多尺度多视点密集点云重构算法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着互联网技术的迅速发展,网络中图像数据库的规模不断扩大,人们开始利用网上提供的图像资源构建各种真实场景的模型,这也使得三维建模变得更加有意义。但是互联网上的图像来源不同,再加上外界噪音和遮挡因素的影响,使得既使是对同一场景拍摄的图像也具有显著的差异。因此,网络中的图像资源给三维建模提供便利的同时,也给重建工作带来更大的挑战。本文以基于互联网图像资源实现户外开放性场景的多目重构为研究背景,紧紧围绕重建中涉及的关键技术开展研究工作,在深入的学习和分析现有的相关文献和算法的基础上在下面几个方面取得了一些创新性的研究成果:
     (1)提出一个新的结合灰度信息和颜色信息的局部不变描述符HRCRD的构建方法。该描述符由基于灰度Haar小波响应构建的子描述符和基于颜色比率不变模型构建的子描述符组成。其中对所提出的颜色比率不变模型,从理论上和实验上均证明了在视点变化、光照方向变化、光照强度变化和光照颜色变化等各种变化条件下能保持较好的不变性。HRCRD描述符不仅具有较快的描述速度,而且提高了现有描述符的独特性和鲁棒性。
     2)提出一种新的匹配代价函数,它基于颜色分量、方向分量和距离分量对传统的匹配代价函数进行加权,大大降低误匹配率。本文还提出了一种基于仿射变换优化模型的密集匹配算法,结合新的匹配代价函数,使传统的基于支持窗的密集匹配算法适用于宽基线图像的情况,且使密集匹配的精度达到亚像素级。
     3)针对互联网图像间尺度和基线对自定标算法精度的影响,提出了基于邻域视图选择方案的匹配点跟踪算法,使准密集匹配点在每个图像对应的邻域视图中快速精确的跟踪;针对参数优化过程中,由于输入图像的个数和3D点的个数较多致使全局优化开销变得非常大,甚至可能优化失败的情况,提出了一种两层迭代优化算法。内层迭代对相机参数和3D准密集点参数采用全局和局部相结合的优化策略。外层迭代基于重投影误差对外点进行剔除,降低外点对定标精度的影响。本文在多组图像集中对所提出的算法进行了验证,表明提出的两层迭代算法不但可以获得较密集的3D点云,而且比传统的全局优化算法获得更好的精度。
     4)针对互联网中的图像具有规模大、尺度范围大、分辨率高低不同等特点,提出将输入图像分级分组和视图选择:场景级图像预分组、图像级视图选择以及点级视图选择,面向重构中不同阶段的问题,较高效地组织图像。其中场景级预分组算法首先采用全局GIST特征对图像粗分组,剔除不必要的分组;然后采用局部HRCRD特征和两视图几何约束对分组进一步求精(筛选和合并),剔除组内具有较低相关性的图像并根据不同的视点范围和尺度范围对图像进行组内再分组(细化),有效的组织图像。
     在以上各部分的基础上,搭建了一个多视点多尺度三维密集点云重构系统,将前面提出的算法集成到统一的平台。通过实验证明,该系统既可以实现户外多尺度场景的密集点云重构,也可以实现单一尺度场景的密集点云重构。
With the development of the Internet, the image database on the Internet becomes more and more abundant. More and more researchers start to reconstruct the real scene model using the Internet images. This makes image-based modeling more meaninful. Since the images on the Internet usually come from different cameras, they usually have different noise levels and occlusions. This leads to the different appearance of the photos, even they are captured at the same scene. Although the image resource on the Internet brings some conveniences, it brings more challenges for reconstruction. This paper focuses on the key techniques involved in3D reconstruction from Internet images, and several novel and practically useful algorithms are proposed as follows:
     (1) A novel local invariant descriptor HRCRD is proposed by combining the intensity and color information. This descriptor is built based on two sub-descriptors:Haar wavelet response sub-descriptor, and color ratio invariant sub-descriptor. The color ratio invariant model is invariant to the changes of viewing direction, highlights, illumination direction, illumination intensity, and illumination color. This descriptor not only improves the describing speed of most existing descriptors, but also improves the discriminative power and robustness.
     (2) A new matching cost function is proposed by weighting the traditional function using the color component, direction component, and the distance component. This greatly reduces the error matching. It is further integrated with a proposed affine transformation based dense matching function to improve the matching accuracy at the sub-pixel level.
