定性空间推理及其在空间数据检索中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空间推理是指利用空间理论和人工智能AI(Artificial Intelligence)对空间对象进行表示和推理。近年来,空间推理已成为十分活跃的研究领域,在空间演算易处理性,多维空间演算,空间知识管理以及定性、不完备空间信息推理等方面取得了重要进展。随着空间信息技术的发展,空间推理逐渐被用于地理信息系统、空间知识发现、时空数据库、图像数据库、自然语言理解和多媒体数据库等领域。其中地理信息系统是空间推理的最重要的应用领域之一。
     近年来,伴随着信息获取技术的进步,在地理信息系统( GIS)和遥感图像处理等领域中的空间数据,呈现出爆炸式增长的趋势。那么如何更加有效地利用这些空间数据、如何在海量空间数据中快速检索出人们所需要的信息成为目前空间数据管理的瓶颈之一,因此GIS的交互问题越来越重要,在这方面有很多的问题亟需研究解决,如以矢量或栅格方式存储着几十亿字节数据的GIS系统现在还不能提供直观的、面向常识的人机交互功能,诸如GIS系统不支持从大量数据中抽取出定性空间信息等。要想解决这些问题,就要对定性空间推理进行深入研究,并将定性空间表示、推理和空间相似性等研究结果应用到GIS中去,使GIS能满足人们日益提高的检索需求。
     本文在分析现有工作的基础上,围绕定性空间推理在空间数据检索中的应用开展研究,主要研究结果如下:
     1.研究了定性空间推理的相关概念和基本方法,对定性空间表示和空间数据检索进行了总结,通过对比分析重点研究了九交集拓扑关系模型和方向关系矩阵模型,提出结合这两种定性模型进行空间数据检索的方法,能对空间草图进行有效地表示和检索。
     总结出空间推理研究的基本方法主要有公理化方法、几何约束满足方法、代数方法和基于模型的推理方法。研究了判定某种定性空间关系形式化表达能力的标准,目前定性空间表示研究主要集中在空间拓扑关系表示、空间方向关系表示、空间距离关系表示、定性形状表示、空间邻近关系以及结合多种空间关系的定性表示方法,在这些表示方法中最重要的是拓扑关系和方向关系的表示,其中应用较广泛的拓扑关系模型主要有RCC模型和九交集模型,而应用最广泛的方向关系模型是方向关系矩阵模型。空间数据检索是近几年的研究热点,随着人们获得的空间数据不断增多,迫切需要提高空间数据检索的效率,增加更多、直观、符合人们认知的检索方法。我们介绍了空间数据检索发展的阶段及未来的发展方向,现阶段对基于草图的空间数据检索的研究越来越多,有必要对该方法进行深入研究。
     2.基于结合九交集拓扑关系模型和深度方向关系矩阵模型,研究了基于草图的空间数据检索方法。
     在基于草图的空间数据检索中,用户可用鼠标或手在触摸屏上绘制将要检索的空间场景,如建筑物、桥梁、河流和山川等形状与空间相对位置信息,并可给出已知的标注,形成草图。草图包含了较明确、详细的信息,包括对象间空间拓扑关系、方向关系和已知对象的标注等,可作为检索条件提交给GIS,系统对草图中的对象本身及对象间的拓扑和方向关系进行提取,并将提取的特征记录在相应的特征关系表中,然后通过空间关系匹配算法检索到符合要求的空间数据并进行显示,实现基于草图的空间数据检索。
     近年来,基于草图的空间数据检索得到了重视和研究。自1996年以来,Egenhofer、Blaser等人都对基于草图的空间数据检索进行了研究,相继给出了基于草图的空间数据检索的设计原则,草图的表示及检索处理过程,但以往的研究中大部分都围绕着区域对象展开,没有考虑所有类型的空间对象,并且很多都没有给出系统原型,我们将九交集拓扑模型和深度方向矩阵引入空间数据检索,给出了一种基于草图的空间数据检索方法,该方法支持地理数据库中所有的数据类型。我们具体研究了空间草图中拓扑关系和方向关系的提取及保存方法,并将基于草图的空间数据检索问题转化为约束满足问题,并根据约束满足问题的前项检查算法的思想,针对空间数据检索的具体问题,给出了一个基于草图的空间数据检索算法SBSDQ-FC(),应用标注、定义域动态排序和空间邻近关系等方法对SBSDQ-FC()算法进行了改进,提高了草图检索算法的检索效率。并给出了算法的复杂度,通过实验对算法进行了分析验证。
     3.空间相似性及其在空间数据检索中的应用研究
     研究了空间相似性的概念和相关处理方法,综述了空间相似性的国内外研究现状。重点研究了拓扑关系和方向关系相似性的定义和计算方法。根据1996年Bruns和Egenhofer给出的任意两个区域之间的拓扑关系概念邻域图,通过计算任意两个拓扑关系的距离得到两个区域之间拓扑关系概念邻域的差异矩阵。根据概念邻域图和差异矩阵给出了面与面之间拓扑关系相似性的计算方法。同时将这个方法推广到其它对象间拓扑关系相似性的计算。对于方向关系相似性计算,主要从主方向关系模型出发,研究了基于主方向关系模型的方向关系相似性计算方法。最后将空间相似性研究结果应用于基于草图的空间数据检索,使检索方式更直观,更易于理解。
     4. GIS环境下基于草图的空间数据检索系统的设计与实现
     为验证本文提出的结合拓扑关系和方向关系的草图检索方法,我们应用C#和MapInfo建立了一个基于草图的空间数据检索原型系统,验证了我们所提出的方法的可行性,同时文中也分析了这种方法的不足,指出了下一步要做的工作。
     国内空间推理领域关于定性空间推理及其应用研究方兴未艾,本文以上的研究结果丰富了定性空间推理及其应用技术,期望对该领域的发展有一定的借鉴和参考。
Spatial reasoning is the representation and reasoning of the space object used spatial theory and artificial intelligence. In recent years, the study of spatial reasoning has become a very active research field and has made great progress in qualitative spatial reasoning, spatial knowledge management etc. With the development of information technology of space, spatial reasoning now is being used in geographic information systems, spatial knowledge discovery, image database, multimedia database etc. Geographic Information System is one of the most important fields of spatial reasoning applications.
