Parker H.G., Kim L.V., Sutter N.B., Genetic structure of the purebred domestic dog. Science2004,304:1160-1164.
    262. Paterson S., Evidence for Balancing Selection at the Major Histocompatibility Complex in aFree-Living Ruminant. The American Genetic Association1998,89:289-294.
    263. Pemberton J., Wild pedigrees: the way forward. Proceedings of the Royal Society B: BiologicalSciences2008,275:613.
    264. Penn D.J., Damjanovich K., Potts W.K., MHC heterozygosity confers a selective advantage againstmultiple-strain infections. PNAS2002,99:11260-11264.
    265. Pevzner I., Trowbridge C.L., Nordskog A., B-comples genetic control of immune response toHSA,(T, G)‐A–L, GT and other substances in chicken. International Journal of Immunogenetics1979,6:453-460.
    266. Pharr G.T., Dodgson J.B., Hunt H.D., et al., Class II MHC cDNAs in15I5B-congenic chickens.Immunogenetics1998,47:350-354.
    267. Piertney S., Oliver M., The evolutionary ecology of the major histocompatibility complex.Heredity2005,96:7-21.
    268. Piertney S.B., Oliver M.K., The evolutionary ecology of the major histocompatibility complex.Heredity2006,96:7-21.
    269. Pinard, M.H., Janss L., Maatman R., et al., Effect of divergent selection for immune responsivenessand of major histocompatibility complex on resistance to Marek’ s disease in chickens. PoultryScience1993,72:391-402.
    270. Pink J., Droege W., Hala K., et al., A three-locus model for the chicken major histocompatibilitycomplex. Immunogenetics1977,5:203-216.
    271. Plachy J., Pink J., Hala K., Biology of the chicken MHC (B complex). Critical Reviews inImmunology1992,12:47-49.
    272. Ploegh H., Watts C., Antigen recognition. Current opinion in immunology1998,10:57.
    273. Ponsuksili S., Wimme R.S.K., Schmoll F., et al., Comparison of multilocus DNA fingerprints andmicrosatellites in an estimate of genetic distance in chicken. Journal of Hereditary1999,90:656-659.
    274. Pritchard J.K., Stephens M., Donnerly P., Inference of Population Structure Using MultilocusGenotype Data. Genetics2000,155:945-959.
    275. Qu Y.H., Ericson P.G.P., Lei F.M., et al., Postglacial colonization of the Tibetan plateau inferredfrom the matrilineal genetic structure of the endemic red-necked snow finch, Pyrgilauda ruficollis.Molecular Ecology2005,14:1767-1781
    276. Rakus K.L., Wiegertjes G.F., Stet R.J.M, et al., Polymorphism ofmajor histocompatibility complexclass II B genes in different lines of the common carp (Cyprinus carpio). Aquatic Living Resources2003,16:432~437.
    277. Ramstad K., Woody C., Sage G., et al., Founding events influence genetic population structure ofsockeye salmon (Oncorhynchus nerka) in Lake Clark, Alaska. Molecular ecology2004,13:277-290
    278. Reed D.H., Frankham R., Correlation between fitness and genetic diversity. Conservation Biology2003,17:230-237.
    279. Rich A., Nordheim A., Wang A.H.J., The chemistry and biology of left-handed Z-DNA. AnnualReview of Biochemistry1984,53:791-846
    280. Richardson D.S., Komdeur J., Burke, T.A., et al., MHC based patterns of social and extra pair matechoice in the Seychelles warbler. Proceedings of the Royal Society of London Series B: BiologicalScience2005,272:759–767.
    281. Richardson D.S., Westerdahl H., MHC diversity in two Acrocephalus species: the outbred greatreed warbler and the inbred Seychelles warbler. Molecular Ecology2003,12:3523-3529.
    282. Richman A., Evolution of balanced genetic polymorphism. Molecular Ecology2000,9:1953-1963.
    283. Romanov M.N., Tuttle E.M., Houck M.L., et al., The value of avian genomics to the conservationof wildlife. BMC Genomics2009,10: S10.