     (3) In order to eliminate the negative impact of the variant scale and baseline of the internet images, a neighboring view selection strategy is proposed to quickly and accurately track matching points in multi-views. A two layer iteration optimization algorithm is proposed to resolve the problems that the optimization process in the camera calibration cost high, or even fail due to the large amount of input images and3D quasi-dense points. In the inner layer, local photometric consistency and a global objective function are used to optimize3D quasi-dense points and camera parameters respectively, and the two processes switch iteratively. In the outer layer, the outliers are discarded by reprojection error in order to reduce the negative impact of the outliers. The proposed algorithms are tested with several image sets. The experimental results demonstrate that our algorithm performs better than SBA algorithm. In addition, our algorithm has more superiority when the number of images is small.
     (4) In order to deal with the internet images that have the characteristics of large amount, large scale invariant, and large resolution invariant, an input image grouping and view selection algorithm is proposed. It has three level, the scene level image pre-grouping, image level view selection, and point level view selection. For the different stages of the reconstruction, the images can be arranged more effectively. The scene level image pre-grouping algorithm employs the global GIST features to roughly group the image, and eliminate the unnecessary groups. Then the local HRCRD features and epipolar geometry are employed to refine the groups. The images with low correlations to other images in the group will be discarded, and the remaining images will be further grouped according to their scales and views.
     On the basis of the feasibility and effectiveness of above methods and algorithms, we develop a multi-view and multi-scale3D dense point cloud reconstruction system which integrating all the algorithms proposed in this paper. Further experiments demonstrate that this system not only can reconstruct the point cloud for the outdoor multi-scale scenes, but also be applicable for the single scale scenes.
引文
[1]M. Pollefeys, L. Van Gool, M. Vergauwen, F. Verbiest, K. Cornelis, J. Tops, R. Koch. Visual modeling with a handheld camera. International Journal of Computer Vision,59(3):207-232, 2004.
    [2]G Zhang, X. Qin, W. Hua,T Wang, P. Heng, H. Bao. Robust metric reconstruction from challenging video sequences. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,2007.
    [3]Guofeng Zhang, Jiaya Jia, Tien-Tsin Wong, Hujun Bao. Recovering consistent video depth maps via bundle optimization. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,2008.
    [4]Flickr. http://www.flickr.com
    [5]S. Seitz, B. Curless, J. Diebel, D. Scharstein, R. Szeliski. A comparison and evaluation of multi-view stereo reconstruction algorithms. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,2006.
    [6]C. Strecha, W. von Hansen, L. Van Gool, P. Fua, U. Thoennessen. On benchmarking camera calibration and multi-view stereo for high resolution imagery. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,2008.
    [7]Chien C H, Aggarwal J K. Identification of 3D objects from multiple silhouettes using quad trees/octrees. Computer Vision, Graphics, and Image Processing,36(2/3):256-273,1986.
    [8]Potmesil M. Generating octree models of 3D objects from their silhouettes in a sequence of images. Computer Vision, Graphics, and Image Processing,40(1):1-29,1987.
    [9]Szeliski R. Rapid octree construction from image sequences. CVGIP:Image Understanding, 58(1):23-32,1993.
    [10]S. M. Seitz, C. R. Dyer. Photorealistic scene reconstruction by voxel coloring. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp.1067-1073,1997.
    [11]A. Treuille, A. Hertzmann, and S. Seitz. Example-based stereo with general BRDFs. In Proceedings of the European Conference on Computer Vision, vol.2, pp.457-469.
    [12]K. N. Kutulakos, S. M. Seitz. A theory of shape by space carving. In Proceedings of IEEE International Conference on Computer Vision, vol.1, pp.307-314,1999
    [13]A. Broadhurst, T. Drummond, and R. Cipolla. A probabilistic framework for the space carving algorithm. In Proceedings of IEEE International Conference on Computer Vision, pp.388-393, 2001.
    [14]G. Vogiatzis, P. H. S. Torr, R. Cipolla. Multi-view stereo via volumetric graph-cuts. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, vol.2, pp.391-398,2005.
    [15]V. Kolmogorov and R. Zabih. Multi-camera scene reconstruction via graph cuts. In Proceedings of the European Conference on Computer Vision, vol.3, pp.82-96,2002.
    [16]K. Kolev, M. Klodt, T. Brox, D. Cremers. Continuous global optimization in multiview 3D reconstruction. International Journal of Computer Vision,84(1), pp.80-96,2009.
