十八烷酸纳米结构的制备及其热学性质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源问题是制约经济发展的瓶颈,对于新型能源和节能技术的研究得到了人们的重视,相变储能技术可用于解决能源在供求时间上的不匹配,相变材料由于具有储能和控温能力,成为储能技术研究的热点。有机相变材料不存在过冷和相分离的问题,且相变潜热较大,但是热导率低和固-液相变时发生液体泄漏是存在的主要问题,本论文结合纳米技术,研究相变材料纳米尺度下的热学行为,有效解决了有机相变材料在相变储能中存在的问题。本论文以十八烷酸为研究对象,制备了不同形貌的十八烷酸结构,提高了其热学性质。
     (1)利用模板作用制备了不同形貌的十八烷酸的纳米结构,实验中未引入其他的物质,避免了基体对热学测试的影响,单独研究纳米尺度下的十八烷酸热学性质的变化。实验制备了不同形貌的十八烷酸纳米结构,六方片、四方片、团簇、树枝、纳米线等形貌,通过SEM、EDS、FT-IR、XRD对其进行了表征。纳米化的十八烷酸与传统的十八烷酸相比,热学性质有所变化,DSC数据表明纳米化后的相变温度略有降低,但有的也有所升高;热导数据表明纳米化后的热导率有所提高。
     (2)制备了芯-壳结构的二氧化硅包覆十八烷酸的纳米胶囊,可以有效解决固-液相变时发生液体泄漏的问题。实验利用微乳液的方法,形成水包油型微乳液,然后加入苯基三甲氧基硅烷,利用水解-缩合作用包覆在十八烷酸的表面,形成芯-壳结构的纳米胶囊。利用SEM、TEM、FT-IR、XRD等进行了表征,对纳米胶囊进行了热学性质的测试,DSC数据表明纳米胶囊比传统的十八烷酸熔化温度升高了15℃,凝固温度升高了12℃,但是热焓值并没有减小。对不同的实验条件进行了研究,研究了不同芯-壳的配比、不同水解和缩合时间、不同温度等对纳米胶囊的影响,得出最佳的实验条件。
Energy crisis is the bottleneck of restricting economic development, so the study for new energy resources and energy saving technology got the attention of people, energy storage technology with phase change materials can be used to solve the supply and demand of energy which does not match in with time, phase change materials can store energy and control temperature, which make they become the research hot spot on energy storage technology. Organic phase change materials do not existed supercooling and phase separation problems, and they have high latent heat, but low thermal conductivity and liquid leakage is the main problem of organic phase change materials. We make use of the nano technology in this paper, it effectively resolved the existed problems of organic phase change materials in store energy process. We chose the octadecanoic acid as the research object, we prepared different morphologies of octadecanoic acid in nanometer scale and core-shell nanocapsule structure. The thermal performance of phase change materials under the nanometer scale was enhanced.
     (1) We use the template method to prepare nano structure octadecanoic acid with different morphologies, without other materials, avoiding the thermal test influence of matrix, we can independently study the thermal properties of octadecanoic acid in the nanometer scale. We synthesized several different morphologies of octadecanoic acid, such as hexagonal piece, square piece, cluster, branche and nanowire, the properties of the nano octadecanoic acid were characterized by SEM, EDS, FT-IR and XRD. From the thermal results, we compared the nano octadecanoic acid to the traditional octadecanoic acid, thermal properties were changed. DSC data showed that the phase transition temperature after nanometer was slightly lower, but some were higher; Thermal conductivity data showed that the thermal conductivity was improved in nanometer scale.
     (2) We prepared core-shell octadecanoic acid nanocapsule which was encapsulated by silica, the nanocapsule structure can effectively solve the leakage problem when liquid-solid phase change process occurs. We use the micro emulsion method to prepare the core-shell structure, firstly, the materials were formed into oil in water microemulsion, and then PTMS was added into the microemulsion dropwisely, the hydrolysis and condensation procedures occurred on the surface of octadecanoic acid, finally octadecanoic acid was wrapped by silica, the core-shell nanocapsul was synthesized successfully. The nanocapsule was analyzed by SEM, TEM, FT-IR, XRD, and the thermal properties were tested by DSC tester, DSC results showed that melting temperature and solidification temperature of nanocapsule increased 15℃and 12℃respectively than traditional octadecanoic acid, but the thermal enthalpy didn't decreased. We study the influence to the nanocapsule of different experimental conditions, different core-shell ratio, different hydrolysis and condensation time, different temperature, which obtains the best experimental conditions.
引文
[1] Bakos GC. Improved energy management method for auxiliary electrical energy saving in a passive-solar-heated residence[J]. Energy and Buildings, 2002,34(7): 699-703.
    [2] Keil C, Plura S, Radspieler M, et al. Application of customized absorption heat pumps for utilization of low-grade heat sources[J]. Applied Thermal Engineering, 2008,28(16): 2070-2076.
    [3]刘萍,崔大鹏,胡小勇.关于建筑节能的思考[J].山西建筑, 2009,167: 1.
