稻瘟病菌三个侵染表达上调基因的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稻瘟病菌(Magnaporthe oryzae)是目前研究丝状真菌的重要模式生物。为了探索水稻与稻瘟病菌互作的分子机理,本文从稻瘟病菌全基因组基因芯片中挑选了三个该菌侵染水稻后表达上调倍数比较高的基因,对它们进行基因敲除,同时对其中的两个基因进行过量表达,分析它们的表型变化,以初步确定它们在稻瘟病菌侵染致病过程中的作用。
     首先构建了三个基因的敲除载体和MGG_06834.6与MGG_03891.6基因的过量表达载体,然后通过原生质体转化,获得基因的缺失突变体和过量表达突变体。突变体表型分析发现,MGG_03356.6缺失突变体在菌落形态,孢子萌发,致病性方面与野生型没有显著差别,而在疏水性表面上附着胞形成率比野生型菌株KU70低;MGG_06834.6缺失突变体的表型与对照菌株也没有明显变化,但过量表达突变体的产孢量降低,且附着胞形成提前,而致病性减弱;MGG_03891.6的缺失突变体的表型与野生型菌株没有显著差别,但过量表达突变体的附着胞形成滞后,且致病性也有所减弱。RT-PCR分析表明,MGG_06834.6和MGG_03891.6在野生型菌株中表达量很低。这些结果表明它们可能在稻瘟病菌侵染致病过程中充当一定的作用。
     同时,我们利用SDS的胁迫来观察细胞壁的完整性,实验结果发现,敲除MGG_03356.6和MGG_03891.6基因对细胞的完整性影响不明显,而敲除MGG_06834.6基因后病菌对SDS抗性较弱,说明细胞完整性减弱,因此MGG_06834.6可能是细胞完整性的调控因子。
Magnaporthe oryzae is one of model organisms in the research of Filamentous fungi. To explore the interaction between Magnaporthe oryzae and its host in molecular level, three genes which high expression during fungal infection were chosen for functional analysis. The knock-out mutans of all three genes and overexpression mutants of two genes were obtained to test their phenotypes in this paper.
     The gene deletion mutants of MGG_03356.6, MGG_06834.6 and MGG_03891.6, and gene overexpression mutants of MGG_06834.6 and MGG_03891.6 were obtained. The results indicated that there is no obvious difference between MGG_03356.6 deletion mutant and wild type strain in fungal colony morphology, conidial germination and pathogenicity. However, the appressoria formation on the hydrophobic surface was slightly low in the mutant. The deletion of MGG_06834.6 and MGG_03891.6 genes did not effect the fungus obviously, while the overexpression mutant of MGG_06834.6 showed low conidiation, fast appressoria formation but less virulence, and the overexpression mutant of MGG_03891.6 showed slow appressoria formation, as well as less virulence. The expressions of MGG_06834.6 and MGG_03891.6 in wild type were low by RT-PCR analysis. The results suggestted that these two genes may play certain roles during infection of Magnaporthe oryzae.
     Meanwhile, the cell wall integrity of three deletion mutants was tested by SDS stress. The results showed that the mutant of MGG_06834.6 but no MGG_03356.6 and MGG_03891.6 demonstrated weak resistance to the SDS stress, suggesting that the MGG_06834.6 gene may be a regulator in the cell wall integrity.