     In recent years, with the development of information technology of space, the spatial data is now showing a trend of explosive growth in geographic information system (GIS) and remote sensing image processing and other fields. So how to make effective use of these spatial data becomes one of the bottlenecks of spatial data management. The interaction issues of GIS becomes more and more important, there are many problems need to be solve in this field, such as there are billions of bytes of data stored in the GIS database by vector or raster mode, but the GIS system can not provide an intuitive method for interaction. For example, a user may want to extract some qualitative data from a large number of spatial data or submit a qualitative query to the GIS system, but now the GIS system can not provide such function. To solve these problems, we should study qualitative spatial reasoning and apply the research results of qualitative spatial reasoning, qualitative spatial representation and spatial similarity to the GIS system, so that GIS can fully meet the increasing needs. In this paper, we first give a analysis of existing work, then study on qualitative spatial reasoning and the application of qualitative spatial reasoning in spatial data query and other fields.The main results are as follows:
     1.Studied the concepts, research contents and the basic methods of spatial reasoning .Summaried the qualitative spatial representation and spatial data query methods, we focused on the 9-intersection model of topological relation and the Deep-Direction-Relation Matrix model of the direction relation.We will use the combination of these two qualitative models in spatial data query by sketch.
     Summarized the basic methods of spatial reasoning research.The methods includes the axiomatic method, the geometric constraint satisfaction methods, algebraic methods and model-based reasoning. The qualitative spatial representation research focuses on spatial topology relation representation, spatial direction relations representation, spatial distance relation representation, the qualitative shape representation and the qualitative representation method of multi spatial relation etc. the most important representation is the representation of the topological and direction relations. The 9-intersection model and RCC model are the most important topological models; The Deep-Direction-Relation Matrix model is the most widely used direction model. Spatial data query is a research hotspot in recent years, with the growing of the number of spatial data, people need to improve the efficiency of spatial data query, and increase more intuitive way to meet people's awareness of query. We introduced the stage of development of spatial data query, and the future of the spatial data query. We're seeing an ever increasing number of people interested in studying of the spatial data query by sketch now. It is worthy of in-depth research and concerns.
     2. Based on the combination of the 9-intersection model and the deep direction relation Matrix model, we studied the sketch-based spatial data query methods.
     Spatial database contains a great deal of topological and directional semantics. But traditional spatial data query methods didn’t make good use of these high level semantics. To overcome this conceptual gap, this paper proposes a spatial data query method based on sketch using 9-intersection model and Deep-Direction-Relation Matrix. This method integrates direction relations and topological relations and can handle all data types in geographical databases. This thesis outlines an algorithm based on the solutions of Binary CSP. A prototype has been developed to experiment the method this thesis proposed.
     3. Spatial similarity theory and its application in spatial data quey by sketch.
     This thesis summarized the spatial similarity theory and its application in spatial data query.We also study the concept of the spatial similarity and its research content. We outline the present status of research on spatial similarity theory both in China and abroad. Studied the definition of the spatial similarity of the topological relation and its calculation methods.We also studied the definition and calculation methods of the spatial similarity of the direction relation.the application of spatial similarity in spatial data query has also been studied.
     4. The design and implementation of the spatial data query by sketch system in GIS environment.
     To verify the proposed method of spatial data query based on sketch using 9-intersection model and Deep-Direction-Relation Matrix, we developed a prototype system used the C# and MapInfo, introduced the design, query processes and realization of the prototype system.We have done some related experiments on the prototype system, we demonstrated the feasibility of the proposed method, also pointed out the shortcomings and the application prospects of the method we proposed.