    [17]S. Roy and I. Cox. A maximum-low formulation of the N-camera stereo correspondence problem. In Proceedings of IEEE International Conference on Computer Vision, pp.492-499, 1998.
    [18]S. Sinha and M. Pollefeys. Multi-view reconstruction using photo-consistency and exact silhouette constraints:A maximum-low formulation. In Proceedings of IEEE International Conference on Computer Vision, pp.349-356,2005.
    [19]Y. Furukawa and J. Ponce. High-fidelity image-based modeling. Technical Report 2006-02, UIUC,2006.
    [20]C. Hernandez Esteban, F. Schmitt. Silhouette and stereo fusion for 3D object modeling. Computer Vision and Image Understanding,96(3):367-392,2004.
    [21]Y. Furukawa and J. Ponce. Carved visual hulls for image-based modeling, In Proceedings of the European Conference on Computer Vision,2006.
    [22]Y. Furukawa and J. Ponce. Carved visual hulls for Image-based modeling. International Journal of Computer Vision,81(1):53-67,2009.
    [23]C. Zitnick, S.-B. Kang, M. Uyttendaele, S. Winder, and R. Szeliski. High-quality video view interpolation using a layered representation. ACMTrans. on Graphics,23(3):600-608,2004.
    [24]P. Gargallo and P. Sturm. Bayesian 3D modeling from images using multiple depth maps. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, vol.2, pp.885-891,2005.
    [25]D. Bradley, T. Boubekeur, and W. Heidrich. Accurate multi-view reconstruction using robust binocular stereo and surface meshing. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,2008.
    [26]P. Narayanan, P. Rander, and T. Kanade. Constructing virtual worlds using dense stereo. In Proceedings of IEEE International Conference on Computer Vision, pp.3-10,1998.
    [27]O. Faugeras, E. Bras-Mehlman, and J.-D. Boissonnat. Representing stereo data with the Delaunay triangulation. Artificial Intelligence,44(1-2):41-87,1990.
    [28]A. Manessis, A. Hilton, P. Palmer, P. McLauchlan, and X. Shen. Reconstruction of scene models from sparse 3D structure. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, vol.1, pp.666-673,2000.
    [29]D. Morris and T. Kanade. Image-consistent surface triangulation. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, vol.1, pp.332-338,2000.
    [30]C. J. Taylor. Surface reconstruction from feature based stereo. In Proceedings of IEEE International Conference on Computer Vision, pp.184-190,2003.
    [31]Y. Furukawa and J. Ponce. Accurate, dense, and robust multi-view stereopsis. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,2007.
    [32]Y. Furukawa and J. Ponce. Accurate, dense, and robust multi-view stereopsis. In IEEE Transactions on Pattern Analysis Machine Intelligence (TPAMI).32(8):1362-1376,2010.
    [33]M. Habbecke and L. Kobbelt. A surface-growing approach to multi-view stereo reconstruction. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,2007.
    [34]M. Habbecke and L. Kobbelt. Iterative multi-view plane fitting. In Proc. of VMV, pp.73-80, 2006.
    [35]D.G. Lowe. Object recognition from local scale-invariant features. International Conference on Computer Vision, vol.2, pp.1150-1157,1999.
    [36]D.G. Lowe. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, vol.20, no.2, pp.91-110,2004.
    [37]Yan Ke, Rahul Sukthankar. PCA-SIFT:A more distinctive representation for local image descriptors. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp.66-75,2004.
    [38]K. Mikolajczyk, C. Schmid, A performance evaluation of local descriptors. In IEEE Transactions on Pattern Analysis Machine Intelligence (TPAMI).27(10):1615-1630,2005
    [39]H. Bay, T. Tuytelaars, L. Van Gool, SURF:speeded up robust features, In Proceedings of the European Conference on Computer Vision, pp.404-417,2006.
    [40]H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, SURF:speed up robust features, Computer Vision and Image Understanding, vol.110, no.3, pp.346-359,2008.
    [41]J. Matas, O. Chum, M. Urban, T. Pajdla. Robust wide baseline stereo from maximally stable extremal regions. In Proceedings of the British Machine Vision Conference, pp.384-393, 2002.
    [42]C. Strecha, R. Fransens, L. Van Gool. Combined depth and outlier estimation in multi-view stereo. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2006
    [43]D. Scharstein and R. Szeliski. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. International Journal of Computer Vision,47(1/2/3):7-42,2002.
