GEO卫星精密定轨技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要研究了10米至1米的GEO精密定轨包括机动后数小时内的快速轨道恢复技术和方法。利用文中推导建立的动力法定轨的误差协方差分析模型和简化解析算法,重点进行了地基测距定轨和高精度干涉测角定轨以及各种综合定轨方案的特性比较和精度分析;采用蒙特卡罗仿真,研究了天基测距(测速)以及各种天地基联合测轨技术的特点及其对GEO卫星精密定轨的贡献;最后对GEO位置保持机动后的快速轨道恢复这一热点问题进行了探讨。论文的主要内容和创新点如下:
     1.推导了自校准定轨的状态参数估计和协方差公式,从理论上证明了自校准定轨的优越性。针对GEO卫星的“高轨"和“静地”特性,分析研究了测量误差对轨道确定精度的影响,建立了动力法定轨的误差协方差分析模型和简化解析算法。
     2.综合分析了几种地基测定轨技术用于GEO卫星精密定轨的优缺点,指出了常规雷达测距定轨体制中存在的系统误差表现形式,提出了短基线CEI干涉测角技术与单站激光测距技术联合定轨方案,分析了满足10米定轨精度要求的可行性。结果表明,制约10米定轨精度的主要因素是等效测量偏差。随观测站个数和分布的不同,测量偏差可以8至20倍放大在卫星横向位置上。其中轨道面法向位置分量(即南北位置)误差在一天弧段的保证下能控制到10米以内,但星下点经度(即东西位置)的确定精度得不到改善。相位干涉差分技术可以将系统偏差减小1至2个数量级,以相位干涉测量为主的测角/测距综合定轨能够显著提高轨道精度,从独立CEI定轨的一两百米提高到优于10米。
     3.研究了GEO/LEO联合定轨方法,利用星间测量数据对LEO位置变化的敏感性,通过模拟仿真计算,分析了LEO测量星的轨道改进对GEO卫星精密定轨的作用和影响。结果表明,星间测量利用LEO空间测轨站的在轨运行,打破了传统地基的静地测量模式,能够增加观测几何的强度和GEO卫星动力学模型的约束作用。其中利用星间测距数据仅对GEO定轨,10米的精度指标对LEO测量星的精密星历和动力学模型要求苛刻;采用GEO/LEO联合定轨,对LEO轨道的改进明显优于对GEO的改进。组网的多颗GEO和LEO卫星的联合定轨,能够加密可连续跟踪的弧段,进一步提高GEO的定轨精度。
     4.针对GEO机动后的快速轨道恢复问题,讨论了仅利用机动后数小时短弧数据定轨的各种潜在的轨道优化策略,指出机动期间推力模型和机动参数的优化估计对提高机动轨道精度的作用。结果表明,在常规的机动后数小时短弧定轨中,必须应用某些特殊的策略来控制卫星的沿迹分量和轨道面法向分量误差。其中在较频繁的东西位置保持后,引进轨道面定向参数的强约束以及增加高精度Doppler测速观测,对控制卫星的法向分量误差效果明显,而利用前次机动后标定的测距偏差改进观测数据,对控制卫星的沿迹分量误差效果显著。
This dissertation mainly focuses on Precision Orbit Determination (POD) and fast post-maneuver orbit recovery of GEO satellites with the accuracy of 10-1 meter. Two commonly used yet powerful tools, variance-covariance matrix analysis and Monte-Carlo simulation, are used to investigate orbital errors and precision comparison. The former is specifically utilized to analyze the data set of ground-based range and VLBI/CEI phase with a simplified analytic algorithm developed in this paper, while the latter is applied to inter-satellites range and range rate (RARA). Finally the fast orbit recovery within several hours after station-keeping maneuvers of GEO is discussed. The main works and contributions are summarized as follows:
    1. The estimate and covariance formula of self-calibration POD are derived by using QR factorization. It is proven that, compared with POD without self-calibration, self-calibration POD has the merits of calibrating some systematic errors in the measurement model or force model and improving the accuracy of orbit determination simultaneously. With the constraints of geostationary orbit and high altitude, the effects onto POD resulting from observational errors are investigated. The covariance analysis formula and its approximate algorithm of orbit determination are established.
    2. Both advantages and weakness are analysed among several groung-based GEOs'tracking techniques. The formal behavior of systematic errors in classical range-based POD is pointed out, namely, at the first-order approximation, constant or piecewise constant range biases will be equivalently modeled for the representative of the summation of all kinds of error sources in the measurement residuals (O-C), due to the difficulty of distinguishing one error from another. It is presented that mini-scale network of two sets CEIs with large span of longitude will be a novel tracking and orbit determination solution, along with one set CEI augmented with few quantity of SLR data.The feasibility and potential application are discussed for VLBI and CEI in the 10m POD