    [4] Alkilani MM, Sopian K, Alghoul MA, et al. Review of solar air collectors with thermal storage units[J]. Renewable & Sustainable Energy Reviews, 2011,15(3): 1476-1490.
    [5] Bal LM, Satya S, Naik SN. Solar dryer with thermal energy storage systems for drying agricultural food products: A review[J]. Renewable & Sustainable Energy Reviews, 2010,14(8): 2298-2314.
    [6] Sethi VP, Sharma SK. Survey and evaluation of heating technologies for worldwide agricultural greenhouse applications[J]. Solar Energy, 2008,82(9): 832-859.
    [7]姜勇,丁恩勇,黎国康.一种新型的相变储能功能高分子材料[J].高分子材料科学与工程, 2001,17(3): 173-175.
    [8]秦培煜,周世权.能源材料的研究现状及发展前景[J].节能, 2002,5: 5-7.
    [9] Zalba B, Marin JM, Cabeza LF, et al. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications[J]. Applied Thermal Engineering, 2003,23(3): 251-283.
    [10]戴或,唐黎明.相变储热材料研究进展[J].化学世界, 2001,12: 662-665.
    [11] Khudhair AM, Farid MM. A review on energy conservation in building applications with thermal storage by latent heat using phase change materials[J]. Energy Conversion and Management, 2004,45(2): 263-275.
    [12] Kuznik F, David D, Johannes K, et al. A review on phase change materials integrated in building walls[J]. Renewable & Sustainable Energy Reviews, 2011,15(1): 379-391.
    [13] Li JL, Xue P, He H, et al. Preparation and application effects of a novel form-stable phase change material as the thermal storage layer of an electric floor heating system[J]. Energy and Buildings, 2009,41(8): 871-880.
    [14] Sharma A, Chen CR, Murty VVS, et al. Solar cooker with latent heat storage systems: A review[J]. Renewable & Sustainable Energy Reviews, 2009,13(6-7): 1599-1605.
    [15] Kandasamy R, Wang x. Application of phase change materials in thermal management of electronics [J]. Applied Thermal Engineering, 2007,27: 2822-2832.
    [16] Mondal S. Phase change materials for smart textiles– An overview[J]. Applied ThermalEngineering, 2008,28(11-12): 1536-1550.
    [17] Quanying Y, Chen L, Lin Z. Experimental study on the thermal storage performance and preparation of paraffin mixtures used in the phase change wall[J]. Solar Energy Materials and Solar Cells, 2008,92(11): 1526-1532.
    [18] Zhu N, Ma Z, Wang S. Dynamic characteristics and energy performance of buildings using phase change materials: A review[J]. Energy Conversion and Management, 2009,50(12): 3169-3181.
    [19] Hammou ZA, Lacroix M. A new PCM storage system for managing simultaneously solar and electric energy[J]. Energy and Buildings, 2006,38(3): 258-265.
    [20] Tyagi VV, Buddhi D. PCM thermal storage in buildings: A state of art[J]. Renewable & Sustainable Energy Reviews, 2007,11(6): 1146-1166.
    [21]张兴祥.蓄热调温纤维及纺织品简介[J].纺织信息周刊, 2005,22: 14.
    [22]陈英爱,汪学英.相变储能材料及其应用[J].洛阳工业高等专科学校学报, 2002,12(4): 7-9.
    [23] Mondal S. Phase change materials for smart textiles - An overview[J]. Applied Thermal Engineering, 2008,28(11-12): 1536-1550.
    [24]张奕,张小松.有机相变材料储能的研究和进展[J].太阳能学报, 2006,27(7): 725-730.
    [25] Karaipekli A, Sari A, Kaygusuz K. Thermal conductivity improvement of stearic acid using expanded graphite and carbon fiber for energy storage applications[J]. Renewable Energy, 2007,32(13): 2201-2210.
    [26] Sari A, Kaygusuz K. Thermal energy storage system using stearic acid as a phase change material[J]. Solar Energy, 2001,71(6): 365-376.
    [27]方晓明,张正国,文磊.硬脂酸膨润土纳米复合相变储热材料的制备、结构与性能[J].化工学报, 2004,55(4): 678-681.
    [28]蹇守卫,马保国,金磊. SiO2/十八烷酸相变微胶囊的制备与表征[J].功能材料, 2008,12(39): 2025-2031.
    [29]席国喜,杨文洁.硬脂酸_改性硅藻土复合相变储能材料的制备及性能研究[J].材料导报, 2009,23(8): 45-50.
    [30]薛霞,于游,秦梅.硬脂酸/二氧化硅复合相变材料的制备[J].曲阜师范大学学报, 2006,32(1): 98-101.
    [31]张正国,黄戈峰,方晓明.硬脂酸/二氧化硅复合相变储热材料制备及性能研究[J].化学工程, 2005,33(4): 34-43.
    [32]王立久,孟多.有机相变材料的建筑节能应用和研究[J].材料导报, 2009,23(1): 97-100.