引文
[1] Bloom F. Rice, Races, and Riches[J]. Science, 2000, 288(5468): 973
    [2] Sesma A, Osbourn AE. The rice leaf blast pathogen undergoes developmental processes typical of root-infecting fungi[J]. Nature, 2004, 431(7008): 582-586
    [3] Valent B. Plant disease: underground life for rice foe[J]. Nature, 2004, 431(7008): 516-517
    [4] Ou SH. Pathogen variability and host resistance in rice blast disease[J]. Annu Rev Phytopathol, 1980, 18: 167-187
    [5] Bonmanj M, Mackil DJ. Durable resistance to rice blast disease[J]. Oryza, 1988, 25: 103-111
    [6] Jia Y, McAdams SA, Bryan GT, et al. Direct interaction of resistance gene and avirulence gene products confers rice blast resistance[J]. EMBO J, 2000, 19(15): 4004-4014
    [7] Valent B. Rice blast as a model system for plant pathology[J]. Phytopathology, 1990, 80(1): 33-36
    [8] Talbot NJ, Foster AJ. Genetice and genomics of the rice blast fungus Magnaporthe grisea: development an experimental model for understanding fungal diseases of cereals[J]. Plant Pathology, 2000, 34: 263-287
    [9] Talbot NJ. On the trail of a cereal killer: Exploring the biology of Magnaporthe grisea[J]. Annu Rev Microbio, 2003, 57: 177-202
    [10] Zeigler RS. Recombination in Magnaporthe grisea[J]. Annu Rev of Phytopathol, 1998, 36: 269-275
    [11] Hamer JE, Howard RJ, Chumley FG, et al. A mechanism for surface attachment in spores of a plant pathogenic fungus[J]. Science, 1988, 239: 288-290
    [12] Xiao JZ, Ohshima A, Kamakura T, et al. Extracellular glycoprotein(s) associated with cellular differentiation in Magnaporthe grisea[J]. Mol. Plant Microbe Interact, 1994, 7: 639-644
    [13] Howard RJ. Cell biology of pathogenesis[M]. 1994: 3-22
    [14] Bourett TM, Howard RJ. In vitro development of penetration structure in the riceblast fungus Magnaporthe grisea[J]. Can J. Bot, 1990, 68: 329-342
    [15] Howard RJ, Ferrari MA, Roach DH, et al. Penetration of hard substrates by a fungus employing enormous turgor pressures[J]. Proc Natl Acad Sci.USA, 1991, 88: 11281-11284
    [16] De Jong JC, Mccormack J, Sminoff N, et al. Glycerol generates turgor in rice blast[J]. Nature, 1997, 389: 244-255
    [17] Howard RJ, Valent B. Breaking and entering: host penetration by the fungal rice blast pathogen Magnaporthe grisea[J]. Annu Rev Microbiol, 1996, 50: 491-512
    [18] Hamer JE, Talbot NJ. Infection-related development in the rice blast fungus Magnaporthe grisea[J]. Curr Opin Microbiol, 1998, 1(6): 693-697
    [19] Urban M, Bhargava T, Hamer JE. An ATP-driven efflux pump is a novel pathogenicity factor in rice blast disease[J]. EMBO J, 1999, 18(3): 512-521
    [20] Foster AJ, Jenkinson JM, Talbot NJ. Trehalose synthesis and metabolism are required at different stages of plant infection by Magnaporthe grisea[J]. EMBO J, 2003, 22(2): 225-235
    [21]廖奇亨,贺春萍,林春花,等.稻瘟病菌产孢相关基因研究进展[J].热带农业科学, 2005, 25(3): 57-63
    [22] Balhadère PV, Talbot NJ. PDEI encodes a P-Type ATPase involved in appressorium-mediated plant infection by the rice blast fungus Magnaporthe grisea[J]. Plant Cell, 2001, 13(9): 1987-2004
    [23] Lau GW, Hamer JE. A genetic locus required for conidiophore architecture and pathogenicity in the rice blast fungus[J]. Fungal Genet Biol, 1998, 24(1): 228-239