    284. Romanov M.N., Weigend S., Analysis of genetic relationships between various populations ofdomestic and jungle fowlusing microsatellite markers. Poultry Science2001,80:1057-1063.
    285. Rosel P.E., France S.C., Wang J.Y., et al., Genetic structure of harbour porpoise Phocoenaphocoena populations in the northwest Atlantic based on mitochondrial and nuclearmarkers.Molecular Ecology,1999: S41-54.
    286. Rosenber G.N.A, Burke T., Elo K., et al., Empirical evaluation of genetic clustering methods usingmultilocus genotypes from20chicken breeds.Genetics2001,159:699-713.
    287. Rosenberg N.A., Distruct: a program for the graphical display of population structure. MolecularEcology Notes2004,4:137-138.
    288. Rothschild M., From a sow’s ear to a silk purse: real progress in porcine genomics. Cytogeneticand Genome Research2003,102:95-99.
    289. Rousset F., GENEPOP'007: a complete reimplementation of the GENEPOP software for Windowsand Linux. Molecular Ecology Notes2008,8:103-106.
    290. Rubinsztein D.C., Amos W., Leggo J., et al., Microsatellite evolution-evidence for directionalityand variation in rate betweem species. Nature Genetics1995,10:337-343.
    291. Salomonsen J., Marston D., Avila D., et al., The properties of the single chicken MHC classicalclass II a chain (B-LA) gene indicate an ancient origin for the DR/E-like isotype of class IImolecules. Immunogenetics2003,55:605-614.
    292. Schierman L.W., Nordskog A.W., Influence of the B Blood Group-histo-compatibility Locus inChickens on a Graft-versus-Host Reaction. Nature1963,197:511-512.
    293. Schierman L.W., Nordskog A.W., Relationship of blood type to histocompatibility in chickens.Science1961,134:1008-1009.
    294. Schierup M. H., Vekemans X., Charlesworth D., The effect of subdivision on variation atmulti-allelic loci under balancing selection. Genetic Research2000,76:51-62.
    295. Schl tterer C., Evolutionary dynamics of microsatellite DNA. Chromosoma2000,109:365-371.
    296. Schmid M., Nanda I., Hoehn H., et al., Second report on chicken genes and chromosomes.Cytogenetic and Genome Research2005,109:415-479.
    297. Scribner K., Pearce J.M., Microsatellites: evolutionary and methodological background andempirical applications at individual, population, and phylogenetic levels. Molecular Methods inEcology2000,134:235-273
    298. Sena L., Schnelder M.P.C., Bernlg B., et al., Polymorphisms in MHC-DRA and DRB allelesofwater buffalo (Bubalus bubails) reveal different features from cattleDR alleles. Animal Genetics2002,34:1-10.
    299. Shafer A.B., Fan C.W., C té S.D., et al.,(Lack of) genetic diversity in immune genes predatesglacial isolation in the North American mountain goat (Oreamnos americanus). Journal of Heredity2012,103(3):371-379.
    300. Shaw I., Powell T.J., Marston D.A., et al., Different evolutionary histories of the two classical classI genes BF1and BF2illustrate drift and selection within the stable MHC haplotypes of chickens.The Journal of Immunology2007,178:5744-5752.
    301. Shaw T., Briles W.E., Goto R.M., et al., Extended gene map reveals tripartite motif, C-type lectin,and Ig superfamily type genes within a subregion of the chicken MHC-B affecting infectiousdisease. The Journal of Immunology2007,178:7162-7172.
    302. Shaw T., Shimizu S., Hosomichi K., et al., Comparative genomic analysis of two avian (quail andchicken) MHC regions. The Journal of Immunology2004,172:6751-6763.
    303. Shiina T., Shimizu S., Hosomichi K., Comparative genomic analysis of two avian (quail andchicken) MHC regions. The Journal of Immunology2004,172:6751.
    304. Shriver M.D., Jin L., Chakraborty R., et al., VNTR allele frequency distribution under the stepwisemutation model: a computer approach. Genetics1993,134:983-993.
