地球同步轨道通信卫星的轨道管理应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地球同步轨道通信卫星的轨道管理是通过轨道测量、轨道确定和轨道保持(机动)完成的。卫星轨道测量也称为测距。我国现行的测控体系为统一载波测控系统,主要利用多侧音进行测距。对于地球同步轨道通信卫星,一个难点是远距离测量的侧音测距系统最大无模糊距离受到侧音信号最低频率的限制,以及卫星在轨道中的精确定点保持。在攻读研究生学位期间,我一直在中国东方通信卫星有限责任公司从事卫星测控工作。参与了多颗通信卫星实在轨运行维护,并针对地球同步轨道通信卫星轨道的管理进行了较为深入的研究。
     本文对有效地提高侧音测距系统的最大无模糊距离提出了具体的解决方法。根据测距数据,利用卫星与参考点之的距离、角度、径向速度和时间标志等参数推算出其运行轨道,又从工程应用的角度详尽地介绍了同步通信卫星在定点位置漂移的原因及计算方法,以我国在轨运行的“中国卫星X号”卫星为例,给出了大量工程实测数据,并通过E/W轨道修正区间(窗口)划分给出了轨道定点保持实施方法。文章安排:第二章以“中国卫星X号”应用为例,通过对测距方案分析,测距系统操作过程的描述,分析测距误差及消除误差的措施,详细阐述了侧音测距技术。第三章研究了侧音测距低频侧音信号的产生,通过折叠音技术,互补音技术提高侧音测距系统的测距精度和最大无模糊距离进行了详细的描述和分析。第四章以我国在轨运行的“中国卫星X号”卫星为例,详尽地介绍了同步通信卫星在定点位置漂移的原因及计算方法。第五章从卫星平经度漂移量、测站定轨精度、星载推进器推力误差、卫星南北机动对东西方向耦合等多方面探讨了同步轨道通信卫星E/W轨道保持方法,介绍了一种如何细化轨道控制区间,估算偏心率控制圆半径范围的方法。
     1、在多侧音测距中,利用DDS产生任意频率的正弦波信号,解决了低频侧音信号的产生问题;对于低频信号侧音信号干扰载波锁相环的问题,使用折叠音技术将侧音频率搬移载波环带宽之外;对于多路侧音占用频率带宽大、有效带宽小的问题,通过使用互补音来解决。最后,通过侧音电路复用,避免了增加设备量,就有效增加了最大无模糊距离,提高了测量精度。
     2、分析地球同步轨道通信卫星在轨漂移因素得出由于轨道修正容差区间1在控制窗口东、西两端的不对称性,如图5-1所示,导致在定点中心东、西两侧的偏心率控制区间2也存在东边大,西边小现象。根据“木桶原理”最短边决定整体性能的特性推出相应的最小偏心率控制圆半径为149μ。为了减少偏心率控制,通过试验提出了两套控制方案。A、适度平移卫星定轨中心Ls的方法。如5-4所示,我可以将Ls向东平移0.004651。,这样可以使偏心率控制区间2对称达到0.01318°相应的最小偏心率控制圆半径扩大到230μ。B、如果采用只要卫星漂移到西边界就做一次△V修正方法,充分使用东侧偏心率半震荡区间0.01783°这样相应的偏心率控制圆半径还可以进一步放宽到311μ。
The management of geosynchronous communication satellite is fulfilled through orbit measuring, orbit determination and orbit keeping (maneuver). Orbit measuring is also called the ranging. The prevail measuring and controlling system in China is the unified carrier TTC system, mainly used for ranging through multiple side tone. One of the difficult points for measuring system is that the utmost unambiguous distance is limited by the lowest frequency of tone. Other on orbit satellite accurate station keeping. During the period of my master degree studying, I was engaged in the GEO satellite operation always in China Orient Satellite Telecommunication Co. LTD. I took part in some telecommunication satellite on orbit operation and station keeping. Regards to the GEO communication satellite orbit management, I performed some quit deeply researching.