    [33] Cabeza LF, Castellon C, Nogues M, et al. Use of microencapsulated PCM in concrete wallsfor energy savings[J]. Energy and Buildings, 2007,39(2): 113-119.
    [34] Hawlader MNA, Uddin MS, Khin MM. Microencapsulated PCM thermal-energy storage system[J]. Applied Energy, 2003,74(1-2): 195-202.
    [35] Sanchez L, Sanchez P, de Lucas A, et al. Micro encapsulation of PCMs with a polystyrene shell[J]. Colloid and Polymer Science, 2007,285(12): 1377-1385.
    [36] Shin Y, Yoo DI, Son K. Development of thermoregulating textile materials with microencapsulated phase change materials (PCM). II. Preparation and application of PCM microcapsules[J]. Journal of Applied Polymer Science, 2005,96(6): 2005-2010.
    [37] Alkan C, Sari A, Karaipekli A, et al. Preparation, characterization, and thermal properties of microencapsulated phase change material for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2009,93(1): 143-147.
    [38] Chen BJ, Wang X, Zeng RL, et al. An experimental study of convective heat transfer with microencapsulated phase change material suspension: Laminar flow in a circular tube under constant heat flux[J]. Experimental Thermal and Fluid Science, 2008,32(8): 1638-1646.
    [39] Rao Y, Dammel F, Stephan P, et al. Convective heat transfer characteristics of microencapsulated phase change material suspensions in minichannels[J]. Heat and Mass Transfer, 2007,44(2): 175-186.
    [40] Zhang YW, Faghri A. Analysis of Forced-Convection Heat-Transfer in Microencapsulated Phase-Change Material Suspensions[J]. Journal of Thermophysics and Heat Transfer, 1995,9(4): 727-732.
    [41] Lee T, Hawes DW, Banu D. Control aspects of latent heat storage and recovery in concrete[J]. Solar Energy and Solar Cells, 2000,62: 217-237.
    [42] Shin Y, Yoo D-I, Son K. Development of thermoregulating textile materials with microencapsulated phase change materials (PCM). II. Preparation and application of PCM microcapsules[J]. Journal of Applied Polymer Science, 2005,96(6): 2005-2010.
    [43] Nelson G. Application of microencapsulation in textiles[J]. International Journal of Pharmaceutics, 2002,242: 55-62.
    [44] Farid M. A review on phase change energy storage: materials and applications[J]. Energy Conversion and Management, 2004,45(9-10): 1597-1615.
    [45] Schossig P, Henning HM, Gschwander S, et al. Micro-encapsulated phase-change materials integrated into construction materials[J]. Solar Energy Materials and Solar Cells, 2005,89(2-3): 297-306.
    [46]袁文辉,刘都树,李莉.微胶囊相变材料的制备与表征[J].华南理工大学学报(自然科学版), 2007,35(7): 46-51.
    [47] Choi JK, Lee JG, Kim JH, et al. Preparation of microcapsules containing phase change materials as heat transfer media by in-situ polymerization[J]. Journal of Industrial and Engineering Chemistry, 2001,7(6): 358-362.
    [48]樊耀峰,张兴祥,王学晨.相变材料纳米胶囊的制备与性能[J].高分子材料科学与工程, 2005,21(1): 288-292.
    [49]周建伟,黄艳芹,黄建新.纳米胶囊相变材料的制备及性能研究[J].化学工程师, 2008,8: 3-6.
    [50]王立新,苏俊峰,任丽.一种蜜胺树脂为壁材的相变储热微胶囊致密性研究[J].精细化工, 2003,20(12): 705-708.
    [51] Su J-F, Wang L-X, Ren L. Preparation and characterization of double-MF shell microPCMs used in building materials[J]. Journal of Applied Polymer Science, 2005,97(5): 1755-1762.
    [52] Zhang X, Fan Y, Tao X, et al. Crystallization and prevention of supercooling of microencapsulated -alkanes[J]. Journal of Colloid and Interface Science, 2005,281(2): 299-306.
    [53]方玉堂,匡胜严,张正国.纳米胶囊相变材料的制备[J].化工学报, 2007,58(3): 722-726.
    [54] Park SJ, Kim KS, Hong SK. Preparation and thermal properties of polystyrene nanoparticles containing phase change materials as thermal storage medium[J]. Polymer(Korea), 2005,29(1): 8-13.
    [55] Bouchemal K. Synthesis and characterization of polyurethane and poly(ether urethane) nanocapsules using a new technique of interfacial polycondensation combined to spontaneous emulsification[J]. International Journal of Pharmaceutics, 2004,269(1): 89-100.
    [56] Zou GL, Tan ZC, Lan XZ, et al. Preparation and characterization of microencapsulated hexadecane used for thermal energy storage[J]. Chinese Chemical Letters, 2004,15(6): 729-732.
    [57] Torini L, Argillier JF, Zydowicz N. Interfacial polycondensation encapsulation in miniemulsion[J]. Macromolecules, 2005,38: 3225-3236.