     More and more people began to pay close attention to the study of qualitative spatial reasoning and its application, this work is expected to promote the development of the qualitative spatial reasoning and its application. In this paper, the spatial data query method based on sketch using 9-intersection model and Deep-Direction-Relation Matrix proved to have high theoretical and practical value.
引文
[1]欧阳继红,时空推理中一些问题的研究[D],吉林大学博士论文,2005
    [2]孙海滨,定性空间推理及其应用技术研究[D],吉林大学博士论文,2006
    [3] J.Renz.Qualitative Spatial Reasoning with Topological Information[C],LNAI 2293,2002
    [4] B.Faltings.Qualitative Spatial Reasoning Using Algebraic Topology[C].In Proceedings of COSIT-95,volume 988 of LNCS,1995, 17-30.
    [5] A.U.Frank.Qualitative Spatial Reasoning about Distances and Directions in Geographic Space[J].Journal of Visual Languages and Computing,1992,3:343-371.
    [6] C.Freksa.Using Orientation Information for Qualitative Spatial Reasoning[C].In: Proceedings of COSIT-92, LNCS 639, 1992, 162-178.
    [7] Yao,X.,Thill,J.C.Spatial Queries With Qualitative Locations In Spatial Information Systems[J].Computers,Environment and Urban Systems.2005(In Press).
    [8] Bergman, L.Castelli, V., Li C-S.Progressive Content-Based Retrieval from Satellite Image Archives [J].D-Lib Magazine, October 1997.
    [9] Chang S.F,Smith J.R.,Meng H.J,Wang H.,Zhong D.Finding Images/Video in Large Archives[J].CNRI Digital Library Magazine,Feb.1997.
    [10] Gupta A., Jain R.Visual Information Retrieval [J].Communications of ACM, May 1997, 40(5):70-79.
    [11] K.Koperski, J.Han, N.Stefanovic.An Efficient Two-Step Method for Classification of Spatial Data[C].Proc.Int.Symp.on Spatial Data Handling, Vancouver, BC, Canada, July 1998,45-54.
    [12] Quinlan J.R.Induction of Decision Trees [J].Machine Learning, 1986, 1:81-106.
    [13] Alessandra Raffaetà, Franco Turini, Chiara Renso.Enhancing GISs for spatio-temporal reasoning[C].In: Proceedings of the 10th ACM international symposium on Advances in geographic information systems,ACM-GIS 2002, 42-48.
    [14] M.Egenhofer and D.Mark.Naive Geography[C].COSIT'95, Semmering, Austria A.Frank and W.Kuhn (eds.), Lecture Notes in Computer Science, Vol.988, Springer-Verlag, September 1995, 1-15.
    [15] M.Egenhofer.Query Processing in Spatial-Query-by-Sketch[J].Journal of Visual Languages and Computing,1997,8(4):403-424.
    [16] EGENHOFER.Spatial-Query-by-Sketch[C],Proceedings of the IEEE symposium on visual languages,IEEE Computer Society,Washington DC ,USA , 1996:60267
    [17] EGENHOFER M. Query processing in Spatial-Query-by-Sketch [J]. Journal of Visual Languages and Computing, 1997, 8 (4): 4032424.
    [18] BLASER A D. Sketching spatial queries [D]. Maine: University of Maine, 2000.
    [19] Kak A. Spatial reasoning [J]. AI Magazinge. 1988, 9(2):23.
    [20] Buisson L. Reasoning on space with object-centered knowledge representations[C]. In: Proc of SSD-89. 1989.
    [21] Faltings.Qualitative spatial reasoning using topology[D]. University of Leeds.1995.
    [22]欧阳继红,刘大有,欧阳丹彤,虞强源,齐茵.空间推理及其研究现状[C],第六届中国人工智能联合学术会议论文集, 2001, 3, 23-28.
    [23]郭庆胜,杜晓初,闫卫阳,地理空间推理[M],科学出版社,北京,2006
    [24] Hernandez D. Qualitative representation of spatial knowledge[C]. Lecture Notes in Artificial Intelligence 804. Springer, Berlin, Germany, 1994.
    [25] Randell D A, Cohn A G. Modeling topological and metrical properties in physical processes[C]. In: Proc 1st Int Conf on the Principles of Knowledge Representation and Reasoning. Morgan Kaufmann, Los Altos, 1989, 55-66.
    [26] Randell D A, Cui Z, Cohn A G. A spatial logic based on regions and connection[C]. In: Proc 3rd Int Conf on Knowledge Representation and Reasoning. Morgan Kaufmann, Sanmateo, 1992, 165-176.
    [27] Cui Z, Cohn A G, Randell D A. Qualitative simulation based on a logical formalism of space and time[C]. In: Proc of AAAI-92. AAAI Press, Menlo Park, California, 1992, 679-684.
    [28] Bennett B. Spatial reasoning with propositional logics[C], In: Proc of KR-94. Morgan Kaufmann, 1994, 51-62.
    [29] Cohn A G. A hierarchical representation of qualitative shape based on connection and convexity[C]. In: Proc of COSIT-95. Semmering, 1995.