    [44]C. Strecha, T. Tuytelaars, and L. Van Gool, Dense matching of multiple wide baseline views, Proc. In Proceedings of IEEE International Conference on Computer Vision,2003.
    [45]E. Tola, V. Lepetit, P. Fua. A fast local descriptor for dense matching. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp.1-8,2008.
    [46]E. Tola, V. Lepetit, and P. Fua. DAISY:An efficient dense descriptor applied to wide-baseline stereo. In IEEE Transactions on Pattern Analysis Machine Intelligence (TPAMI),2010, pp.815-830.
    [47]M. Lhuillier and L. Quan. A quasi-dense approach to surface reconstruction from uncalibrated images. In IEEE Transactions on Pattern Analysis Machine Intelligence (TPAMI), vol.27, no.3, pp.418-433,2005.
    [48]J. Kannala, S.S. Brandt. Quasi-dense wide baseline matching using match propagation. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,2006.
    [49]Alaa E. Abdel-Hakim, Aly A. Farag. CSIFT:A SIFT descriptor with color invariant characteristics. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, vol.2, pp.1978-1983,2006.
    [50]E. N. Mortensen, H. Deng, L. Shapiro. A SIFT descriptor with global context. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp.184-190,2005.
    [51]Canlin Li, Lizhuang Ma:A new framework for feature descriptor based on SIFT. Pattern Recognition Letters,30(5):544-557,2009.
    [52]M. A. Fischler, R. C. Bolles. Random sample consensus:a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM.24(6):381-395, 1981
    [53]R. I. Hartley. In defense of the eight-point algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence,19(6):580-593,1997.
    [54]Z.Y. Zhang, R. Deriche, O.D. Faugeras, Q.T. Luong. A robust technique for matching two uncalibrated images through the recovery of the unknown Epipolar geometry. In IEEE Transactions on Pattern Analysis Machine Intelligence (TPAMI), vol.82, pp.1129-1139,1995.
    [55]Q. T. Luong, O. D. Faugeras. The fundamental matrix:Theory, algorithms, and stability analysis. International Journal of Computer Vision,17(1):43-75,1996.
    [56]L. Quan. Invariants of six points and projective reconstruction from three uncalibrated images. IEEE Transactions on Pattern Analysis and Machine Intelligence,17(1):34-46,1995.
    [57]P. H. S. Torr, A. Zisserman. Robust parameterization and computation of the trifocal tensor. Image and Vision Computing,15(8):591-605,1997.
    [58]Faugeras O., Luong Q.T., Maybank S. Camera self-calibration:theory and experiments. In Proceedings of the European Conference on Computer Vision, pp.321-334,1992.
    [59]Maybank S., Faugeras O. A theory of self-calibration of a moving camera. International Journal of Computer Vision,8(2):pp.123-151,1992.
    [60]L. Agapito, E. Hayman, I. Reid. Self-calibration of rotating and zooming cameras. International Journal of Computer Vision,47(1):287-287,2002
    [61]M. Pollefeys, R. Koch, L. V. Gool. Self-calibration and metric reconstruction inspite of varying and unknown intrinsic camera parameters. International Journal of Computer Vision, 32(1):7-25,1999.
    [62]B. Triggs, F. M. Philip, I. H. Richard, W. F. Andrew. Bundle Adjustment-A modern synthesis. Proceedings of the International Workshop on Vision Algorithms:Theory and Practice.2000. Springer-Verlag.
    [63]M. I. A. Lourakis, A. A. Argyros. SBA:A software package for generic sparse bundle adjustment. ACM Trans. Math. Softw.36(1):1-30,2009.
    [64]P. A. Beardsley, A. Zisserman, D. W. Murray. Sequential updating of projective and affine structure from motion. International Journal of Computer Vision.23(3):235-259,1997.
    [65]P. Sturm, B. Triggs. A factorization based algorithm for multi-image projective structure and motion. In Proceedings of the European Conference on Computer Vision, pp.709-720,1996.
    [66]S. Christy, R. Horaud. Euclidean shape and motion from multiple perspective views by affine iterations. In IEEE Transactions on Pattern Analysis Machine Intelligence (TPAMI), 18(11):1098-1104,1996.
    [67]F. Kahl. Multiple view geometry and the L-infinity norm. In Proceedings of IEEE International Conference on Computer Vision. Vol.2 1002-1009,2005.