    [58] Montasser I, Fessi H, Briancon S, et al. New approach of the preparation of nanocapsules by an interfacial polycondensation reaction[J]. Polymer Bulletin, 2003,50(3): 169-174.
    [59]时雨荃,蔡明健.纳米复合膜相变微胶囊的制备及性质[J].化学工业与工程, 2006,23(3): 224-227.
    [60] Luo YW, Zhou XD. Nanoencapsulation of a hydrophobic compound by a miniemulsion polymerization process[J]. Joural of Polymer Science: Part A: Polymer Chemistry, 2004,42: 2145-2154.
    [61] Tiarks F, Landfester K, Antonietti M. Silica nanoparticles as surfactants and fillers for latexes made by miniemulsion polymerization[J]. Langmuir, 2001,17(19): 5775-5780.
    [62] Wong MS, Cha JN, Choi KS, et al. Assembly of nanoparticles into hollow spheres usingblock copolypeptides[J]. Nano Letters, 2002,2(6): 583-587.
    [63]王武生,曾俊,阮德礼.原位聚合合成纳米胶囊[J].高分子材料科学与工程, 2001,17(4): 34-36.
    [64]缪春燕,褚晓东,姚有为.复合固液相变储能微球的制备[J].功能材料, 2008,10(39): 1681-1684.
    [65]秦鹏华,杨睿,张寅平.定形相变材料的热性能[J].清华大学学报, 2003,43(6): 833-835.
    [66] Zhang D, Tian S, Xiao D. Experimental study on the phase change behavior of phase change material confined in pores[J]. Solar Energy, 2007,81(5): 653-660.
    [67] Li WD, Ding EY. Preparation and characterization of cross-linking PEG/MDI/PE copolymer as solid-solid phase change heat storage material[J]. Solar Energy Materials and Solar Cells, 2007,91(9): 764-768.
    [68] Wang WL, Yang XX, Fang YT, et al. Preparation and performance of form-stable polyethylene glycol/silicon dioxide composites as solid-liquid phase change materials[J]. Applied Energy, 2009,86(2): 170-174.
    [69] Cao Q, Liu PS. Crystalline-amorphous phase transition of hyperbranched polyurethane phase change materials for energy storage[J]. Journal of Materials Science, 2007,42(14): 5661-5665.
    [70] Karaipekli A, Sari A. Capric-myristic acid/expanded perlite composite as form-stable phase change material for latent heat thermal energy storage[J]. Renewable Energy, 2008,33(12): 2599-2605.
    [71]谭海军,潘春跃,于典. PNIPAm凝胶为载体的复合相变储热材料的制备和性能[J].功能材料, 2008,12(39): 2015-2021.
    [72] Hadjieva M, Stoykov R, Filipova T. Composite salt-hydrate concrete system for building energy storage[J]. Renewable Energy, 2000,19(1-2): 111-115.
    [73]姜勇,丁恩勇,梨国康.化学法和共混法制备的PEG/CDA相变材料的性能比较----储热性能与链结构的关系[J].纤维素科学与技术, 2000,8(1): 17-25.
    [74]姜勇,丁恩勇,杨玉芹.化学法和共混法制备的PEG/CDA相变材料的性能比较----微相结构与储热性能的关系[J].纤维素科学与技术, 2000,8(2): 36-41.
    [75]张翀,陈中华,张正国.有机/无机纳米复合相变储能材料的制备[J].高分子材料科学与工程, 2001,17(5): 137-143.
    [76] Cai Y, Hu Y, Song L, et al. Preparation and characterizations of HDPE–EVA alloy/OMT nanocomposites/paraffin compounds as a shape stabilized phase change thermal energy storage material[J]. Thermochimica Acta, 2006,451(1-2): 44-51.
    [77] Zhou XF, Xiao H, Feng J, et al. Preparation and thermal properties of paraffin/porous silica ceramic composite[J]. Composites Science and Technology, 2009,69(7-8): 1246-1249.
    [78]林怡辉,张正国,王世平.溶胶-凝胶法制备新型蓄能复合材料[J].太阳能学报, 2001,22(3): 334-337.
    [79] Jegadheeswaran S, Pohekar SD. Performance enhancement in latent heat thermal storage system: A review[J]. Renewable & Sustainable Energy Reviews, 2009,13(9): 2225-2244.
    [80] Fiedler T, Ochsner A, Belova IV, et al. Thermal conductivity enhancement of compact heat sinks using cellular metals[J]. Diffusion in Solids and Liquids Iii, 2008,273-276: 222-226 837.
    [81] Mesalhy O, Lafdi K, Elgafy A, et al. Numerical study for enhancing the thermal conductivity of phase change material (PCM) storage using high thermal conductivity porous matrix[J]. Energy Conversion and Management, 2005,46(6): 847-867.
    [82] Krishnan S, Murthy JY, Garimella SV. A two-temperature model for solid-liquid phase change in metal foams[J]. Journal of Heat Transfer-Transactions of the Asme, 2005,127(9): 995-1004.