of GEOs' solutions. Results show that systematic errors (namely, range biases or interferometric phase biases) are the dominant factors to achieve 10m-level POD. They may be 8-20 times magnified to the transversal position uncertainty according to different number and distribution of the tracking sites. With the arc length enlarged to 24 hours, the uncertainty of cross-track positional component can be decreased to no more than 10 meters, while along-track position can not be improved apparently.
引文
1 本章部分内容发表于《飞行器测控学报》,2005,6
    1 本章部分内容发表于《飞行器测控学报》,2005,2;《上海航天》,2006,5。
    1 本章部分内容发表于《测绘科学技术学报》,2006,4
    [1] W.H. Clohessy, R. S. Wiltshire. Terminal Guidance System for Satellite Rendezvous[J]. Journal of the Aerospace Sciences, 27(9):653. 1960
    [2] Bar-Sever, Yoaz; Young, Larry; Stocklin, Frank; Rush, John. NASA's global differential GPS system and the TDRSS augmentation service for satellites[J]. 2nd ESA Workshop on Satellite Navigation User Equipment Technologies NAVITEC 2004
    [3] Kostoff, J. L.; Ward, D. T.; Cuevas, O. O.; Beckman, R. M. Operational improvements of long-term predicted ephemerides of the Tracking and Data Relay Satellites(TDRSs) Flight Mechanics Estimation Theory Symposium 1995 p 73-79
    [4] Gramling, C. J.; Hart, R. C.; Folta, D. C.; Long, A. C. TDRSS Onboard Navigation System(TONS) flight qualification experiment[J]. Flight Mechanics Estimation Theory Symposium, 1994, p 253-267
    [5] Oza, D. H.; Bolvin, D. T.; Lorah, J. M.; Lee, T.; Doll, C. E. Accurate orbit determination strategies for the tracking and data relay satellites[J]. Flight Mechanics Estimation Theory Symposium 1995, p 59-72
    [6] D. Dong, P. Fang, Y. Book, M. K. Cheng, and S. Miyazaki, Anatomy of apparent seasonal variations from GPS-derived site position time series[J]. Journal of Geophysical Research, 2002, 107(B4):9-15.
    [7] Bar-Sever, Yoaz; Young, Larry; Stocklin, Frank; Rush, John. NASA's global differential GPS system and the TDRSS augmentation service for satellites[J]. 2nd ESA Workshop on Satellite Navigation User Equipment Technologies NAVITEC 2004
    [8] Olszewski, A. D., Jr.; Wilcox, T. P.; Beckman, Mark. Application of Tracking and Data Relay Satellite(TDRS) Differenced One-Way Doppler(DOWD) Tracking Data for Orbit Determination and Station Acquisition Support of User Spacecraft Without TDRS Compatible Transponders[J]. Flight Mechanics/Estimation Theory Symposium 1996, NASA-CP-3333, 387-401
    [9] R.S. Bhat, B. E. Shapiro, R. B. Frauenholz, and R. K. Leavitt. TOPEX/POSEIDON Orbit Maintenance For The First Five Years[J]. AAS/GSFC 13th International Symposium on Space Flight Mechanics. 1998. AAS 98-379
    [10] R.D.Culp,Ting-hua Wang.用一种经济的跟踪系统进行米级同步卫星轨道确定.1985
    [11] Byron Tapley, Bob E. Schutz, George H. Born, Statistical Orbit Determination[M]. Elsevier Academic Press. July 2003.
    [12] Ward, Douglas T. Tracking and Data Relay Satellite(TDRS-3) Range Biases and Momentum Unload Modeling for Terra(EOS-AMI)[J]. NASA Center for AeroSpace Information(CASI), 2001.
    [13] Ward, Douglas T. Operational Improvements of Tracking and Data Relay Satellite(TDRS) Postmaneuver Solutions. Flight Mechanics Symposium, Greenbelt, MD, United States. 2003
    [14] C.D.Edwards. Short Baseline Phase Delay Interferometry. TDA Progress Report. 42-91. pp. 46-56. 1987
    