    [68]A. W. Fitzgibbon, A. Zisserman. Automatic camera recovery for closed or open image sequences. In Proceedings of the European Conference on Computer Vision,1998.
    [69]H.-Y. Shum, Q. Ke, Z. Zhang. Efficient bundle adjustment with virtual key frames:a hierarchical approach to multi-frame structure from motion. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Vol.2,1999.
    [70]Yao, J., Cham, W.K., Robust multi-view feature matching from multiple unordered views, Pattern Recognition, Vol.40, No.11, pp.3081-3099,2007.
    [71]F. Schaffalitzky and A. Zisserman. Multi-view matching for unordered image sets, or "How do I organize my holiday snaps?". In Proceedings of the European Conference on Computer Vision, pp.414-431,2002.
    [72]Fergus, R., Perona, P., Zisserman, A. A visual category filter for Google images. In Proceedings of the European Conference on Computer Vision, pp.242-256,2004.
    [73]Berg, T., Forsyth, D. Animals on the web. In Proceedings of International Conference on Computer Vision and Pattern Recognition,2006.
    [74]Schroff, F., Criminisi, A., Zisserman, A. Harvesting image databases from the web. In Proceeding of International Conference on Computer Vision,2007.
    [75]N. Snavely, S. M. Seitz, R. Szeliski, Photo tourism:Exploring photo collections in 3D, ACM Transactions on Graphics (SIGGRAPH Proceedings),25(3),835-846,2006.
    [76]I. Simon, N. Snavely, S. M. Seitz. Scene summarization for online image collections. In Proceedings of IEEE International Conference on Computer Vision, pp.1-8,2007.
    [77]Kai Ni, Drew Steedly, Frank Dellaert, Out-of-core bundle adjustment for large-scale 3D Reconstruction. In Proceedings of IEEE International Conference on Computer Vision, pp.1-8, 2007.
    [78]Yan-Tao Zheng, Ming Zhao, Yang Song, Hartwig Adam, Ulrich Buddemeier, Alessandro Bissacco, Fernando Brucher, Tat-Seng Chua, Hartmut Neven. Tour the World:building a web-scale landmark recognition engine. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp.1085-1092,2009.
    [79]Xiaowei Li, Changchang Wu, Christopher Zach, Svetlana Lazebnik and Jan-Michael Frahm. Modeling and recognition of landmark image collections using iconic scene graphs. In Proceedings of the European Conference on Computer Vision, pp.427-4401,2008.
    [80]Shi J., Malik J. Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.22, pp.888-905,2000.
    [81]Richard Hartley, Andrew Zisserman. Multiple view geometry in computer vision,2 edition. Cambridge University Press, March 2003.
    [82]R. Hartley, A. Zisserman韦穗,杨尚骏,章权兵and胡茂林.计算机视觉中的多视图几何.合肥.安徽大学出版社.2002
    [83]吴福朝.计算机视觉中的数学方法.科学出版社.2008
    [84]J. G. Semple, G. T. Kneebone. Algebraic projective geometry. Oxford University Press.1998
    [85]梅向明,刘增贤,门树慧.高等几何.高等教育出版社.1988
    [86]胡明星.未定标系统下几何估计、摄像机定标与三维重建研究[博士学位论文].计算机学院,北京交通大学.2003
    [87]陈京.新一代人机交互中基于图像的三维信息获取研究[博士学位论文].计算机学院,北京交通大学.2011
    [88]T. Lindeberg. Edge detection and ridge detection with automatic scale selection. International Journal of Computer Vision, vol.30, no.2, pp.117-156,1998.
    [89]K. Mikolajczyk, C.Schmid. Scale and affine invariant interest point detectors. International Journal of Computer Vision, vol.60, no.1, pp.63-86,2004.
    [90]K. Mikolajczyk and C. Schmid, An affine invariant interest point detectors. In Proceeding of International Conference on Computer Vision. Vol.1, pp.128-142,2002.
    [91]T. Lindeberg, J. Garding. Shape from texture from a multi-scale perspective. In Proceedings of IEEE International Conference on Computer Vision, vol.1, pp.683-691,1993.
    [92]S. Belongie, J. Malik, J. Puzicha. Shape matching and object recognition using shape contexts. In IEEE Transactions on Pattern Analysis Machine Intelligence (TPAMI). vol.24, no.4, pp. 509-522,2002.