    [83] Haillot D, Py X, Goetz V, et al. Storage composites for the optimisation of solar water heating systems[J]. Chemical Engineering Research & Design, 2008,86(6A): 612-617.
    [84] Sari A, Karaipekli A. Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material[J]. Applied Thermal Engineering, 2007,27(8-9): 1271-1277.
    [85] Yin HB, Gao XN, Ding J, et al. Experimental research on heat transfer mechanism of heat sink with composite phase change materials[J]. Energy Conversion and Management, 2008,49(6): 1740-1746.
    [86] Kim S, Drza LT. High latent heat storage and high thermal conductive phase change materials using exfoliated graphite nanoplatelets[J]. Solar Energy Materials and Solar Cells, 2009,93(1): 136-142.
    [87] Pincemin S, Olives R, Py X, et al. Highly conductive composites made of phase change materials and graphite for thermal storage[J]. Solar Energy Materials and Solar Cells, 2008,92(6): 603-613.
    [88] Elgafy A, Lafdi K. Effect of carbon nanofiber additives on thermal behavior of phase change materials[J]. Carbon, 2005,43(15): 3067-3074.
    [89] Mettawee EBS, Assassa GMR. Thermal conductivity enhancement in a latent heat storage system[J]. Solar Energy, 2007,81(7): 839-845.
    [90] Khodadadi JM, Hosseinizadeh SF. Nanoparticle-enhanced phase change materials (NEPCM) with great potential for improved thermal energy storage[J]. International Communications in Heat and Mass Transfer, 2007,34(5): 534-543.
    [91] Zeng JL, Sun LX, Xu F, et al. Study of a PCM based energy storage system containing Ag nanoparticles[J]. Journal of Thermal Analysis and Calorimetry, 2007,87(2): 369-373.
    [92] Velraj R, Seeniraj RV, Hafner B, et al. Heat transfer enhancement in a latent heat storage system[J]. Solar Energy, 1999,65(3): 171-180.
    [93] Ettouney HM, Alatiqi I, Al-Sahali M, et al. Heat transfer enhancement by metal screens and metal spheres in phase change energy storage systems[J]. Renewable Energy, 2004,29(6): 841-860.
    [94] Ettouney H, Alatiqi I, Al-Sahali M, et al. Heat transfer enhancement in energy storage in spherical capsules filled with paraffin wax and metal beads[J]. Energy Conversion and Management, 2006,47(2): 211-228.
    [95] Fukai J, Kanou M, Kodama Y, et al. Thermal conductivity enhancement of energy storage media using carbon fibers[J]. Energy Conversion and Management, 2000,41(14): 1543-1556.
    [96] Fukai J, Hamada Y, Morozumi Y, et al. Improvement of thermal characteristics of latent heat thermal energy storage units using carbon-fiber brushes: experiments and modeling[J]. International Journal of Heat and Mass Transfer, 2003,46(23): 4513-4525.
    [97] Hamada Y, Otsu W, Fukai J, et al. Anisotropic heat transfer in composites based on high-thermal conductive carbon fibers[J]. Energy, 2005,30(2-4): 221-233.
    [98] Nakaso K, Teshima H, Yoshimura A, et al. Extension of heat transfer area using carbon fiber cloths in latent heat thermal energy storage tanks[J]. Chemical Engineering and Processing, 2008,47(5): 879-885.
    [1] Cabeza LF, Ibanez M, Sole C, et al. Experimentation with a water tank including a PCM module[J]. Solar Energy Materials and Solar Cells, 2006,90(9): 1273-1282.
    [2] Fiedler T, Ochsner A, Belova IV, et al. Thermal conductivity enhancement of compact heat sinks using cellular metals[J]. Diffusion in Solids and Liquids Iii, 2008,273-276: 222-226 837.
    [3] Haillot D, Py X, Goetz V, et al. Storage composites for the optimisation of solar water heating systems[J]. Chemical Engineering Research & Design, 2008,86(6A): 612-617.
    [4] Kim S, Drza LT. High latent heat storage and high thermal conductive phase change materials using exfoliated graphite nanoplatelets[J]. Solar Energy Materials and Solar Cells, 2009,93(1): 136-142.
    [5] Krishnan S, Murthy JY, Garimella SV. A two-temperature model for solid-liquid phase change in metal foams[J]. Journal of Heat Transfer-Transactions of the Asme, 2005,127(9): 995-1004.
    [6] Mesalhy O, Lafdi K, Elgafy A, et al. Numerical study for enhancing the thermal conductivity of phase change material (PCM) storage using high thermal conductivity porous matrix[J]. Energy Conversion and Management, 2005,46(6): 847-867.
    [7] Pincemin S, Olives R, Py X, et al. Highly conductive composites made of phase change materials and graphite for thermal storage[J]. Solar Energy Materials and Solar Cells, 2008,92(6): 603-613.
    [8] Pincemin S, Py X, Olives R, et al. Elaboration of conductive thermal storage composites made of phase change materials and graphite for solar plant[J]. Journal of Solar Energy Engineering-Transactions of the Asme, 2008,130(1): -.