    [15] C.D.Edwards. Goldstone Intracomplex Connected Element Interferometry. TDA Progress Report 42-101. pp. 1-12. 1990
    
    [16] Ellis,J., Performance of a Dedicated VLBI System for TDRSS Navigation, Advances in the Astronautical Science, Vol. 54, Pt. 1, pp. 111-126.1983
    
    [17] J. A. Estefan, S. W. Thurman. Deep-Space Navigation With Differenced Data Types Part Iii: An Expanded Information Content and Sensitivity Analysis [J]. TDA Progress Report, 42(109):56-73. 1992
    
    [18] C. J. Gramling and A. C. Long. Autonomous navigation using the TDRSS Onboard Navigation System (TONS). Advances in Space Research, Volume 16, Issue 12,1995, Pages 77-80
    
    [19] Haines, B., S. Lichten, R. Muellerschoen, D. Spitz, messer, J. Srinivasan, S. Stephens.D. Sweeney anti L. Young, A novel use of GPS for determinating the orbit of a geosynchronous satellite: The TDRS/GPS tracking Demonstration, proceedings of ION GPS-94, pp 191-202, Sait Lake City. 1994
    
    [20] B. Haines; S. Lichten; J. Srinivasan; L. Young, GPS-Like Tracking (GLT) of Geosynchronous Satellites- Orbit Determination Results for TDRS [J]. 1995
    
    [21] Haines, Bruce; Bertiger, Willy; Lichten, Steve; Srinivasan, Jeff; Kelecy, Tom. GPS-Like Tracking (GLT) of Geosynchronous Satellites Orbit Determination Results for INMARSAT and TDRS [J]. American Astronautical Society Amer. Inst. of Aero, and Astro., Astrodynamics Specialists; August 14-17,1995
    
    [22] B. Haines; S. Lichten; J. Srinivasan; L. Young. A Demonstration of Unified TDRS/GPS Tracking and Orbit Determination. Flight Mechanics/Estimation Theory Symposium 1995, p 309-320
    
    [23] Doll, C. E.; Mistretta, G. D.; Hart, R. C; Oza, D. H.; Bolvin, D. T.; Cox, C. M; Nemesure, M; Niklewski, D. J.; Samii, M. V. Improved solution accuracy for TDRSS-based TOPEX/Poseidon orbit determination[J] . Flight Mechanics/Estimation Theory Symposium, 1994, p 179-193
    
    [24] T. W. Hamilton, W. G. Melbourne. Information Content of a Single Pass of Doppler Data from a Distant Spacecraft [J]. JPL Space Programs Summary, 3(37-39): 18-23. 1966
    
    [25] Kostoff, J. L.; Ward, D. T.; Cuevas, O. O.; Beckman, R. M. Operational improvements of long-term predicted ephemerides of the Tracking and Data Relay Satellites (TDRSs)[J]. Flight Mechanics/Estimation Theory Symposium 1995, p 73-79
    
    [26] Pavloff, Michael S.TDRS orbit determination by radio interferometry [J]. Third International Symposium on Space Mission Operations and Ground Data Systems, Part 2, p 799-806
    
    [27] Salama, Ahmed; Nemesure, Michael; Guinn, Joseph; Bolvin, Dave; Leavitt, Robert. Compatibility of TOPEX/Poseidon trajectory propagation with JPL and GSFC/FDF operational software [J]. Goddard Space Flight Center, Flight Mechanics(Estimation Theory Symposium, 1994, p 169-178
    