    [30] Bennett B and Cohn A G. Multi-dimensional multi-modal logics as a framework for spatio-temporal reasoning[C]. In: Proc of the `Hot Topics in Spatio-Temporal Reasoning' workshop, IJCAI-99. Stockholm, 1999.
    [31] Clarke B L. A calculus of individuals based on‘connection’[J]. Notre Dame Journal of Formal Logic. 1981, 23(3):204-218.
    [32] Egenhofer M J, Franzosa R. Point-set topological spatial relations [J]. International Journal of Geographical Information Science. 1991, 5 (2): 161-174.
    [33] Egenhofer M J, Herring J. Categorizing binary topological relationships between regions, lines and points in geographic database[R]. Technical Report. Department of Surveying Engineering, University of Maine, 1991.
    [34] Nielsen P, A Qualitative Approach to Mechanical Constraint[C]. In: Proc of 7th-AAAI, 1988, 270-274.
    [35] Forbus K, Nielsen P, Faltings B. Qualitative spatial reasoning: The CLOCK Project [J]. Artificial Intelligence. 1991, 51: 417-471.
    [36] Freska C. Using orientation information for qualitative spatial reasoning[C]. In: Proc Int Con on Theories and Methods of Spatio-Temporal Reasoning in Geographic Space. Spring, Berlin, 1992, 162-178.
    [37] Frank A U. Qualitative spatial reasoning with cardinal directions[J]. Journal of Visual Language and Computing. 1992, 3:343-371.
    [38] Raiman O. Order of magnitude reasoning[C]. In: Proc of AAAI-86. 1986, 100~104.
    [39] Hernandez D, Clementini E et al. Qualitative distances[C]. In: Proc of COSIT-95. Semmering, 1995, 45-57.
    [40] Zimmermann K. Enhancing qualitative spatial reasoning-combining orientation and distance[C]. In: Proc of COSIT-93. Marcian Marina, Italy, 1993, 69-76
    [41] Leyton M. A process grammar for shape[J]. Artificial Intelligence. 1988, 34.
    [42] Gotts N M. How far can we `C'? Defining a `Doughnut' using connection alone[C]. In: Proc of KR-94, Morgan Kaufmann, 1994, 246-257.
    [43] Papadias D. Relation-based representation of spatial knowledge [D]. Ph.D. Thesis. National Technical University of Athens, 1994.
    [44] Abdelmoty A I, EI-Geresy B A. An intersection-based formalism for representing orientation relations in a geographic database[C]. In: Proc of 2nd ACM Conf on Advanced in GIS theory. Gaithersburg, 1994.
    [45] Varzi A. On the boundary between mereology and topology[C]. In Proc of 16th Int Wittgenstein Symposium. Holder-Pichler-Tempsky, Vienna, 1994.
    [46] Clementini E, Felice P D, Hernandez D. Qualitative representation of positional information[R]. Technical Report FKI-208-95 T U. Munich, 1995.
    [47] Rohrig R. A theory for qualitative spatial reasoning based on order relations[C]. In: Proc of 12th National Conf on AI. Settle, 1994, 2: 1418-1423.
    [48] Berleant D, Kuipers B. Qualitative and quantitative simulation: bridging the gap [J]. Artificial Intelligence. 1998, 95(2): 215-255.
    [49] Berleant D.The use of partial quantitative information with qualitative reasoning [D].Department of Computer Sciences, The University of Texas at Austin, 1991.
    [50] Glasgow J I, Fortier S et al. Knowledge representation tools for molecular scene analysis[C]. In: Proc of 28th Hawaii Int Conf of Systems Sciences. Computer Tools for Molecular Modeling Minitrack, Hawaii, 1995.
    [51] Car A. Hierarchical spatial reasoning: theoretical consideration and its application to modeling wayfinding [D]. GeoInfo Series. Department of Geoinformation, Technical University of Vienna, 1996, 10.
    [52] Timpf S. Conceptual modeling of highway navigation [D].University of Maine, USA, 1992.
    [53] Kuipers B J, Byun Y T. A robot exploration and mapping strategy based on a semantic hierarchy of spatial representations [J]. Robotics and Autonomous Systems. 1991, 8(8): 17.
    [54] Hernandez D. Relative representation of spatial knowledge: the 2-D case, cognitive and linguistic aspects of geographic space [M]. Boston, London, Kluwer, Dordrecht Academic Press, 1991, 373-385.
    [55] Glasgow J. A formalism for model-based spatial planning[C]. In: Proc of COSIT-95. Semmering, 1995, 501-518.
    [56] Frank A, Timpf S. Multiple representations for cartographic objects in a multi-scale tree - an intelligent graphical zoom [J]. Computers and Graphics. 1994, 18(6): 823-829.
    [57] Timpf S. Hierarchical structures in map series [D]. Ph.D. thesis. Dept. of Geoinformation, Technical University Vienna, Vienna, 1998.