    [93]L. Florack, B. ter Haar Romeny, J. Koenderink, and M. Viergever. General intensity transformations and second order invariants. In Proceedings of the 7th Scandinavian Conference on Image Analysis, Aalborg, Denmark, pp.338-345,1991.
    [94]J. Koenderink and A. van Doom. Representation of local geometry in the visual system. Biological Cybernetics, vol.55,367-375,1987.
    [95]S. Lazebnik, C. Schmid, and J. Ponce. Sparse texture representation using affine-invariant neighborhoods. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp.319-324,2003.
    [96]F. Schaffalitzky and A. Zisserman. Multi-view matching for unordered image sets. In Proceedings of the European Conference on Computer Vision, pp.414-431,2002.
    [97]L. Van Gool, T. Moons, and D. Ungureanu. Affine/photometric invariants for planar intensity patterns. In Proceedings of the European Conference on Computer Vision, pp.642-651,1996.
    [98]李兵.颜色恒常性计算研究.工学博士学位论文.北京交通大学出版社.2009年5月.
    [99]赵麟.基于颜色不变性的图像检索算法研究.工学硕士学位论文.北京交通大学出版社.2009年6月.
    [100]娄强.颜色直方图识别新技术研究.生物医学工程硕士学位论文.天津大学出版社.2007年1月.
    [101]S. A. Sharer. Using color to separate reflection components. Color Research And Application. 10(4):210-218,1985.
    [102]T. Gevers, A.W.M. Smeulders. Color based object recognition. Pattern Recognition, vol.32, no.1, pp.453-464,1999.
    [103]T. Gevers, H. Stokman. Robust Histogram construction from color invariants for object recognition. In IEEE Transactions on Pattern Analysis Machine Intelligence (TPAMI), vol.26, no.1, pp.113-118,2004.
    [104]J.M. Geusebroek, R. van den Boomgaard, A.W.M. Smeulders, H. Geerts. Color invariance. In IEEE Transactions on Pattern Analysis Machine Intelligence (TPAMI), vol.23, no.12, pp.1338-1350,2001.
    [105]K.E.A. van de Sande, T. Gevers, and C.G.M. Snoek, Evaluating color descriptors for object and scene recognition. In IEEE Transactions on Pattern Analysis Machine Intelligence (TPAMI), vol.32, no.9, pp.1582-1596,2010.
    [106]M. J. Swain, D. H. Ballard. Color indexing. International Journal of Computer Vision,7(1): 11-32,1991.
    [107]B. V. Funt, G. D. Finlayson. Color constant color indexing. In IEEE Transactions on Pattern Analysis Machine Intelligence (TPAMI),17(2):522-529,1995.
    [108]Forsyth D A, Ponce J. Computer Vision:A modern approach. Prentice Hall, Inc,2003.
    [109]Kobns Bamard. Practical colour constancy. Simon Fraser University, PhD dissertation,1999.
    [110]S. A. Shafer. Using color to separate reflection components. Color Research and Application, 10(4):210-218,1985.
    [111]J. von Kries. Chromatic Adaptation. Sources Of Color Science,1970.
    [112]G D. Finlayson, S. D. Hordley, R. Xu. Convex programming colour constancy with a diagonal-offset model. In Proceedings of IEEE International Conference on Image Processing. pp.948-951,2005.
    [113]F. Mindru, T. Tuytelaars, L. Van Gool, T. Moons. Moment invariants for recognition under changing viewpoint and illumination. Computer Vision and Image Understanding, vol.94, no. 1-3, pp.3-27,2004.
    [114]http://vision.middlebury.edu/stereo/data/
    [115]Christoph Rhemann, Asmaa Hosni, Michael Bleyer, Carsten Rother, Margrit Gelautz. Fast cost-volume filtering for visual correspondence and beyond. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,2011.
    [116]http://www.vision.caltech.edu/archive.html
    [117]T. Kanada and M. Okutomi. A stereo matching algorithm with an adaptive window:Theory and experiment. In IEEE Transactions on Pattern Analysis Machine Intelligence (TPAMI). vol.16, no.9, pp.920-932,1994.
    [118]Y. Boykov, O. Veksler, R. Zabih. A variable window approach to early vision. In IEEE Transactions on Pattern Analysis Machine Intelligence (TPAMI). vol.20, no.12, pp.1283-1294, 1998.