    
    [28] S. Kawase, F. Sawada, Interferometric Tracking for Close Geosynchronous Satellites [J]. The Journal of the Astronautical Sciences, Vol.47, P135-138. 1999
    [29] F.J. Lerch, C. E. Doll, J. A. Marshall, S. B. Luthcke, R. G. Williamson, S. M. Klosko, J. J. McCarthy and W. F. Eddy. Precision orbit determination for TOPEX/Poseidon using TDRSS doppler tracking dam.Advances in Space Research, Volume 16, Issue 12, 1995, Pages 89-92. 1995
    [30] Pavloff, Michael S.Application of a Monte Carlo accuracy assessment tool to TDRS and GPS[J]. Flight Mechanics(Estimation Theory Symposium, 1994, p 385-398
    [31] Lichten, Stephen M.; Edwards, Charles D.; Young, Lawrence E.; Nandi, Sumita; Dunn, Charles; Haines, Brace J. A demonstration of TDRS orbit determination using differential tracking observables from GPS ground receivers[J]. 3rd AAS AIAA Spaceflight Mechanics Meeting, Parts 1 and 2. A95-81344, p. 937-954
    [32] G.S. Levy, R. P. Linfield, C. D. Edwards, S. J. Di Nardo, et al. Orbiting very long baseline interferometry(OVLBI) observations using the tracking and data relay satellite system(TDRSS) at 2.3 and 15 GHz[J]. Acta Astronautica, Volume 19, Issues 6-7, June-July 1989, Pages 597-602
    [33] Haines, Bruce; Bertiger, Willy; Lichten, Steve; Srinivasan, Jeff; Kelecy, Tom. GPS-Like Tracking(GLT) of Geosynchronous Satellites Orbit Determination Results for INMARSAT and TDRS[J]. American Astronautical Society Amer. Inst. Of Aero. And Astro., Astrodynamics Specialists, 1995
    [34] W.C., D. J. Scheeres, and S. W. Thurman. Enhanced Orbit Determination Filter: Inclusion of Ground System Errors as Filter Parameters. JPL TDA Progress Report, 42-116: 37-41. 1994
    [35] S.R. McReynolds. The Sensitivity Matrix Method for Orbit Determination Error Analysis[J]. JPL Space Programs Summary, 3(37-56):85-87. 1969
    [36] Montenbruck, E. Gill. Satellite Orbits-Models, Methods, and Applications[M]. New York: Springer-Verlag. 268-274, 297-299. 2000
    [37] Nandi, S., C.D. Edwards, and S. C. Wu, TDRSS orbit determination using short-baseline difference carrier phase, NASA Goddard Flight Mechanics Estimation Theory Symposium, NASA CP 3186, 103-115. 1992
    [38] D.H. Oza, D. J. Niklewski, C. E. Doll, G. D. Mistretta and R. C. Hart. Landsat-4 orbit determination using TDRSS[J] Advances in Space Research, Volume 16, Issue 12, 1995, Pages 81-84. 1995
    [39] D.H. Oza, D. T. Bolvin, C. M. Cox, M. V. Samii and C. E. Doll. Accuracy assessment of TDRSS-based TOPEX/Poseidon orbit determination. Advances in Space Research, Volume 16, Issue 12, 1995, Pages 85-88
    [40] Erik Mattias Soop.地球静止轨道手册.国防工业出版社.北京.1999
    [41] J. Teles, M. V. Samii and C. E. Doll. Overview of TDRSS[J]. Advances in Space Research, Volume 16, Issue 12, 1995, Pages 67-76.
    [42] S.W. Thurman. Deep-Space Navigation With Differenced Data Types Part Ⅰ: Differenced Range Information Content[J]. TDA Progress Report, 42(103):47-60. 1990
    [43] Pieter Visser, and Boudewijn Ambrosius. TDRSS Inter-satellite Tracking Evaluation using TOPEX/POSEIDON. ESOC contract 11179/94/D/IM. 1996.
    [44] Pieter Visser, and Boudewijn Ambrosius. Orbit determination of TOPEX/POSEIDON and TDRSS satellites using TDRSS and BRTS tracking. Adv. Space Res., 19(11), 1641-1644. 1997
    
    [45] Haines, B. J.; Lichten, S. M.; Malla, R. P.; Wu, S. C. Application of GPS tracking techniques to orbit determination for TDRS[J]. Flight Mechanics/Estimation Theory Symposium, 1992, p 117-127
    
    [46] Wu, S. C, Differential GPS approaches to orbit determination of high-altitude satellites [J]. AAS paper 85-430. 1985
    