    [58] Clementini, E., Di Felice, P. An algebraic model for spatial objects with indeterminate boundaries[C]. In: Burrough, P.A., Frank, A.U. eds. Geographic Objects with Indeterminate Boundaries. London: Taylor & Francis, 1996. 155-169.
    [59] Hernandez D. Relative representation of spatial knowledge: the 2-D case, cognitive and linguistic aspects of geographic space [M]. Boston, London, Kluwer, Dordrecht Academic Press, 1991, 373-385.
    [60]石纯一,廖士中,定性推理方法[M],北京:清华大学出版社,2002
    [61] Kramer G A.Solving geometric constraints systems[C].proceedings of AAAI’90. 1990, 708-714
    [62] Hernandez D.Qualitative representation of spatial knowledge[C]. Berlin: Spring-Verlag. 1994
    [63] Allen J F.Maintaining Knowledge about Temporal Intervals [J].Communications of the Association of Computing Machinery, 1983, 11(26): 832-843.
    [64] Abdelmoty A I and Williams M H.Approach to the representation of qualitative spatial relationships for geographic databases:a critical survey and possible extensions[C].Advanced Geographic Data Modeling(AGDM’94) International GIS Workshop,Molenaar,Hoop(eds.),Netherlands Geodetic Commission,1994, 204-216
    [65] Goyal R K.Similarity assessment between cardinal directions[D],Ph D. Thesis,Orono:NCGIA,Department of Spatial Information Science and Engineering, University of Maine, 1999
    [66]谢琦,刘大有,虞强源,陈娟,定性方向关系模型研究进展[J],计算机科学,2006,VOL33,NO11,5-9
    [67] Frank A U. Qualitative spatial reasoning about cardinal directions[C]. In : Mark D , White D , eds. Proceedings of Aust rian Conference on Artificial Intelligence. 1991. 157-167
    [68] Frank A U.Qualitative spatial reasoning about distance and directions in geographic space[J].Journal of Visual Lanuages and Computing,1992,3 (2) : 343-373
    [69] Frank A U. Qualitative spatial reasoning: Cardinal directions as an example[J]. International Journal of Geographical Information Systems , 1996, 10 (3) : 269-290
    [70] Freksa C. Using orientation information for qualitative spatial reasoning[C]. In : Frank A U,Campari I, Formentini U. eds. Proceedings of International Conference on Theories and Methods of Spatial Temporal Reasoning in Geographic Space. Spring Verlag ,Berlin , 1992. 162-178
    [71] Zimmermann K. Enhancing qualitative spatial reasoning combing orientation and distance[C]. In: Proceedings of International Conference on Spatial Information Theory. A Theoretical Basis for GIS, ELBA, Italy. 1993. 69-76
    [72] Chang S K, Shi Q S,Yan C W.Iconic Indexing by 2-D Strings[J].IEEE Transactions on Pattern Analysis and Machine Intelligence ,1987, 9 (6) : 413-428
    [73] Goyal R,Egenhofer M J. The Direction Relation Matrix: A Representation for Directions Relations between Extended Spatial Objects[C]. The Annual Assembly and the Summer Retreat of University Consortium for Geographic Information Systems Science,1997
    [74] Goyal R, Egenhofer MJ. Cardinal Directions between Extended Spatial Objects[J]. IEEE Transactions on Data Knowledge and Data Engineering ,2000.
    [75] Goyal RK, Egenhofer MJ. Consistent queries over cardinal directions across different levels of detail[C]. In: Tjoa AM,Wagner R,Al-Zobaidie A,eds. Proc. of the 11th Int’l Workshop on Database and Expert Systems Applications. Greenwich: IEEE Computer Society, 2000,876?880.
    [76] Montello, Scale and Multiple Psychologies of Space[C], Spatial Information Theory - COSIT , 1993,312?321
    [77] Hong J.Qualitative distance and direction reasoning in geographic space [D].Ph.D.Thesis,University of Maine,1994
    [78] Goyal RK, Egenhofer MJ. Consistent queries over cardinal directions across different levels of detail[C]. In: Tjoa AM, Wagner R, Al-Zobaidie A, eds. Proc. of the 11th Int’l Workshop on Database and Expert Systems Applications. Greenwich: IEEE Computer Society, 2000, 876?880.
    [79] Isli A,Cabedo L M,Barkowsky T and Moratz R.2000.A topological calculus for cartographic entites[C].Freksa et al.(Eds.).Spatial cognition II,LNAI1849. Berlin: Springer-Verlag.225?238
    [80] Leyton. A process grammar for shape [J]. Artificial Intelligence, 1988, 34.
    [81] Cohn. A Hierarchical Representation of Qualitative Shape Based on Connection and Convexity[C]. In: Proc of COSIT-95. Semmering, 1995.
    [82] Gottfried. Tripartite Line Tracks[C]. In: International Conference on Computer Vision and Graphics. ICCVG'2002, Zakopane, Poland, 2002, 288?293.