    [9] Sari A, Karaipekli A. Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material[J]. Applied Thermal Engineering, 2007,27(8-9): 1271-1277.
    [10] Yin HB, Gao XN, Ding J, et al. Experimental research on heat transfer mechanism of heat sink with composite phase change materials[J]. Energy Conversion and Management, 2008,49(6): 1740-1746.
    [11] Khodadadi JM, Hosseinizadeh SF. Nanoparticle-enhanced phase change materials (NEPCM) with great potential for improved thermal energy storage[J]. International Communications in Heat and Mass Transfer, 2007,34(5): 534-543.
    [12] Mettawee EBS, Assassa GMR. Thermal conductivity enhancement in a latent heat storagesystem[J]. Solar Energy, 2007,81(7): 839-845.
    [13] Seeniraj RV, Velraj R, Narasimhan NL. Heat transfer enhancement study of a LHTS unit containing dispersed high conductivity particles[J]. Journal of Solar Energy Engineering-Transactions of the Asme, 2002,124(3): 243-249.
    [14] Zeng JL, Sun LX, Xu F, et al. Study of a PCM based energy storage system containing Ag nanoparticles[J]. Journal of Thermal Analysis and Calorimetry, 2007,87(2): 369-373.
    [15] Ettouney H, Alatiqi I, Al-Sahali M, et al. Heat transfer enhancement in energy storage in spherical capsules filled with paraffin wax and metal beads[J]. Energy Conversion and Management, 2006,47(2): 211-228.
    [16] Ettouney HM, Alatiqi I, Al-Sahali M, et al. Heat transfer enhancement by metal screens and metal spheres in phase change energy storage systems[J]. Renewable Energy, 2004,29(6): 841-860.
    [17] Fukai J, Hamada Y, Morozumi Y, et al. Improvement of thermal characteristics of latent heat thermal energy storage units using carbon-fiber brushes: experiments and modeling[J]. International Journal of Heat and Mass Transfer, 2003,46(23): 4513-4525.
    [18] Hamada Y, Fukai J. Latent heat thermal energy storage tanks for space heating of buildings: Comparison between calculations and experiments[J]. Energy Conversion and Management, 2005,46(20): 3221-3235.
    [19] Hamada Y, Ohtsu W, Fukai J. Thermal response in thermal energy storage material around heat transfer tubes: effect of additives on heat transfer rates[J]. Solar Energy, 2003,75(4): 317-328.
    [20] Hamada Y, Otsu W, Fukai J, et al. Anisotropic heat transfer in composites based on high-thermal conductive carbon fibers[J]. Energy, 2005,30(2-4): 221-233.
    [21] Nakaso K, Teshima H, Yoshimura A, et al. Extension of heat transfer area using carbon fiber cloths in latent heat thermal energy storage tanks[J]. Chemical Engineering and Processing, 2008,47(5): 879-885.
    [22] Sari A, Karaipekli A. Preparation, thermal properties and thermal reliability of palmitic acid/expanded graphite composite as form-stable PCM for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2009,93(5): 571-576.
    [23] Fukai J, Kanou M, Kodama Y, et al. Thermal conductivity enhancement of energy storage media using carbon fibers[J]. Energy Conversion and Management, 2000,41(14): 1543-1556.
    [24] Ozonur Y, Mazman M, Paksoy HO, et al. Microencapsulation of coco fatty acid mixture for thermal energy storage with phase change material[J]. International Journal of Energy Research, 2006,30(10): 741-749.
    [25] Regin AF, Solanki SC, Saini JS. Heat transfer characteristics of thermal energy storagesystem using PCM capsules: A review[J]. Renewable & Sustainable Energy Reviews, 2008,12(9): 2438-2458.
    [26] Akgun M, Aydin O, Kaygusuz K. Experimental study on melting/solidification characteristics of a paraffin as PCM[J]. Energy Conversion and Management, 2007,48(2): 669-678.
    [27] Aktay KSDC, Tamme R, Muller-Steinhagen H. Thermal conductivity of high-temperature multicomponent materials with phase change[J]. International Journal of Thermophysics, 2008,29(2): 678-692.
    [28] Ding JH, Zhang YP, Wang X, et al. Influence of additives on thermal conductivity of shape-stabilized phase change material[J]. Solar Engineering 2005, 2006: 823-832 863.
    [29] Frusteri F, Leonardi V, Vasta S, et al. Thermal conductivity measurement of a PCM based storage system containing carbon fibers[J]. Applied Thermal Engineering, 2005,25(11-12): 1623-1633.
    [30] Hamdan MA, Al-Hinti I. Analysis of heat transfer during the melting of a phase-change material[J]. Applied Thermal Engineering, 2004,24(13): 1935-1944.
    [31] Karaipekli A, Sari A, Kaygusuz K. Thermal conductivity improvement of stearic acid using expanded graphite and carbon fiber for energy storage applications[J]. Renewable Energy, 2007,32(13): 2201-2210.