    [47] Lichten, S. M.; Young, L. E.; Nandi, S.; Haines, B. J.; Dunn, C. E.; Edwards, C. D. New approaches for tracking earth orbiters using modified GPS ground receivers. The Telecommunications and Data Acquisition Report. 1994, p 17-31
    
    [48] Haines, B. J.; Lichten, S. M.; Malla, R. P.; Wu, S.-C. A review of GPS-based tracking techniques for TDRS orbit determination. The Telecommunications and Data Acquisition Report. 1994, p 1-16
    
    [49] Bobrowsky, M.; Kay, P. Y.; Drew, A. K.; Hoge, S. L.; Cuevas, O. O. Short- and long-term determination of the TDRS solar reflectivity parameter using the Goddard trajectory determination system [J]. Astrodynamics 1987 Proceedings of the AAS AIAA Astrodynamics Conference, 1988, p. 1377-1387.
    
    [50] Oza, D. H.; Jones, T. L.; Feiertag, R.; Samii, M. V.; Doll, C. E.; Mistretta, G D.; Hart, R. C. Evaluation of Landsat-4 orbit determination accuracy using batch least-squares and sequential methods [J]. 3rd AAS AIAA Spaceflight Mechanics Meeting, 1993, Parts 1 and 2 . A95-81344, p. 955-970
    
    [51] Oza, D. H.; Hodjatzadeh, M.; Radomski, M. S.; Doll, C. E.; Gramling, C. J. Evaluation of orbit determination using dual-TDRS tracking [J]. AIAA AAS Astrodynamics Conference, Technical Papers. Part 1,1990, p. 410-425.
    
    [52] Cappellari, J. O., Jr.; Kay, P. Y; Nicholson, A. M. Capabilities of a single TDRS to support user orbit determination [J]. Astrodynamics 1987 Proceedings of the AAS AIAA Astrodynamics Conference, 1988, p. 1389-1412.
    
    [53] Thomas P. Yunck, Sien-Chong Wu, Tracking Geosynchronous Satellites by Very-Long-Baseline Interferometry [J]. J. Guidance, Vol. 6,, P382-386. 1983
    
    [54] Doll, C. E.; Gramling, C. J.; Oza, D. H.; Radomski, M. S. Sensitivity of high-accuracy Tracking and Data Relay Satellite System (TDRSS) user spacecraft orbit determination to tracking schedules[J]. Space dynamics Proceedings of the International Symposium, 1990, p. 627-641.
    
    [55] Folta, David C; Elrod, Bryant; Lorenz, Mark; Kapoor, Ajay. Precise navigation for the Earth Observing System (EOS)-AM1 spacecraft using the TDRSS Onboard Navigation System (TONS) [J].Spaceflight dynamics 1993 AAS NASA International Symposium, 1993, Parts 1 and 2 . p. 109-123
    