    [83] Gottfried. Tripartite Line Tracks, Qualitative Curvature Information[C]. In: W. Kuhn, M.F. Worboys, S. Timpf (eds.): Spatial Information Theory: Foundations of Geographic Information Science. Pro. Of COSIT, Berlin Heidelberg: Springer- Verlag, LNCS 2825, 2003, 101?117.
    [84] Gottfried. Characterizing Meanders Qualitatively[C]. In: Raubal, Miller, A. Frank, and M. Goodchild: Geographic Information Scienc. The 4th Int. Conf. of GIScience. Berlin Heidelberg: Springer: LNCS 4197, 2006, 112?127.
    [85] Schuldt, Gottfried, Herzog. Retrieving Shapes Efficiently by a Qualitative Shape Descriptor: The Scope Histogram[C]. The 5th Int. Conf. of Image and Video Retrieval. Springer, LNCS 4071, 2006, 261?270.
    [86] Schuldt, Gottfried, Herzog. A Compact Shape Representation for Linear Geographical Objects: The Scope Histogram[C]. The 14th ACM Int. Symposium on Advances in Geographic Information Systems. Arlington, VA, USA, 2006. (Accepted for publication)
    [87] E. Staffetti, A. Grau, F. Serratosa, A. Sanfeliu. Object and image indexing based on Region Connection Calculus and Oriented Matroid Theory [J]. Discrete Applied Mathematics. 2005, 147(2-3): 345?361.
    [88] Staffetti, Grau, Serratosa, Sanfeliu. Shape Representation and Indexing Based on Region Connection Calculus and Oriented Matroid Theory[C]. The 11th Int. Conf. of DGCI. Berlin Heidelberg: Springer, LNCS2886, 2003, 267?276.
    [89] Dutta S. Qualitative spatial reasoning: a semi-quantitative approach using fuzzy logic[A].In:Design and Implementation of Large Spatial Databases[C].NewYork: 1990.345?364
    [90] Okabe A, Boots B, Sugihara K. Spatial Tesselations: Concepts and Applications of Voronoi Diagrams [M]. NewYork :John Wiley & Sons ,1992
    [91]陈军,崔秉良,用Voronoi方法为MapInfo扩展拓扑功能[J],武汉测绘科技大学学报.1997,22(3). 195?200
    [92]杜晓初,郭庆胜,基于Delaunay三角网的空间邻近关系推理[J],测绘科学,2004,Vol.29,No.6,65?67
    [93]艾廷华,城市地图数据库综合的支撑数据模型与方法研究[D],武汉测绘科技大学,博士论文,2000
    [94]艾廷华, Delaunay三角网支持下的空间场表达[J],测绘学报,2006年第1期,71?76
    [95] EGENHOFE M J. Spatial SQL: a query and presentation language [J]. IEEE Transactions on Knowledge Engineering and Data Engineering , 1994 , 6 (1) : 86295
    [96] VOISARD A, DAVID B. A database perspective on geospatial data modeling [J]. IEEE Transactions on Knowledge and Data Engineering, 2002, 14 (2): 2262243.
    [97] WANG Fangju. Towards a natural language user interface :an approach of fuzzy query[J].International Journal of Geographical Information System,1994,8 (2) :1432162
    [98] ZHAN F B. Approximate analysis of binary topological relations between geographic regions wit h indeterminate boundaries [J]. Soft Computing, 1998 (2): 28234.
    [99] CHANG S K, COSTAGLIOLA G, PACINI G, et al. Visual language system for user interfaces [J]. IEEE Software, 1995:33244.
    [100] LEE Y C, CHIN F L. An iconic query language for topological relationships in GIS [J]. International Journal of Geographical Information System , 1995 , 9 (1) : 25246
    [101]孙正兴,冯桂焕,周若鸿.基于草图的人机交换技术研究进展[J].计算机辅助设计与图形学学报,2005,Vol.17,No.9,1889?1899.
    [102]袁贞明,吴飞,庄越挺.基于草图内容的空间拓扑数据检索方法[J].浙江大学学报(工学版),2006,(10).
    [103]汪文睿,周良.基于层次的草图检索框架[J].中国制造业信息化,2006, Vol.39,No.19,78?81
    [104]夏宇,朱欣焰,周春辉.基于特征的空间数据相似性查询研究[J].计算机工程与应用,2007,15?17
    [105]高竹红,汤进,罗斌.基于结构图的手绘草图检索[J].计算机技术与发展,2008,Vol.18,No.3,32?35.
    [106] EGENHOFER.Spatial-Query-by-Sketch[C].Proceedings of the IEEE symposium on visual languages,IEEE Computer Society,Washington DC,USA,1996:60267
    [107] EGENHOFER M. Query processing in Spatial-Query-by-Sketch[J]. Journal of Visual Languages and Computing, 1997, 8 (4): 4032424.
    [108] BLASER A D. Sketching spatial queries [D]. Maine: University of Maine, 2000.