    [119]O. Veksler. Stereo correspondence with compact windows via minimum ratio cycle. In IEEE Transactions on Pattern Analysis Machine Intelligence (TPAMI), vol.24, no.12, pp. 1654-1660,2002.
    [120]O. Veksler. Fast variable window for stereo correspondence using integral images. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, vol.1, pp.556-561,2003.
    [121]A. Fusiello, V. Roberto, and E. Trucco. Efficient stereo with multiple windowing. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp.858-863, 1997.
    [122]A.F. Bobick and S.S. Intille. Large occlusion stereo. In Proceedings of IEEE International Conference on Computer Vision, vol.33, no.3, pp.181-200,1999.
    [123]S.B. Kang, R. Szeliski, C. Jinxjang. Handling occlusions in dense multi-view stereo. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, vol.1, pp.103-110,2001.
    [124]H. Tao, H.S. Sawhney, R. Kumar. A global matching framework for stereo computation. Proc. In Proceedings of IEEE International Conference on Computer Vision, vol.1, pp.532-539, 2001.
    [125]L. Wang, S.B. Kang, H.-Y. Shum. Cooperative segmentation and stereo using perspective space search. In Proceedings of IEEE Asian Conference on Computer Vision, vol.1, pp.366-371,2004.
    [126]K. Prazdny. Detection of binocular disparities, biological cybernetics, vol.52, pp.93-99,1985.
    [127]T. Darrel. A radial cumulative similarity transform for robust image correspondence. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp.656-662, 1998.
    [128]Y. Xu, D. Wang, T. Feng, H.-Y. Shum, Stereo computation using radial adaptive windows. Proc. In Proceedings of the International Conference Pattern Recognition, vol.3, pp.595-598, 2002.
    [129]Kuk-Jin Yoon, So Kweon. Adaptive support-weight approach for correspondence search. In IEEE Transactions on Pattern Analysis Machine Intelligence (TPAMI). vol.28, no.4, pp. 650-656,2006.
    [130]H.H. Baker, T.O. Binford. Depth from edge and intensity based stereo. In Proceedings of the International Conference Artificial Intelligence, vol.2, pp.631-636,1981.
    [131]V. Kolmogorov, R. Zabih. Multi-camera scene reconstruction via graph cuts. In Proceedings of the European Conference on Computer Vision,2002.
    [132]Y. Boykov, O. Veksler, R. Zabih. Fast Approximate energy minimization via graph cuts. IEEE Trans. Pattern Analysis and Machine Intelligence, vol.23, no.11, pp.1222-1239,2001.
    [133]S. Roy and I.J. Cox. A maximum-flow formulation of the N-camera stereo correspondence problem. Proc. In Proceeding of International Conference on Computer Vision, pp.492-499, 1998.
    [134]L. Alvarez, R. Deriche, J. Weickert, J., Sanchez. Dense disparity map estimation respecting image discontinuities:A PDE and scale-space based approach. J. Visual Comm. and Image Representation, vol.13, no.1/2, pp.3-21,2002.
    [135]http://www.robots.ox.ac.uk/-vgg/research/affine/index.html
    [136]C. Strecha, W. von Hansen, L. Van Gool, P. Fua, U. Thoennessen. On benchmarking camera calibration and multi-view stereo for high resolution imagery. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,2008.
    [137]http://www.commission3.isprs.org/wg1/
    [138]http://vision.middlebury.edu/stereo/data/
    [139]K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J.Matas, F. Schaffalitzky, T. Kadir, L. Van Gool, A comparison of affine region detectors, International Journal of Computer Vision. vol.65, no.1/2,2005.
    [140]J. Shi, C. Taomasi. Good features to track. In Proceeding of International Conference on Computer Vision and Pattern Recognition, pp.593-600,1994.
    [141]J. Xiao, M. Shah. Two-frame wide baseline matching. In Proceedings of International Conference on Computer Vision, pp.603-609,2003.
    [142]邓宝松.基于点线特征的大基线图像序列三维重建技术研究.工学博士学位论文,国防科学技术大学,2006年9月.
    [143]B. Deng, Y. Gao, L. Wu, B. Yang, Y. Wei. Accurate feature point matching based on affine iterative model. Information and Communication Technologies, ICTTA'06.2nd, vol.2, pp.2969-2973,2006.
    [144]F. Mindru, T. Moons, L. V. Gool. Comparing intensity transformation and their invariants in the context of color pattern recognition. In Proceedings of International Conference on Computer Vision, pp.448-460,2002.