    [56] Schmidt, Thomas G; Brown, Edward T.; Murdock, Valerie E.; Cappellari, James O., Jr.; Smith, Evan A.; Schmitt, Mark W; Omalley, James W; Lowes, Flora B.; Joyce, James B. Joint JSC GSFC two-TDRS navigation certification results for STS-29, STS-30, and STS-32 [J]. Flight Mechanics Estimation Theory Symposium, 1990 p 133-149
    [57] Yunck, T. P., and S. C, Wu, Ultra-precise orbit determination by GPS[J]. AAS Paper 83-315.1983
    [58] Chu, Donald; Chen, Sam; Early, Derrick; Freesland, Doug; Krimchansky, Alexander; Naasz, Bo; Reth, Alan; Tadikonda, Kumar; Tsui, John; Walsh, Tim. GOES-R Stationkeeping and Momentum Management[J]. 29th Annual AAS Guidance and Control Conference, 2006
    [59] Kirschner, S. M.; Beri, A. C.; Broaddus, S. R.; Doll, C. E. Spacecraft preliminary orbit determination using tracking measurements obtained from the Tracking and Data Relay Satellite System(TDRSS) and the Ground Spaceflight Tracking and Data Network(GSTDN)[J]. Space dynamics Proceedings of the International Symposium, 1990, p. 685-694.
    [60] Kammeyer, P. C.; Fiala, A. D.; Seidelmann, P. K. Improved accuracies for satellite tracking[J]. Flight Mechanics Estimation Theory Symposium, 1991, p 285-297
    [61] 陈岱民等.地球同步卫星及其轨道计算.长春大学学报.1999(2)
    [62] 杜瑞林,王琪,赵齐乐,乔学军,郭利民.地震电磁卫星精密定轨方法研究[J],大地测量与地球动力学,2005/02
    [63] 黄克安,双星快速定位系统及提高定位精度的途径.电讯技术.1999(2):23-28
    [64] 贾小林,焦文海,et al.基于伪距和观测量的地球同步卫星动力学定轨研究 空间科学学报 2004.024(002):138-144.
    [65] 姜昌.深空通信、跟踪的根本问题,国际解决现状和我国对策.飞行器测控学报2000.9
    [66] 李恒年,李济生,黄永宣,轨道机动过程中推力加速度的在线最小方差估计[J].空间科学学报.2002.Vol.22 No.4:357-362
    [67] 刘滨涛.导航卫星系统总体研究及星座改进方案仿真[J],航天控制,2005(1)7-10.
    [68] 刘利生.轨道测量设备精度自鉴定技术及评估.飞行器测控学报,2001(4):1-6.
    [69] 刘利生,曹坤梅.实时精确定轨的自校准方法.飞行器测控学报,2003(2):54-57.
    [70] 刘利生,曹坤梅.直接解算轨道根数的轨道约束自校准定轨方法.飞行器测控学报,2004(2):30-34.
    [71] 刘林.人造地球卫星轨道力学[M].高等教育出版社.北京.
    [72] 施娟,刘林.卫星变轨初探[J].飞行器测控学报,2004.Vol.23 No.3:46-50.
    [73] 刘林.天体力学方法[M].高等教育出版社.北京.
    [74] 刘林,刘迎春,地球同步卫星定轨中的两个问题[J].飞行器测控技术.1998.Vol.17 No.4:1-5
    [75] 刘林.航天器轨道理论[M].国防工业出版社.北京.
    [76] 刘林,王海红,胡松杰,卫星定轨综述[J].飞行器测控学报.2005.Vol.24 No.2:28-34
    [77] 刘世元,刘春保,刘林,卫星轨道变化规律的综合分析[J].飞行器测控学报.2005.Vol.24 No.3:43-50
    [78] 马剑波,刘林,关于太阳系中光压对各种天体运动的影响问题[J].紫金山天文台台刊.2000.Vol.19 No.2:94-99
    [79] 平劲松,太阳系人造天体甚长基线干涉测量方法研究[D],上海:上海天文台.
    [80] 帅平,曲广吉,向开恒.现代卫星导航系统技术的研究进展[J],中国空间科学技术,2004(3).pp.45-52.
    [81] 王典军,曾海波,关轶峰.跟踪与数据中继卫星控制系统技术.航天控制2005(3):83-90
    [82] 王俊辉,李琨,跟踪与数据中继卫星系统星座构形的仿真初探[J].系统仿真学报.2004.Vol.16 No.5:974-977