    [109] M. J. Egenhofer and R. D. Franzosa, Point-set Topological Spatial Relations [J]. International Journal of Geographical Information Science, 1991,vol. 2, 161?174
    [110] Goyal R,Egenhofer MJ.The Direction Relation Matrix: A Representation for Directions Relations between Extended Spatial Objects[C]. The Annual Assembly and the Summer Retreat of University Consortium for Geographic Information Systems Science,1997
    [111] Goyal R,Egenhofer MJ . Cardinal Directions between Extended Spatial Objects[J]. IEEE Transactions on Data Knowledge and Data Engineering, 2000.
    [112] Goyal RK, Egenhofer MJ. Consistent queries over cardinal directions across different levels of detail[C]. In: Tjoa AM, Wagner R, Al-Zobaidie A, eds. Proc. of the 11th Int’l Workshop on Database and Expert Systems Applications. Greenwich: IEEE Computer Society, 2000. 876?880.
    [113] Haralick, R.M., Elliott, G.L.Increasing tree search efficiency for constraint satisfaction problems [J]. Artificial Intelligence, 1980, 14: 263?313.
    [114] Bacchus, F., Grove, A. On the Forward Checking Algorithm[C]. In Proceedings the First International Conference on Principle and Practice of Constraint Programming, 1995, 292?309.
    [115] David Caduff, sketch-based queries in mobile gis-environments[D],thesis, The University of Maine ,2000
    [116] Fernando Ferri, Patrizia Grifoni, Maurizio Rafanelli. GeoSQL: A Sketch-Based Query Language for Geographical Data[C]. In Proceedings of iiWAS'2003.
    [117] Silva, G.C.D., Yamasaki, T., and Aizawa, K. Sketch-Based Spatial Queries for Retrieving Human Locomotion Patterns From Continuously Archived GPS Data[J]. In Proceedings of IEEE Transactions on Multimedia. 2009, 1240-1253.
    [118]吴立新,史文中,地理信息系统原理与算法[M].北京:科学出版社,2003
    [119] Holt, A. & G. L. Benwell, 1997, Using Spatial Similarity for Exploratory Spatial Data Analysis:Some Directions[C].The 2nd International Conference on GeoComputation, University of Otago, Dunedin, New Zealand, 279?288
    [120]丁虹,空间相似性理论与计算模型的研究[D],武汉大学博士论文,2004
    [121] Holt, A., spatial similarity and GIS: the grouping of spatial kinds[C]. The 11th Annual Colloquium of the Spatial Information Research Centre, University of Otago, Dunedin, New Zealand, 1999, 241?250.
    [122] Propper K.The Logic of Scientific Discovery[M].London:Hutchinson, 1972
    [123] Tversky B.Cognitive maps, cognitive collages and spatial mental models.In: Andrew U.Frank, Irene Capari.Spatial Information Theory, A theoretical Basis for GIS, COSIT’93.Berlin: Springer-Verlag. 1993,14?24
    [124] Tversky, A. Features of similarity [J]. Psychological Review, 1977, 84, 327-352.
    [125] Bruns, H.T. and Egebhofer M, 1996, Similarity of Spatial Scenes[C], In Seventh International Symposium on Spatial Data Handling, Delft, the Netherlands, August 1996, London, 173?184
    [126] W. Chu, C. Hsu, A. Cardenas and R. Taira. Knowledge-based Image Retrieval with Spatial and Temporal Constructs [J]. IEEE Transactions on Knowledge and Data Engineering 1998, 10(6): 872?888.
    [127] W. Chu, I. Leong and R. Taira. A Semantic Modeling Approach for Image Retrieval by Content [J]. VLDB Journal 1994, 3(4): 445?477.
    [128] A. Bimbo and P. Pala. Visual Image Retrieval by Elastic Matching of User Sketches [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence 1997, 19(2):121?132.
    [129] A. Bimbo, E. Vicario and D. Zingoni. Symbolic Description and Visual Querying of Image Sequences Using Spatio-Temporal Logic [J]. IEEE Transactions on Knowledge and Data Engineering.1995, 7(4): 609?622.
    [130] Al-Khatib, Y. Day, A. Ghafoor and P. Berra.Semantic Modeling and Knowledge Representation in Multimedia Databases [J]. IEEE Transactions on Knowledge and Data Engineering.1999, 11(1): 64?80.
    [131] Yoshitaka and T. Ichikawa. A Survey on Content-based Retrieval for Multimedia Databases [J]. IEEE Transactions on Knowledge and Data Engineering.1999, 11(1): 81?93.
    [132] Jiang and A. Elmagarmid.Spatial and Temporal Content-based Access to Hypervideo Databases [J]. VLDB Journal 1998, 7: 226?238.
    [133] Pissinou, I. Radev, K. Makki and W. Campbell. A Topological-Directional Model for the Spatio-Temporal Composition of the Video Objects[C]. Eighth International Workshop on Research Issues on Data Engineering, Continuous-Media Databases and Applications,1998,17?24.
    [134] Aslandogan and C. Yu. Techniques and Systems for Image and Video Retrieval [J]. IEEE Transactions on Knowledge and Data Engineering.1999, 11(1): 56?63.