    [24] Liu H, Suresh A, Willard FS, et al. Rgs1 regulates multiple Gαsubunits in Magnaporthe grisea pathogenesis, asexual growth and thigmotropism[J]. EMBO J, 2007, 26: 690-700
    [25] Zhuang ZZ, Gui HL, Lin CH, et al. Conidiophore Stalk-less1 Encodes a Putative Zinc-Finger Protein Involved in the Early Stage of Conidiation and Mycelial Infection in Magnaporthe oryzae[J]. Mol. Plant Microbe Interact, 2009, 22(4): 402-410
    [26]陈晓.稻瘟病菌两个假定的Rho GTP酶激活蛋白的功能研究[D].福州:福建农林大学硕士学位论文, 2009
    [27]贺春萍,郑服丛.稻瘟菌附着胞分化相关基因研究进展[J].热带农业科学, 2006, 26(1): 47-59
    [28] Kim S, Park SY, Lee YH, et al. Homeobox Transcription Factors Are Required for Conidiation and Appressorium Development in the Rice Blast Fungus Magnaporthe oryzae[J]. PLoS Genet, 2009, 5(12): e1000757
    [29] Shi Z, Leung H. Genetic analysis of sporulation of Magnaporthe grisea by chemical and insertional mutagenesis[J]. Mol. Plant Microbe Interact, 1995, 8(5): 949- 959
    [30] Shi Z, Leung H. Genetic interactions between spore morphogenetic mutations affect cell types sporulation and pathogenesis in Magnaporthe grisea[J]. Mol. Plant Microbe Interact, 1998, 11(3): 199-207
    [31]刘树俊,魏荣宣,有江力,等.稻瘟病菌致病突变体的REMI诱变与鉴定[J].生物工程学报, 1998, 14(3): 254-258
    [32]王刚,杨之为,彭友良,等.稻瘟菌产孢和生长基因的鉴定[J].河南大学学报, 2002, 32(3): 11-15
    [33]李宏宇,潘初沂,陈涵,等.稻瘟病菌T-DNA插入方法优化及其突变体分析[J].生物工程学报, 2003, 19(4): 419-423
    [34] Zhu H, Whitehead DS, Lee YH, et al. Genetic analysis of developmental mutants and rapid chromosome mapping of APP1, a gene required for appressorium formation in Magnaporthe grisea[J]. Mol. Plant Microbe Interact, 1996, 9(9): 767-774
    [35] Chun SJ, Lee YH. Genetic analysis of a mutation on appressorium formation in Magnaporthe grisea. FEMS Microbiology Letters, 1999, 173(1): l33-137
    [36] Sweigard JA, Carrol AM, Farrall L, et al. Magnaporthe grisea pathogenicity genes obtained through insertional mutagenesis[J]. Mol. Plant Microbe Interact, 1998, 11: 404-412
    [37] Wang ZY, Jenkinson JM, Holcombe LJ, et al. The molecular biology of appressorium turgor generation by the rice blast fungus Magnaporthe grisea[J].Biochem Soc Trans, 2005, 33: 384-388
    [38] Wang ZY, Thornton CR, Kershaw MJ, et al. The glyoxylate cycle is required for temporal regulation of virulence by the plant pathogenic fungus Magnaporthe grisea [J]. Mol Microbiol, 2003, 47: 1601-1612
    [39]朱月.凝集素的作用与应用[J].水产科学, 2005, 24(12): 48-49
    [40]潘科,黄炳球,侯学文.植物凝集素在病虫害防治中的研究进展[J].植物保护, 2002, 28(4): 42-44
    [41]时丽冉.凝集素研究进展[J].衡水师专学报, 2001, 3(1): 46-48
    [42]赵寅生.凝集素生物学功能及应用[J].安徽农业大学学报, 2001, 28(4): 445- 447
    [43] Mo H, Winter HC, Goldstein IJ. Purification and characterization of a Neu5Acalpha2-6Gallbetal1-4Glc /GlcNAc lectin from the fruiting body of the polypore mushroom Polyporus squam osus[J]. Biochem, 2000, 275(14): 10623-10629
    [44] Kochibe N, Matta KL. Purification and prosperities of an N-acetyl- Glucosamine specific lectin from Psathyrella Velutina mushroom[J]. J Biol Chem, 1989, 264: 173-177
    [45]徐锦堂.中国药用真菌学[M].北京:北京医科大学中国协和医科大学联合出版社, 1997, 496-516
    [46] Sharon N, Lis H. Legume lectins-a large family of homologous proteins[J]. FASEB, 1990, 4(14): 3198-3208
    [47] Wang H. Isolation and characterization of velutin, a novel Low-molecular-weight ribosome-inactivating protein from winter mushroom ( Flamm ulina velutipes) fruiting bodies[J]. Life Sci, 2001, 68(18): 2151-2158
