超高空观测平台系统建模与仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超高空观测平台是一种工作于平流层,可装载一定有效载荷的能够长时间定点悬停的工作平台。该平台主要依靠浮力提供升力,因此具有定点悬停能力。超高空观测平台的工作过程包括放飞和下降阶段,定点悬停阶段;为了使超高空观测平台能够实现对地面观测、与地面进行通信等功能,须对平台进行定点悬停控制和航迹控制。
     本文主要针对超高空观测平台的姿态控制、定点控制和航迹控制问题,进行了如下的研究工作:
     首先,在几点假设的基础上,对超高空观测平台进行受力分析,运用动量和动量矩定理建立平台的六自由度非线性数学模型。然后采用小扰动线性化的方法将非线性模型线性化,得出平台的纵向和侧向平面线性化方程。
     然后,以平台的线性化模型为基础,采用经典控制方法对平台的俯仰角和偏航角进行控制。在平台姿态控制的基础上,对超高空观测平台悬停于平流层进行定点控制,定点悬停位置控制系统设计包括垂向位置控制设计、前向位置控制设计和侧向位置控制设计。在Matlab环境下,对平台的定点悬停控制系统进行仿真研究,验证了姿态控制器和定点控制器的有效性。
     最后,根据平台放飞段期望的运动轨迹,设计平台的航迹控制器使其实现轨迹的跟踪。同时由于平台在上升过程中大气环境发生变化,设计了平台的压差控制系统使平台的内外压差在一定的范围内,以保证平台的外形。在Matlab环境下,对平台的航迹控制系统进行仿真研究,验证了航迹控制器的有效性。
The high altitude platform is a kind of operation platform with certain payload hovering in the stratosphere for a long duration. The lift of the platform comes mainly from buoyancy, therefore it is capable of hovering. The operation process of the high altitude platform includes taking off and landing stages, and the hovering stage. In order to realize the-high-altitude-platform-based ground observation and ground communication, it is necessary to control the hovering and mission path tracking of the platform.
     The thesis focuses on the attitude control, the hovering control and the mission path tracking control of the platform. The main contents are as follows:
     First, based on the force analysis of the high altitude platform and some standing assumptions, the nonlinear six-degree-of-freedom mathematical model is established. Then by small perturbation method, the nonlinear model is divided into linear equations in longitudinal and lateral planes.
     Afterwards, using the linear models of the platform, the pitch and yaw angle controllers are established by classical control methods. Based on the attitude control system, the hovering control system is built including vertical position controller, the forward position controller and the lateral position controller. The simulation of the design is carried out using Matlab, and the result indicates the effectiveness of the designed attitude and the hovering controllers.
     In the final part of the thesis, the track controller of the platform is designed to realize the trajectory tracking. Due to the changes of atmospheric parameters during the rising process, , the airship pressure control system is constructed to make the internal and external pressure kept in a requited range, guaranteeing the aerodynamic shape of the platform. The simulation is conducted using Matlab, and the results show the effectiveness of the design.
引文
1吴佑寿.发展中的平流层通信系统[J].工科物理. 2000, 10(4): 21-28.
    2刘刚,张玉军.平流层平台定点驻留控制分析与仿真[J].兵工自动化. 2008, 27(12): 64-66.
    3欧阳晋,屈卫东,席裕庚.平流层平台的发展及其自主控制关键技术[J].工业仪表与自动化装置. 2004, 25(1): 14-17.
    4侯东兴,刘东红.浮空器在军事斗争中的应用及发展趋势[J].航空兵器. 2006.3.
    5陈文英,陈玲.美国高空平台[J].江苏航空. 2007.3.
    6吕小红.世界军用平台发展新动向[J].飞行导弹. 2003.7.
    7李利良,郭伟民,何家芳.国外近空间平台的现状和发展[J].兵工自动化. 2008.27.2.
    8刘峰,孙超英,孙晓伟.国内外浮空器现状与发展趋势[C].浮空器发展与应用学术交流会,北京. 2005: 123-130.