    [83] 王威,GPS用于对地观测编队卫星状态的高精度确定[D],信息工程大学
    [84] 王歆,刘林,人卫数值法定轨中运动方程右函数间断的处理[J].飞行器测控学报.1999.Vol.18 No.4:9-17
    [85] 余江林,柳东升,利用GPS对地球静止轨道卫星定轨的可行性[J].中国空间科学技术.2000(4):36-40
    [86] 胡松杰,陈力,刘林,双星定位系统在中低轨卫星定轨中的应用[J].天文学报.2002 Vol.43 No.3:293-301
    [87] 赵德勇,潘晓刚,王炯琦,基于双星定位系统的近地卫星定轨精度仿真研究[J].系统仿真学报.2006.Vol.18 No.6:1437-1441
    [88] 赵德勇,王炯琦,潘晓刚等,双星定位系统及其备份星在近地卫星联合定轨建模中的应用[J].飞行器测控学报.2006 Vol.25 No.4:26-31
    [89] 吴廷勇,刘刚,吴诗其,一种适用于我国的TDRSS星座方案[J].系统工程与电子技术.2006 Vol.28 No.2:248-252
    [90] 吕从民,顾逸东,林宝军等,神舟四号飞船综合精密定轨[J].中国科学E辑:技术科学.2004 Vol.34 No.9:1061-1068
    [91] 李于衡,易克初,田红心,跟踪与数据中继卫星(TDRS)跟踪用户星的条件分析[J].空间科学学报.2006 Vol.26 No.5:377-381
    [92] 翟坤,杨涤,孙小松,TDRSS中用户星的星-星天线跟踪规律深入研究[J].飞行力学.2004 No.3
    [93] 杜鹏,刘威,董京等,GEO卫星对低轨卫星的可视弧段建模[J].首届学员优秀科技论文征文获奖论文集.2005:8-12
    [94] 阎春生,基于GPS校准的CEI系统测量原理和精度分析[J].电讯技术.2003(4):20-24
    [95] 王歆,刘林,光压摄动计算中地影间断的处理[J].紫金山天文台台刊.2000.Vol.19 No.1:19-24
    [96] 夏南银,张守信,穆鸿飞,航天测控系统[M].国防工业出版社.北京.
    [97] 许其凤.GPS卫星导航与精密定位[M].解放军出版社.北京.
    [98] 叶叔华,黄珹等.天文地球动力学[M].山东科学技术出版社.济南.
    [99] 杜兰,郑勇,GEO卫星定轨误差的协方差分析及算法问题[C],空间探测第十八次学术会议论文集,2005
    [100] 杜兰,郑勇,实时相位联线干涉测量的地球同步卫星定轨[C],大地测量与天文地球动力学进展,2002.
    [101] 杜兰,郑勇,王宏,地球静止卫星精密测定轨技术的现状及发展[J],飞行器测控学报,2005(6)
    [102] 杜兰,郑勇,李杰,VLBI在GEO卫星精密定轨中的应用[J],测绘科学技术学报,2006(4)
    [103] 杜兰,张传定,郑勇,李杰,测轨时序差分观测权的解析表达式[J],飞行器测控学报,2006(3)
    [104] 张传定,吴晓平,郝金明,何海波,GPS多差相位观测量数学相关性的分析表示[J],测绘学报,2004(3):221-227.
    [105] 张强,刘林,关于地球同步卫星的双星系统[J].南京大学学报(自然科学).1999.Vol.35 No.1:7-13
    [106] 张强,刘林,轨道改进中计算状态转移矩阵的分析方法[J].天文学报.1999.Vol.40,No.2:113-121
    [107] 赵坚.太阳同步(准)回归轨道卫星的轨道保持方法研究[J].中国空间科学技术.2004(4)
    [108] 郑勇,空间VLBI技术及其应用研究[D],上海:上海天文台,1992
    [109] 郑勇,VLBI大地测量[M],北京:解放军出版社,1999
    [110] 郑勇,杜兰,张捍卫,王宏,射电干涉测量技术在深空飞行器精密定轨中的应用[A],航天航空高科技青年学术研讨会会议论文集,2002
    [111] 朱毅麟,地球静止轨道空间碎片的处置[J].上海航天.2001(1):31-38
    [112] 文援兰,航天器精密轨道抗差估计理论与应用的研究[D],解放军信息工程大学测绘学院.
    [113] 杨元喜,文援兰,卫星精密轨道综合自适应抗差滤波技术[J].中国科学D辑.2003,33(11):11122-1119
    [114] 黄勇,“嫦娥一号”探月飞行器的轨道计算研究[D],上海:上海天文台.2006
    [115] 李庆扬,王能超,易大义,数值分析[M].清华大学出版社.北京.2001.
    [116] 赵德勇,潘晓刚,王炯琦等,样条模型在近地卫星精密定轨仿真中的应用[J].计算机仿真.2006.Vol.23 No.6:62-65
    [117] 潘晓刚,赵德勇,周海银,基于分布式伪卫星的双星定位系统定位方法研究[J].中国空间科学技术.2006(3):7-13
    [118] T.Lewis著,张纪生译.TDRSS的现在与未来性能梗概[J].飞行器测控技术,1996(4):13-23
    [119] 陈秀珠,跟踪与数据中继卫星系统[J].卫星与网络2001年第6期
    [120] http://nmsp.gsfc.nasa.gov/tdrss/.
    [121] http://ntrs.nasa.gov/

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700