    [32] Mills A, Farid M, Selman JR, et al. Thermal conductivity enhancement of phase change materials using a graphite matrix[J]. Applied Thermal Engineering, 2006,26(14-15): 1652-1661.
    [33] Nomura T, Okinaka N, Akiyama T. Impregnation of porous material with phase change material for thermal energy storage[J]. Materials Chemistry and Physics, 2009,115(2-3): 846-850.
    [34] Tanaka H, Nishihara T, Ohtsuka T, et al. Electrical switching phenomena in a phase change material in contact with metallic nanowires[J]. Japanese Journal of Applied Physics Part 2-Letters, 2002,41(12B): L1443-L1445.
    [35] Tong FG, Jing LR, Zimmerman RW. An effective thermal conductivity model of geological porous media for coupled thermo-hydro-mechanical systems with multiphase flow[J]. International Journal of Rock Mechanics and Mining Sciences, 2009,46(8): 1358-1369.
    [36] Wang WL, Yang XX, Fang YT, et al. Enhanced thermal conductivity and thermal performance of form-stable composite phase change materials by using beta-Aluminum nitride[J]. Applied Energy, 2009,86(7-8): 1196-1200.
    [37] Xuan YM, Huang Y, Li Q. Experimental investigation on thermal conductivity and specific heat capacity of magnetic microencapsulated phase change material suspension[J]. Chemical Physics Letters, 2009,479(4-6): 264-269.
    [38] Yamashita Y, Hirata Y, Iwata Y, et al. Performance and heat transfer characteristics of a latent heat storage unit with finned tubes: Numerical analysis on freezing and melting processes of n-pentane as a phase-change material[J]. Kagaku Kogaku Ronbunshu, 2005,31(2): 151-158.
    [39] Zeng JL, Cao Z, Yang DW, et al. Thermal conductivity enhancement of Ag nanowires on an organic phase change material[J]. Journal of Thermal Analysis and Calorimetry, 2010,101(1): 385-389.
    [40] Zhang YP, Ding HH, Wang X, et al. Influence of additives on thermal conductivity of shape-stabilized phase change material[J]. Solar Energy Materials and Solar Cells, 2006,90(11): 1692-1702.
    [1] Mujeebu MA, Abdullah MZ, Abu Bakar MZ, et al. Applications of porous media combustion technology - A review[J]. Applied Energy, 2009,86(9): 1365-1375.
    [2] Wang WL, Yang XX, Fang YT, et al. Preparation and performance of form-stable polyethylene glycol/silicon dioxide composites as solid-liquid phase change materials[J]. Applied Energy, 2009,86(2): 170-174.
    [3] Suryanarayana C, Rao KC, Kumar D. Preparation and characterization of microcapsules containing linseed oil and its use in self-healing coatings[J]. Progress in Organic Coatings, 2008,63(1): 72-78.
    [4] Frere W, Danicher L, Gramain P. Preparation of polyurethane microcapsules by interfacial polycondensation[J]. European Polymer Journal, 1998,34(2): 193-199.
    [5] Kim EY, Do Kim H. Preparation and properties of micro encapsulated octadecane with waterborne polyurethane[J]. Journal of Applied Polymer Science, 2005,96(5): 1596-1604.
    [6] Shin Y, Yoo DI, Son K. Development of thermoregulating textile materials with microencapsulated phase change materials (PCM). II. Preparation and application of PCM microcapsules[J]. Journal of Applied Polymer Science, 2005,96(6): 2005-2010.
    [7] Zhang XX, Fan YF, Tao XM, et al. Crystallization and prevention of supercooling of microencapsulated n-alkanes[J]. Journal of Colloid and Interface Science, 2005,281(2): 299-306.
    [8] Jiang MJ, Song XQ, Ye GD, et al. Preparation of PVA/paraffin thermal regulating fiber by in situ microencapsulation[J]. Composites Science and Technology, 2008,68(10-11): 2231-2237.
    [9] Romero-Cano MS, Vincent B. Controlled release of 4-nitroanisole from poly(lactic acid) nanoparticles[J]. Journal of Controlled Release, 2002,82(1): 127-135.
    [10] Alba-Simionesco C, Coasne B, Dosseh G, et al. Effects of confinement on freezing and melting[J]. Journal of Physics-Condensed Matter, 2006,18(6): R15-R68.
    [11] Alcoutlabi M, McKenna GB. Effects of confinement on material behaviour at the nanometre size scale[J]. Journal of Physics-Condensed Matter, 2005,17(15): R461-R524.
    [12] Christenson HK. Confinement effects on freezing and melting[J]. Journal of Physics-Condensed Matter, 2001,13(11): R95-R133.
    [13] Dutta D, Pujari PK, Sudarshan K, et al. Effect of Confinement on the Phase Transition of Benzene in Nanoporous Silica: A Positron Annihilation Study[J]. Journal of Physical Chemistry C, 2008,112(48): 19055-19060.