    9方存光,王伟.平流层通讯平台及其运行过程中的控制[J].控制工程. 2003, 10(9): 36-40.
    10 G. A. Khoury, J.H. Gillett.Airship Technology[M]. Cambridge University Press. 2004: 56-60.
    11 Yokomaku Y. The Stratospheric Platform Airship R&D Program of Japan[C]. The
    2nd Stratospheric Platform Systems Workshop, Tokyo Japan. 2000: 7-13.
    12 Kim Dong-Min, Lee Yung-Gyo, Lee Sang-Jong, Yeom Chan-Hong. Research Activities for the Development of Stratospheric Airship Platform in Korea[C]. The
    5th Stratospheric Platform Systems Workshop. 2005: 82-88.
    13 Zhipeng Tong, Gongyi Fu, Xuexiong Shan, Weidong Qu, Zhongxin Xu. Current R&D Activities of Stratospheric Airship in China[C]. The 5th Stratospheric Platform Systems Workshop, 2005: 89-95.
    14 Ely C. de Paiva, Samuel S. Bueno, Sergio B. V. Gomes, etc. A Control System Development Environment for AURORA’s Semi-Autonomous Robotic Airship[C]. Proceeding of the 1999 IEEE International Conference on Robotics & Automation, Detorit Michigan, 1999: 2328-2335.
    15 ly C. de Paiva, Samuel S. Bueno, Bergerman M, A Robust Pitch Attitude Controller for AURORA’s Semi-Autonomous Robotic Airship[C]. American Institute of Aeronautice & Astronautics, 1999: 141-148.
    16王晓亮,单国雄.平台姿态控制系统的研究[J].应用数学和力学. 2006, 27(7):34-38.
    17 Sangjong Lee, Dongmin Kim. Feedback Linearization Controller for Semi Station Keeping of The Unmanned Airship[C]. AIAA 5th Aviation, Technology, Integration and Operations Conference, Arlington, Virginia, 2005: 56-63.
    18 B. G.. Kaemp, K. H. Well. Attitude Control System for a Remotely-Controlled Airship[J]. AIAA 1995, 1662(7): 123-133.
    19 J. R. Azinheira, E. C. de Paiva, J. J. Ramos. Mission Path Following for An Autonomous Unmanned Airship[C]. Proceeding of the 1999 IEEE International Conference on Robotics & Automation, San Francisco, 1999: 1269-1275.
    20方存光,王伟.自主平台俯仰角姿态动力学建模及控制[J].控制理论与应用. 2004, 21(2): 26-35.
    21陈慧,杨新,周江华.高空飞艇高度保持控制器设计[J].航天控制. 2009, 27(2): 56-61.
    22 Nimrod Rooz, Eric N. Johnson. Design and modelling of an airship station holding controller for low cost satellite operations[C]. AIAA Guidance, Navigation, and Control Conference and Exhibit 15-18 August 2005, San Francisco, California, 2005-6200:1-7.
    23付平,周军,郭建国.基于变结构控制方法的自主飞艇定点控制[J].飞行力学. 2008, 26(5): 28-31.
    24李家宁,徐波.平流层飞艇定点保持的滑模变结构控制研究[C].第三届中国航空学会青年科技论坛文集. 2007: 350-358.
    25绕进军,袭振邦,罗均,谢少荣.基于人工策略的无人飞艇航迹跟踪控制[C].中国智能自动化会议论文集. 2005.
    26袁子航.平流层飞艇的压力控制[D].上海交通大学硕士论文. 2006:5-7.
    27张琨,毕靖,丛滨. MATLAB 7.6从入门到精通[M].电子工业出版社,2009.5.
    28李智斌,李勇.近空间浮空飞艇飞行控制研究现状及问题[J].控制工程. 2006, 21(5): 11-19.
    29钱杏芳,林瑞雄,赵亚男.导弹飞行力学[M].北京理工大学出版社,2000:30.