    [145]C. Strecha, T.Tuytelaars and L. Van Gool. Dense matching of multiple wide-baseline views. In Proceeding of International Conference on Computer Vision, vol 2, pp.1194-1201,2003.
    [146]孟晓桥,胡占义.摄像机自标定方法的研究与进展.自动化学报,2003年1期
    [147]F. Mindru, L. V. Gool, T. Moons. Model estimation for photometric changes of outdoor planar color surfaces caused by changes in illumination and viewpoint. In Proceeding of International Conference on Computer Vision and Pattern Recognition, pp.620-623,2002.
    [148]R.Y. Tsai, An efficient and accurate camera calibration technique for 3D machine vision, In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp.364-374, 1986.
    [149]Z. Zhang. A flexible new technique for camera calibration. In IEEE Transactions on Pattern Analysis Machine Intelligence (TPAMI),22(11), pp.1330-1334,2000.
    [150]R. Hartley. Self-calibration of stationary cameras. International Journal of Computer Vision, 22(1), pp.5-23,1997.
    [151]C. Hernandez Esteban, F. Schmitt, and R. Cipolla. Silhouette coherence for camera calibration under circular motion. IEEE Transactions on Pattern Analysis and Machine Intelligence,29(2), pp.243-349,2007.
    [152]Faugeras O. Stratification of 3-d vision:Projective, afifine and metric representations. Journal Optical Society of America.12(3):456-484,1995.
    [153]Hartley R, Gupta R, Chang T. Stereo from uncalibrated cameras. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp.761-764,1992.
    [154]Mclauchlan P.F., Murray D.W. A unifying framework for structure and motion recovery from image sequences. In Proceeding of IEEE International Conference on Computer Vision, pp.314-320,1995.
    [155]Mohr R, Boufama B, Brand P. Accurate projective reconstruction. In:Proceedings of 2th Europe-U.S. workshop on Invariance, Ponta Delgada, Azores,1993.
    [156]Mohr R, Veillon F, Quan L. Relative 3D reconstruction using multiple uncalibrated images. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp.543-548, 1993.
    [157]Sturm P, Triggs B. A factorization based algorithm for multi-image projective and motion. In Proceedings of the European Conference on Computer Vision, pp.709-720,1996.
    [158]Triggs B. Factorization methods for projective structure and motion. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp.845-851,1996.
    [159]Hartley R. Euclidean reconstruction and invariants from multiple images. In TEEE Transactions on Pattern Analysis Machine Intelligence (TPAMI),16(10):1036-1041,1994.
    [160]Triggs B. Auto-calibration and the absolute quadric. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp.609-614,1997.
    [161]Pollefeys M., Van Gool L. Oosterlinck A. The modulus constraint:A new constraint for self-calibration. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp.349-353,1996.
    [162]Heyden A. Ustr K. Euclidean reconstruction from image sequences with varying and unknown focal length and principal point. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp.438-443,1997.
    [163]Pollefeys M., Koch R., Van Gool L. Self-calibration and metric reconstruction in spite of varying and unknown internal camera parameters. In Proceeding of IEEE International Conference on Computer Vision. pp.90-95,1998.
    [164]D. Martinec and T. Pajdla, Robust rotation and translation estimation in multiview reconstruction, In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp.1-8,2007.
    [165]M. Brown and D. G. Lowe. Unsupervised 3D object recognition and reconstruction in unordered datasets, In Proceedings of the International Conference on 3D Digital Imaging and Modeling, pp.56-63,2005.
    [166]Daniel T. Oram. Projective Reconstruction and metric models from uncalibrated video sequences. Manchester University, PhD dissertation,2001.
    [167]W. Triggs, P. F. McLauchlan, R. I. Hartley, A. Fitzgibbon. Bundle adjustment for structure from motion. In Vision Algorithms:Theory and Practice. Springer-Verlag,2000.
    [168]C.Siagian,L.Itti. Comparison of gist models in rapid scene categorization tasks. Journal of Vision,8(6):734,2008.
    [169]C.Siagian, L.Itti. Rapid biologically-inspired scene classification using features shared with visual attention. In IEEE Transactions on Pattern Analysis Machine Intelligence (TPAMI), 29(2):300-312,2007.
    [170]C.Siagian,L.Itti. Storing and recalling information for vision localization. In Proceedings of IEEE International Conference on Robotics and Automation (ICRA), pp.1848-1855,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700