     The thesis offers the concrete solutions for the utmost unambiguous distance of effectively increasing the side tone ranging system. Given the ranging data, satellite's orbit is calculated based on the distance, angle, radial speed and time stamp, etc. Besides, from the side of the engineering application, the article presents in detail the reason why the geosynchronous satellite excurses in the designated position and the calculation method, as well as the large amount of the practical ranging data and implementary strategy for orbit regular keeping by dividing the E/W orbit correct area (window) through the current China Satellite No. X. Article origination:Article 2:Look on the "ChinaSat X" as the example, performed:ranging scenario analysis, described ranging system operation processing, analysis with ranging error and elimination method, the detail of side tone ranging technology. Article 3:Look on the "ChinaSat X" as the example, researched the side tone ranging production, due to the two double technology, complementary tone technology improved ranging accuracy in the side tone ranging system and maximum non-inkling distance. Article 4:Look on the "ChinaSat X" as the example, introduced caused reason and calculation mean of GEO communication satellite orbit drift in detailed. Article 5:the E/W station keeping mean of GEO communication satellite was investigated regards to as the following:the satellite mean longitude drift, tracking station accuracy, force error of on board thruster, the coupling with south/north maneuver to east or west maneuver on board, etc. Per as to above, it introduced a mean which is how to specific the orbit control windows and to estimate eccentricity control radius field. The following problems have been solved:
     1, In order to generate the low frequency of range tone, the DDS has been applied in the multiple side tone system to produce the sine wave at any frequency. As for the PLL (Phase-Locked Loops) interference caused by the low frequency, it works out through moving the low frequency out of the signal band of PLL by two-double tone technology. The question about the bandwidth of multiple side tone is broad and inefficient utility, it is made up by complex tone. Finally by multiplexes circuit it achieved to increase the accuracy of measurements, enlarge the maximum unambiguous distance, and avoid investing on more equipment.
     2, Due to the fact that the zone 1 used for mean longitude control is asymmetry between east and west part, the zone 2 allocated for eccentricity control has the same figure as zone 1. As it is illustrated in graph 5—1. Based on the "Cask Principle", the maximum capacity of a cask depends on its shortest batten, it can be derived that the control eccentricity radius is about 149μ. In order to cut down the control on eccentricity, two control schemes have been brought forward by experimental. A. The method of appropriate move for the center of orbit location, Ls. As it is illustrated in graph 5—4, the Ls could be moved east for 0.004651°, therefore the eccentricity control sector 2 could symmetrically be 0.01318°, and the radius for the minimum eccentricity control round could be extented to 230μcorrespondingly. B. If it is adopted that whenever the satellite excurses at western area, a AV amendment needs to be done. That means the eastern eccentricity semi-oscillation sector 0.01783°could be fully used. So radius of eccentricity control round could be widened to 230μcorrespondingly.
引文
[l]马剑波,刘林,关于太阳系中光压对各种天体运动的影响问题,紫金山天文台台刊.2000.Vol.19No.2:94-99
    [2]《ChinaStat-1 Spacecraft Operation Manual》 Lockheed Martin 1998年10月
    [3]《ChinaStat-1 SCF O&M Manual》 Lockheed Martin 1996年10月
    [4]王飞行,AOS体制下测距方法的研究,国防科学技术大学,2004年11月
    [5]杜兰,GEO卫星精密定轨技术研究,信息工程大学,2006年10月
    [6]赵业福,无线电跟踪测量,国防工业出版社,2003
    [7]刘林,王海红,胡松杰,卫星定轨综述,飞行器测控学报2005.Vol.24,No.2:28-34
    [8]Haines,B., S.Lichten, R.Muellerschoen, D.Sp itz.messer, J.Srinivasan, S.Stephens, D.SweeneyantiL.Young, A novel use of GPS for determinating the orbit of a geosynchronous satellite:TheTDRS/GPSrtacking Demonsrtation,proceedingso flO NG PS-94,pp 191-202,SaitLakeCity.1994
    [9]陈仕进,高精度测距方法研究,无线电工程,2003.1
    [10]唐军,谢澎霖,航天扩频测控通信系统中伪码测距方法及精度分析,电讯技术,200646(4)
    [11]Erik Matias Soop,地球静止轨道手册,国防工业出版社.北京.1999
    [12]谷学敏,航天无线电测控技术,国防科工委指挥技术学院,1988
    [13]周智敏,李企舜,现代航天测控原理,国防科技大学出版社,1998
    [14]贾小林,焦文海,基于伪距和观测量的地球同步卫星动力学定轨研究,空间科学学报2004.024(002):138-144.
    [15]戴柠,陈一饶,DDS信号源的研制,仪器仪表学报,1996,17(1)
    [16]王元欣,叶伟,航天无线电测控系统,国防科工委指挥技术学院
    [17]张仁为,卫星轨道姿态动力学与控制,北京航天航空大学出版社,1998年
    [18]陈芳允,卫星测控手册,科学出版社,1993年.
    [19]王正才译,地球静止轨道手册,国防工业出版社,1999年
    [20]杨嘉挥,航天器轨道动力学与控制,宇航出版社,1995年
    [21]刘林,航天器轨道理论,国防工业出版社,2000年.
    [23]杨嘉樨,范秦鸿,航天器轨道动力学与控制(上),宇航出版社,1995年12月
    [24]刘利生,吴斌,杨萍,航天器精确定轨与自校准技术,国防工业出版社,2005年1月

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700