    30施生达.潜艇操纵性[M].北京:国防工业出版社,1995:19-29,116-120.
    31 J. S. Uhlman, N. E. Fine, D. C. Kring. Calculation of the Added Mass and Damping Forces on Supercavitating Bodies[C]. The 4th International Symposium on Cavitation, California, 2001: 7-13.
    32 D. Clarke. Calculation of the Added Mass of Elliptical Cylinders in Shallow Water[J]. Ocean Engineering. 2001, 28(4): 61-72.
    33 C. J. Atkinson, R. G. Urso. Modeling of Apparent Mass Effects for the Real-Time Simulation of a Hybird Airship[C]. AIAA Modeling and Simulation TechnologiesConference and Exhibit, Keystone. 2006: 21-32.
    34 L. B. Tuckerman. Inertia Factors of Ellipsoids for Use in Airship Design[R]. Naca Reports. 2006, 14(3): 45-50.
    35 S. P. Jones, J. D. Laurier. Aerodynamic Estimation Techniques for Aerostats and Airships[C]. AIAA Lighter-than-Air Systems Conference, Annapolis, 2004:88-94.
    36 E. C. de Paiva, S. S. Bueno. Influence of Wind Speed on Airship Dynamics[N]. Journal of Guidance, Control and Dynamics. 2002, 25(6): 116-124.
    37 Etkin B, Theory of the flight of Airplanes in Isotropic Turbulence——Review an Extension[R]. AGARD Rept. 1961:372.
    38李健,侯中喜.基于扰动大气模型的乘波构型飞行器再入弹道仿真[J].系统仿真学报. 2007, 19(14): 83-86.
    39赵经文,王铎.理论力学[M].北京:高等教育出版社,1997:112-215.
    40 J. B. Mueller and M. A. Paluszek. Development of an Aerodynamic Model and Control Law Design for a High Altitude Airship[C]. AIAA the 3rd "Unmanned Unlimited" Technical Conference. 2003:15-20.
    41吴森堂,费玉华.飞行控制系统[M].北京航空航天大学出版社,2006: 77-81.
    42欧阳晋,屈卫东,席裕庚.平流层验证飞艇的建模与分析[J].上海交通大学学报, 2003.
    43 A. Datta, Ho Ming Tzu, S. P. Bhattacharyya. Structure and Synthesis of PID Controller. Springer Verlag[C], London, 2000, 24(5): 125-133.
    44胡寿松.自动控制原理[M].科学出版社,1979,222-226.
    45欧阳惠斌,阳武娇. PID参数整定法的仿真[J].计算机仿真. 2007, 24(7): 23-26.
    46付爱彬.稳定边界法PID控制器的设计[J].应用技术. 2007, 1(1): 57-58.
    47张达宋.物理学基础教程[M].人民教育出版社,2002.
    48 Incropera F.P, DeWitt D.P. Fundamentals of Heat and Mass Transfer,4th ed[C].,John Wiley&Sons,1996.
    49徐华舫,空气动力学基础[M].北京航空学院出版社,1987.
    50华莱士J M,霍布斯P V著.王鹏飞译.大气科学概观[M].上海科学技术出版社,1981.
    51 Xingjun Chen. Modeling and Simulation of Pressure Control for Stratospheric Platform Airship[C]. Proceedings of the 6th World Congress on Intelligent Control and Automation, Dalian, China, 2006: 6208-6212.
    52 Joseph B. Mueller, Michael A. Paluszek, Yiyuan Zhao. Development of an Aerodynamic Model and Control Law Design for a High Altitude Airship[C]. AIAA Lighter-than-Air Systems Conference, Annapolis, America, 2002: 152-160.
    53 Sadao T, Mikio S, Yoshihiro H. Stratospheric Platform Based Fixed Wireless Access System[C]. The 3rd Stratospheric Platform Systems Workshop, Tokyo Japan, 2001: 173-180.
    54魏东,陈欣琳,罗向前.低空飞艇压力控制系统设计[J].中国科技信息:2009.9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700