    305. Sia E.A., Kokoska R.J., Dominska M., Microsatellite instability in yeast: dependence on repeatunit size and DNA mismatch repair genes. Molecular and Cellular Biology1997,17:2851.
    306. Silva P., Guan X., Ho-Shing O., et al., Mitochondrial DNA-based analysis of genetic variation andrelatedness among Sri Lankan indigenous chickens and the Ceylon jungle-fowl (Gallus lafayetti).Animal Genetics2009,40:1-9.
    307. Sironi L., Williams J.L., Stella A., et al., Genomic study of the response of chicken to highlypathogenic avian influenza virus. BMC Proceedings2011,5: S25.
    308. Skjdt K., Koch C., Crone M., et al., Analysis of chickens for recombination within the MHC(B-complex). Tissue Antigens1985,25:278-282.
    309. Slatkin M., A measure of population subdivision based on microsatellite allele frequencies.Genetics1995,139:457-462.
    310. Smith C.A., Roeszler.K.N., Ohnesorg T., et al., The avian Z-linked gene DMRT1is required formale sex determination in the chicken. Nature2009,461:267-71.
    311. Solinhac R., Leroux S., Galkina S., et al., Integrative mapping analysis of chickenmicrochromosome16organization. BMC genomics2010,11:616-627.
    312. Sommer S., Effects of habitat fragmentation and changes of dispersal behaviour after a recentpopulation decline on the genetic variability of non-coding and coding DNA of a monogamousMalagasy rodent. Molecular Ecology2003,12:2845-2851.
    313. Sommer S., The importance of immune gene variability (MHC) in evolutionary ecology andconservation. Frontiers in Zoology2005,2:16.
    314. Spurgin L.G., Richardson D.S., How pathogens drive genetic diversity: MHC, mechanisms andmisunderstandings. Proceeding Biology Science.2010,277:979-988.
    315. Stiglec R., Kohn M., Fong J., et al., Frequency of cancer genes on the chicken z chromosome andits human homologues: implications for sex chromosome evolutio. Comparative and FunctionalGenomics2007,8:43070.
    316. Storey A.A., Athens J.S., Bryant D., et al., Investigating the Global Dispersal of Chickens inPrehistory Using Ancient Mitochondrial DNA Signatures. PLoS ONE2012,7: e39171.
    317. Sutton J.T., Nakagawa S., Robertson B.C., et al., Disentangling the roles of natural selection andgentic drift in shaping variation at Mhc immunity genes. Molecular Ecology2011,20:4408-4420.
    318. Tadano R., Nishibo R.I.M., Nagasaka N., et al., Assessing genetic diversity and populationstructure for commercial chicken lines based on forty microsatellite analyses. Poultry Science2007,86:2301-2308.
    319. Tadano R., Sekino M., Nishibo R.I.M., et al., Microsatellite marker analysis for the geneticrelationships among Japanese long-tailed chicken breeds. Poultry Science2007,86:460-469.
    320. Takahashi H., Nirasawa K., Nagamine Y., Genetic relationships among Japanese native breeds ofchicken based on microsatellite DNA polymorphisms. Journal of Heredity1998,89:543-546.
    321. Tautz D., Renz M., Simple sequences are ubiquitous repetitive components of eukaryotic genomes.Nucleic Acids Research1984,12:4127-4138.
    322. Taylor S.S., Jenkins D.A., Arcese P., Loss of Mhc and Neutral Variation in Peary Caribou: GeneticDrift Is Not Mitigated by Balancing Selection or Exacerbated by Mhc Allele Distributions. PLoSONE2012,7: e36748.
    323. Terado T., Okamura K., Ohta Y., et al., Molecular cloning of C4gene and identification of the classIII complement region in the shark MHC. Journal of Immunology2003,171:2461-2466.
    324. Tollenaere C., Ivanova S., Duplantier J.M., Contrasted Patterns of Selection on MHC-LinkedMicrosatellites in Natural Populations of the Malagasy Plague Reservoir. PLoS ONE2012,7:e32814.