    [14] Alkan C, Sari A, Karaipekli A, et al. Preparation, characterization, and thermal properties of microencapsulated phase change material for thermal energy storage[J]. Solar Energy Materialsand Solar Cells, 2009,93(1): 143-147.
    [15] Alvarado JL, Marsh C, Sohn C, et al. Characterization of supercooling suppression of microencapsulated phase change material by using DSC[J]. Journal of Thermal Analysis and Calorimetry, 2006,86(2): 505-509.
    [16] Cho JS, Kwon A, Cho CG. Microencapsulation of octadecane as a phase-change material by interfacial polymerization in an emulsion system[J]. Colloid and Polymer Science, 2002,280(3): 260-266.
    [17] Fang GY, Li H, Liu X, et al. Experimental Investigation of Performances of Microcapsule Phase Change Material for Thermal Energy Storage[J]. Chemical Engineering & Technology, 2010,33(2): 227-230.
    [18] Fang GY, Li H, Yang F, et al. Preparation and characterization of nano-encapsulated n-tetradecane as phase change material for thermal energy storage[J]. Chemical Engineering Journal, 2009,153(1-3): 217-221.
    [19] Liu X, Liu HY, Wang SJ, et al. Preparation and thermal properties of form stable paraffin phase change material encapsulation[J]. Energy Conversion and Management, 2006,47(15-16): 2515-2522.
    [20] Liu X, Liu HY, Wang SJ, et al. Preparation and thermal properties of form-stable paraffin phase change material encapsulation[J]. Solar Energy, 2006,80(12): 1561-1567.
    [21] Song QW, Li Y, Xing JW, et al. Thermal stability of composite phase change material microcapsules incorporated with silver nano-particles[J]. Polymer, 2007,48(11): 3317-3323.
    [22] Wang XC, Niu JL, Li Y, et al. Heat transfer of microencapsulated PCM slurry flow in a circular tube[J]. Aiche Journal, 2008,54(4): 1110-1120.
    [23] Wei L, Xing-Xiang Z, Xue-Chen W, et al. Preparation and characterization of microencapsulated phase change material with low remnant formaldehyde content[J]. Materials Chemistry and Physics, 2007,106(2-3): 437-442.
    [24] Xuan YM, Huang Y, Li Q. Experimental investigation on thermal conductivity and specific heat capacity of magnetic microencapsulated phase change material suspension[J]. Chemical Physics Letters, 2009,479(4-6): 264-269.
    [25] Zhang D, Tian SL, Xiao DY. Experimental study on the phase change behavior of phase change material confined in pores[J]. Solar Energy, 2007,81(5): 653-660.
    [26] Darbandi M, Thomann R, Nann T. Hollow silica nanospheres: In situ, semi-in situ, and two-step synthesis[J]. Chemistry of Materials, 2007,19(7): 1700-1703.
    [27] Deng ZW, Chen M, Zhou SX, et al. A novel method for the fabrication of monodisperse hollow silica spheres[J]. Langmuir, 2006,22(14): 6403-6407.
    [28] Pan W, Ye JW, Ning GL, et al. A novel synthesis of micrometer silica hollow sphere[J]. Materials Research Bulletin, 2009,44(2): 280-283.
    [29] Zhang HJ, Wu J, Zhou LP, et al. Facile synthesis of monodisperse microspheres and gigantic hollow shells of mesoporous silica in mixed water-ethanol solvents[J]. Langmuir, 2007,23(3): 1107-1113.
    [30] Munoz B, Ramila A, Perez-Pariente J, et al. MCM-41 organic modification as drug delivery rate regulator[J]. Chemistry of Materials, 2003,15(2): 500-503.
    [31] Song SW, Hidajat K, Kawi S. Functionalized SBA-15 materials as carriers for controlled drug delivery: Influence of surface properties on matrix-drug interactions[J]. Langmuir, 2005,21(21): 9568-9575.
    [32] Tourne-Peteilh C, Lerner DA, Charnay C, et al. The potential of ordered mesoporous silica for the storage of drugs: The example of a pentapeptide encapsulated in a MSU-Tween 80[J]. CHEMPHYSCHEM, 2003,4(3): 281-+.
    [33] Lai CY, Trewyn BG, Jeftinija DM, et al. A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules[J]. Journal of the American Chemical Society, 2003,125(15): 4451-4459.
    [34] Radu DR, Lai CY, Jeftinija K, et al. A polyamidoamine dendrimer-capped mesoporous silica nanosphere-based gene transfection reagent[J]. Journal of the American Chemical Society, 2004,126(41): 13216-13217.
    [35] Rekuc A, Bryjak J, Szymanska K, et al. Laccase immobilization on mesostructured cellular foams affords preparations with ultra high activity[J]. Process Biochemistry, 2009,44(2): 191-198.
    [36] Zhang HZ, Wang XD, Wu DZ. Silica encapsulation of n-octadecane via sol-gel process: A novel microencapsulated phase-change material with enhanced thermal conductivity and performance[J]. Journal of Colloid and Interface Science, 2010,343(1): 246-255.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700