    [135] Papadias, D., Karacapilidis, N., Arkoumanis, N. Processing Fuzzy Spatial Queries: A Configuration Similarity Approach[J].International Journal of Geographic Information Science (IJGIS) .1999,Vol.13(2), 93?128
    [136] Max Egenhofer and Khaled Al-Taha, Reasoning about Gradual Changes of Topological Relationships[C], Theory and Methods of Spatio-Temporal Reasoningin Geographic Space, Pisa, Italy, A. Frank, I. Campari, and U. Formentini (eds.), Lecture Notes in Computer Science, 1992,Vol. 639, Springer-Verlag, 196?219
    [137] V Gudivada and U.Raghavan. Design and Evaluation of Algorithm for Image Retrieval by Spatial Similarity [J]. ACM Transactionson Information System.1995, 13(2):11,5?144.
    [138] M Nabil, A H H Ngu. Picture Similarity Retrieval Using the 2D Projection Interval Representation [J]. IEEE Trans on Knowledge and Data Engineering, 1996;8(4): 533?539
    [139] Papadias D and Delis V. Relations-based similarity[C]. In: Proceedings of the 5th ACM workshop on GIS. Lasvegas: ACM Press.1997,115?122
    [140] Paiva J A.Topological equivalence and similarity in multi-representation geographic database [D]. The Graduate School,University of Maine,1998
    [141] Roop K Goyal, Max J Egenhofer, Cardinal Direction between Extended Spatial Objects[J].IEEE Transaction On Knoweldge and DataEnginering,2000.
    [142] Hagen A.Comparison of maps containing nominal data[R].Technical report RIVM Project:MAP-SORS/550002/01/RO,Order number:143699,Research Institute for Knowledge Systems.Maastricht,Netherlands,2002
    [143] Hagen A.Fuzzy set approach to assessing similarity of categorical maps [J]. International Journal of Geographical Information Sciences, 2002, 17(3):235?249
    [144] MA Rodriguez, MJ Egenhofer.Determining semantic similarity among entity classes from different ontologies [J].IEEE Transactions on Knowledge and Data Engineering, 2003, 15(2):442?456.
    [145]郭庆胜,丁虹.基于栅格数据的面状目标空间方向相似性研究.武汉大学学报·信息科学版,2004,Vol. 29 No. 5
    [146] Schwering, Angela; Raubal, Martin: Spatial Relations for Semantic Similarity Measurement[C]. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), V3770 LNCS, Perspectives in Conceptual Modeling - ER 2005 Workshops CAOIS, BP-UML, CoMoGIS, eCOMO, and QoIS, Proceedings, 2005, 259?269
    [147] Bart Kuijpers,Bart Moelans,Nico Van de Weghe.Qualitative Polyline Similarity Testing with Applications to Query-by-Sketch, Indexing and Classification[C],ACM-GIS’06, Arlington, Virginia, USA, 2006,
    [148]闫浩文.空间方向关系的概念、计算和形式化描述模型研究[D].武汉大学博士学位论文,2001
    [149] Walker, Arron R., Moody, Miles P., & Pham, Binh L. A Spatial Similarity Ranking Framework for Spatial Metadata Retrieval[C]. In Combined 5th Trans Tasman Survey Conference & 2nd Queensland Spatial Industry Conference,2006, 18?23
    [150] Konstantinos Nedas and Max Egenhofer , Spatial Similarity Queries with Logical Operators[C],in: T. Hadzilacos, Y. Manolopoulos, J. Roddick, and Y. Theodoridis (Eds.), Advances in Spatial and Temporal Databases, 8th International Symposium, SSTD 2003, July 24-27, Santorini, Greece, Lecture Notes in Computer Science, 2003,Vol. 2750, 430?448
    [151] Caduff, D. and M.J. Egenhofer, Geo-mobile query-by-sketch[J]. International Journal of Web Engineering and Technology, 2007. 3(2): 157?175.
    [152] Kostas Nedas and Max Egenhofer, Spatial-Scene Similarity Queries[J],Transactions in GIS , 2008,12 (6): 661?681
    [153] Kimia Rezaei Kalantari,Symbolic Image Indexing and Retrieval by Spatial Similarity,American Journal of Scientific Research,2011,Issue 13, 99?112
    [154]梅耀元,闫浩文,李强.多尺度地理空间点状要素相似关系研究.测绘与空间地理信息.2010年第33卷第2期,18?20
    [155]郭旦怀.基于相似性的地理空间分析关键技术研究[D].中国科学院遥感应用研究所,2009
    [156]闫实,王学良.空间相似查询中MBR边界区域关系研究.计算机系统应用[J].2009年01期,29?34
    [157]江浩,褚衍东,闫浩文,郭丽峰.多尺度地理空间线状目标形状相似性的度量[J].测绘科学,2010年05期,35?38
    [158]梁爽,孙正兴,面向草图检索的小样本增量有偏学习算法[J],软件学报, Vol.20, No.5, May 2009, 1301?1312

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700