    325. Tóth G., Gáspári Z., Jurka J., Microsatellites in different eukaryotic genomes: survey and analysis.Genome Research2000,10:967-981.
    326. Traul D.L., Li H., Dasgupta N., et al,. Resistance to malignant catarrhal fever in America bison(Bison bison) is associated with MHC class Iia polymorphisms. Animal Genetics2007,38:141-146.
    327. Tregenza T., Wedell N., Genetic compatibility, mate choice and patterns of parentage: invitedreview. Molecular ecology2000,9:1013-1027.
    328. Trowsdale J., Parham P., Mini-review: Defense strategies and immunity-related genes. EuropeanJournal of immunology2004,34:7-17.
    329. Vainio O., Koch C., Toivanen A., BL antigens (class II) of the chicken major histocompatibilitycomplex control TB cell interaction. Immunogenetics1984,19:131-140.
    330. Valdes A.M., Slakin M., Freimert N.B., Allele frequencies in microsatellite loci: the stepwisemutation model revisit. Genetics1993,133:737-749.
    331. Van der Walt J.M., Nel L.H., Hoelzel A.R., Characterization Of major histocompatibility complexDRB diversity in the endemic South African antelope Damaliscus pygargus: a comparison in twosub species with different demographic histories. Molecular Ecology2001,10:1679-1688.
    332. van Oosterhout C., Joyce D.A., Cummings S.M., Balancing selection, random genetic drift andgenetic variation at the major histocompatibility complex (MHC) in two wide population ofguppies (Poecilia reticulata). Evolution2006,60:2562-2574.
    333. Vanhala T., Tuiskul haavisto M., Elo K., Evaluation of genetic variability and genetic distancesbetween eight chicken lines using microsatellite Markers. Poultry Science1998,77:783-790.
    334. Varshney R.K., Thiel T., Stein N., In silico analysis on frequency and distribution of microsatellitesin ESTs of some cereal species. Cellular and Molecular Biology Letters2002,7:537-546.
    335. Vernesi C., Crestanello B., Pecchioli E., The genetic impact of demographic decline and reintroduction in the wild boar (Sus scrofa): a microsatellite analysis. Molecular Ecology2003,12:585-595.
    336. Wallny H.J., Avila D., Hunt L.G., et al., Peptide motifs of the single dominantly expressed class Imolecule explain the striking MHC-determined response to Rous sarcoma virus in chickens. PNAS2006,103:1434-1439.
    337. Wan Q., Zhu L., Wu H., Major histocompatibility complex class II variation in the giant panda(Ailuropoda melanoleuca). Molecular Ecology2006,15:2441-2450.
    338. Wan Q.H., Zeng C.J., Ni X.W., et al., Giant panda genomic data provide insight into thebirth-and-death process of mammalian major histocompatibility complex class II genes. PLoS One2009,4:e4147.
    339. Wang Y., Qiu M., Yang J., et al., Sequence variations of the MHC class I gene exon2and exon3between infected and uninfected chickens challenged with Marek's disease virus. Infection,Genetics and Evolution2014,21:103-9.
    340. Warren W.C., Clayton D.F., Ellegren H., et al.,The genome of a songbird. Nature2001,464:757-762
    341. Wedekind C., Walker M., Portmann J., et al., MHC-linked susceptibility to a bacterial infection, butno MHC-linked cryptic female choice in whitefish. Journal of Evolutionary Biology2004,17:11~18.
    342. Wedekind C., Walker M., Little T., The course of malaria in mice: Major histocompatibilitycomplex (MHC) effects, but no general MHC heterozygote advantage in single-strain infections.Genetics2005,170:1427-1430.
    343. Weigend S., Groeneveld L., Eding H., Clustering of chicken populations from various continentsrevealed by molecular markers. Genetics and Biodiversity, XIIIth European PoultryConference.2008.
    344. Welinder K.G., Jespersen H.M., Walther-Rasmussen J., et al., Amino acid sequences and structuresof chicken and turkey beta2-microglobulin. Molecular Immunology1991,28:177-182.