    [48] Wang HX, Ng TB, OoiVE. Lectin activity in fruiting bodies of the edible mushroom Tricholoma mongolicu[J]. Biochem Mol Biol Int, 1998, 44(1): 135-141
    [49] Guillot J, Konska G. Lectins in higher fungi[J]. Biochem Syst Ecol, 1997, 25(3): 203-230
    [50] Ho JC, Sze SC, ShenWZ, et al. Mitogenic activity of edible mushroom lectins[J].Biochem Biophys Acta, 2004, 1671(1-3): 9-17
    [51] Wang HX, Bun TN, Oil VEC. Lectins from mushrooms[J]. Mycol Res, 1998, 102(8): 897-906
    [52]高莹,瞿礼嘉,陈章良.植物凝集素的分子生物学研究[J].生物技术通报, 2000, 5: 18-22
    [53] Pemberton RT. Agglutinins lectin from some British higher fungi[J]. Mycol Res, 1994, 98(3): 277-290
    [54]刘艳如,余萍,郑怡. 12种食用菌凝集素的筛选[J].福建师范大学学报(自然科学版) , 2003, 19(2): 65-68
    [55] Lin KL, Lin TH. A new fungal immunomodulatory protein, FIP-fve isolated from the edible mushroom, Flammulina velutipes and its complete amino acid sequence[J]. Eur J Biochem, 1995, 228: 244-249
    [56]吴丽萍,吴祖建,林奇英,等.毛头鬼伞中一种碱性蛋白的纯化及其活性[J].微生学报, 2003, 43(6): 793-798
    [57] Yu LG, Fernig DJ, Smith JA, et al. Reversible inhibition of proliferation of epithelial cell by Agaricus bisporus ( edible mushroom) lectin. Cancer Res, 1993, 53(19): 4627-4632
    [58]张春玉,孙非,林景卫,等.真菌凝集素的研究进展[J].中国生物制品学杂志, 2007, 20(2): 142-145
    [59]蓝贤勇.瘤胃微生物纤维素酶的研究与应用前景[J].黄牛杂志, 2003, 29(2): 36-39
    [60] Siegel D, Marton I, Mara D, et al. Cloning, Expression, Characterization, and Nucleophile Identification of Family 3, Aspergillus niger-Glucosidase[J]. J Biol Chem, 2000, 275: 4973-4980
    [61] Sinnott M L. Catalytic mechanism of enzymatic glycosyl transfers[J]. Chem Rev, 1990, 90(12): 1171-1191
    [62] McCarter JD, Withers SG. Mechanisms of enzymatic glycoside hydrolysis[J]. Curr Opin Struct Biol, 1994, 4(6): 885-892
    [63]张华锋.纤维素酶研究进展[J].现代农业科学, 2009, 16(6): 25-27
    [64]许杨,涂追.丝状真菌基因敲除技术研究进展[J].食品与生物技术通报, 2007, 26(6): 120-126
    [65] Capecchi M R. Altering the genome by homologous recombination[J]. Science , 1989, 224: 1288-1292
    [66] Wang JP. Red/ ET Recombination and it s Biomedical Applications[J]. Chinese J Biotechnol, 2005, 21(3): 501-506
    [67] Meselson M S, Radding CM. A general model of genetic recombination[J]. Proc Natl Acad Sci USA, 1975, 72: 358-361
    [68] Lin FL, Sperle K, Sternber N. Model for homologous recombination during transfer of DNA into mouse L cell: role for DNA ends in the recombination process[J]. Mol Cell Biol, 1984, 4: 1020-1034
    [69] Rao B J, Duter C M. Stable three-stranded DNA model by RecA protein[J]. Proc Natl Acad Sci USA, 1991, 88: 2948-2958
    [70] Stasiak A. Three-stranded DNA structure is this the secret of DNA homologous recombination?[J]. Mol Microbio, 1992, 6: 3267-3276
    [71] Brock M. Generation and phenotypic characterization of Aspergillus nidulans methylisocit rate lyase deletion mutants: methylisocit rate inhibit s growth and conidiation[J]. Appl Environ Microbiol, 2005, 71(9): 5465-5475
    [72]林艳.稻瘟病菌两个新基因的功能研究[D].福州:福建农林大学博士学位论文, 2007
    [73] Talbot NJ. On the trail of a cereal killer: Exploring the biology of Magnaporthe grisea [J]. Annu Rev Microbiol, 2003, 57: 177-202
    [74]胡芳辉.稻瘟病菌定殖扩展过程中特异基因的表达分析[D].福州:福建农林大学硕士学位论文, 2009
    [75] Kamath RS, Fraser AG. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi[J]. Nature, 2003, 421(6920): 231-237

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700