    345. Wittzell H., Bernot A., Auffray C., Concerted evolution of two Mhc class II B loci in pheasants anddomestic chickens. Molecular Biology and Evolution1999,6:479-490.
    346. Wong G.K., Liu B., Wang J., et al., A genetic variation map for chicken with2.8millionsingle-nucleotide polymorphisms. Nature2004,432:717-722.
    347. Worley K., Collet J., Spurgin L.G., et al., MHC heterozygosity and survival in red junglefowl.Molecular Ecology2010,19:3064-3075.
    348. Worley K., Gillingham M., Jensen P., et al., Single locus typing of MHC class I and class II B lociin a population of red jungle fowl. Immunogenetics2008,60:233-247.
    349. Wright S., Evolution and the genetics of populations. Vol.4: Variability within and among naturalpopulations. University of Chicago Press, Chicago,1978
    350. Xu Q., Fang S., Wang Z., Microsatellite analysis of genetic diversity in the Chinese alligator(Alligator sinensis) Changxing captive population. Conservation Genetics2005,6:941-951.
    351. Xu X., Peng M., Fang Z.A., et al., The direction of microsatellite mutations is dependent uponallele length. Nature genetics2000,24:396-399.
    352. Ye X., Avendano S., Dekkers J.C.M., et al., Association of twelve immune-related genes withperformance of three broiler lines in two different hygiene environments. Poultry science2006,85:1555-1569.
    353. Yencho G., Cohen M., Byrne P., Applications of tagging and mapping insect resistance loci inplants. Annual Review of Entomology2000,45:393-422
    354. Yue G.H., Ho M.Y., Orban L., et al., Microsatellites within genes and ESTs of common carp andtheir applicability in silver crucian carp. Aquaculture2004,234:85-98
    355. Yuhki N., Mullikin J.C., Beck T., Sequences, annotation and single nucleotide polymorphism of themajor histocompatibility complex in the domestic cat. PLoS One2008,3: e2674.
    356. Zane L., Bargelloni L., Patarnello T., Strategies for microsatellite isolation: a review. MolecularEcology2002,11:1-16.
    357. Zhan A., Bao Z., Yao B., et al., Polymorphic microsatellite markers in the Zhikong scallopChlamys farreri. Molecular Ecology Notes2006,6:127-129.
    358. Zhang D.X., Hewitt G.M., Nuclear DNA analyses in genetic studies of populations: practice,problems and prospects. Molecular Ecology2003,12:563-584.
    359. Zhang H., Liu S.H., Zhang Q., Fine-mapping of quantitative trait loci for body weight and bonetraits and positional cloning of the RBI gene in chicken. Journal of Animal Breeding and Genetics2011a,128:366-375.
    360. Zhang X.Q., Ln X.M., Yang Y.H., et al., Population genetic variability of microsatellitepolymorphisms and RAPDs in Chinese chicken breeds in Guangdong. Acta Genetica Sinica1998,25:112-119.
    361. Zhang Y., Vankan D., Barker J., et al., Genetic differentiation of water buffalo (Bubalus bubalis)populations in China, Nepal and south-east Asia: inferences on the region of domestication of theswamp buffalo. Animal Genetics2011b,42:366-377.
    362. Zhang Y.W., Zhang Y.P., Microsatellites and its application. Zoological Research2001,22:315-320.
    363. Zhu L., Ruan X.D., Ge Y.F., et al., Low major histocompatibility complex class II DQA diversity inthe Giant Panda (Ailuropoda melanoleuca). BMC Genetics2007,8:29.
    364. Zhu L., Zhang S., Gu X., et al., Significant genetic boundaries and spatial dynamics of giantpandas occupying rragmented habitat across southwest China. Molecular Ecology2011,20:1122-1132..
    365. Zhu Q., Li L., Genetic diversity in Sichuan black bone chicken lines as revealed by microsatelliteDNA markers. Sichuan Animal&Veterinary Science2002,29:26-29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700