三维氨基酸描述子在肽类定量构效关系研究中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,定量构效关系(Quantitative Structure Activity Relationship, QSAR)作为一种间接方法,在计算机辅助药物分子设计中得到了广泛的应用,并已经成为一种不可或缺的工具。进行QSAR研究的关键前提和重要组成部分是分子结构参数化。众所周知,氨基酸的序列中隐藏着肽和蛋白质的功能信息及空间结构。因此,氨基酸的结构信息对肽的QSAR研究至关重要。此外,由于三维(Three dimension,3D)描述子能够直接反映受体和底物在分子作用过程中的非键合相互作用特征,因此据此所建的定量构效模型在物化意义上更为明确。
     本文将三种从生物分子的最基本结构特征出发,并综合立体、电子、疏水效应和分子整体三维结构信息,以及内部原子之间相互作用和外部分子影响的三维氨基酸描述子,引入几种肽类药物的结构与生物活性的QSAR模型,为将来此类药物分子的功能预测提供了理论指导。此外,文中将全部样本划分为训练集和测试集两个部分,由训练集样本建立QSAR模型,采用留一法(leave one out, LOO)内部验证对模型进行质量评价,并使用多种评价函数,对模型的外部预测能力进行了评价,确保了模型的真实有效性。
     本文开展的具体工作有:
     (1)将从20种天然氨基酸三维信息中提取出的721个描述子变量经过主成分分析(principal component analysis, PCA)而得到的三维氨基酸描述子-SVTD(Scores Vector of Three Dimension Descriptors),应用于21个后叶催产素及65个HLA(human leukocyte antigen)-A*0201限制性CTL(cytotoxic T lymphocyte)表位肽样本的定量构效研究中,取得了理想的结果。使用多元线性回归(multiple linear regression, MLR)建模,同时采用内部和外部双重验证的办法对所建模型的稳定性进行深入分析和检验。对于后叶催产素样本,所得模型的相关系数(Rum)、留一法交互校验(Cross-validation, CV)相关系数(Rcv)和外部样本校验相关系数(Qext)分别为0.981,0.962,0.966。对于HLA-A*0201限制性CTL表位肽样本,所得模型的相关系数(Rcum)、留一法交互校验相关系数(Rcv)和外部样本校验相关系数(Qext)分别为0.949,0.899,0.922。结果表明SVTD描述子能很好地表征肽类分子的结构信息,所建模型具有很好的拟合能力和预测能力,为该类药物的开发提供了理论指导。
     (2)将从20种天然氨基酸的空间构型中得到的WHIM(weighted holistic invariant molecular)描述子进行主成分分析得到的权重整体不变分子指数主成分得分矢量VSW (vector of principal component scores for weighted holistic invariant molecular index),应用于152个HLA-A*0201限制性CTL表位肽以及101个阳离子抗菌肽样本的定量构效关系研究中。对于HLA-A*0201限制性CTL表位肽样本,所得模型的相关系数(Rcum)、留一法交互校验相关系数(Rcv)和外部样本校验相关系数(Qext)分别为0.806,0.756,0.693。对于抗菌肽样本,所得模型的相关系数(Rcum)、留法交互校验相关系数(Rcv)和外部样本校验相关系数(Qext)分别为0.869,0.834,0.702。结果表明VSW描述子可用于肽类药物的活性预测和新型药物的分子设计。
     (3)将从天然氨基酸中得到的23种电子作用力,37种空间作用力,54种疏水作用力和5种氢键作用力进行主成分分析得到的分离物化性质得分DPPS(divided physicochemical property scores),应用于58个血管紧张素转化酶抑制剂和25个HLA-Cw*0102表位肽的定量构效研究中。对于血管紧张素转化酶抑制剂样本,所得模型的相关系数(Rcum)、留一法交互校验相关系数(Rcv)和外部样本校验相关系数(Qext)分别为0.943,0.909,0.916。对于HLA-Cw*0102表位肽样本,所得模型的相关系数(Rcum)、留一法交互校验相关系数(Rcv)分别为0.868,0.795。结果表明DPPS描述子因其明确的物化含义,可以用于定量构效关系模型的解释,因而可用来指导新型高活性分子的设计。
In recent years, Quantitative structure activity relationship (QSAR), which is to investigate the quantitative relationship between the molecular structural parameters and biological activities or other relative activities, has got a wide and rapid development in Computer-aided drug design (CADD). QSAR, as an effective means in research and contriving medicines, has been widely applied in organic chemistry, pharmacy chemistry, environment chemistry, computer chemistry, pesticide, and molecular biology, etc. Structural characterization is crucial to performing QSAR studies for peptides and proteins. Major information of structure and function for peptides and proteins is contained in their amino acid sequences. Therefore, characteristics of the amino acid residues for peptides and proteins are of great significance to their QSAR study.3D descriptor in QSAR is a more accurate technique in structure identification because 3D descriptors will indicate non-bonding interactions of ligand-receptor. Finally, quantum chemistry, an important method in studying molecular structure and reaction theory, has been widely applied in QSAR, thus greatly increasing the accuracy of QSAR theory.
     In this dissertation, we developed a series of 3D descriptors based on the basic molecular structure character, considering common intramolecular and intermolecular non-bonding interactions, like electrostatic interaction, steric interaction, and hydrophobic interaction. Molecular structure parameterization methods and modeling methods have been investigated and applied in QSAR as simple, direct and effective molecular structure parameterization methods. At the same time, the quantitative relationships of several representative drug structures and activity/spectrum have been built. The results will provide some useful basic information for analyzing molecular spectrum, function, reaction mechanism, drug design, and efficiency of medicine exploitation.
     The main contents are as follows:
     (1) Scores Vector of Three Dimension Descriptors(SVTD), which were extracted from principal component analysis of 721 indexes of 20 natural amino acids, were applied to the QSAR study of 21 oxytocin analogues and 65 HLA-A*0201 restricted CTL epitopes. First, we used stepwise multiple regressions to pick the variables and then applied the multiple linear regression to the models. Finally, the models were tested by internal and external validations. For the samples of oxytocin analogues, the correlation coefficients(Rcum), cross-validation (Rcv) and external validation correlation coefficients (Qext) were 0.981,0.960 and 0.966, respectively; For the samples of HLA-A*0201 restricted CTL epitopes, he correlation coefficients(Rcum), cross-validation (Rcv) and external validation correlation coefficients (Qext) were 0.949,0.899 and 0.922, respectively, showing the model had favorable estimation and prediction capabilities.
     (2) Vector of Principal Component Scores for Weighted Holistic Invariant Molecular Index(VSW), which were extracted from principal component analysis of weighted holistic invariant molecular indexes of 20 natural amino acids, were applied to the QSAR study of 152 HLA-A*0201 restricted CTL epitopes and 101 Antimicrobial peptides. For the samples of HLA-A*0201 restricted CTL epitopes, the correlation coefficients(Rcum), cross-validation (Rcv) and external validation correlation coefficients (Qext) were 0.806,0.756 and 0.693, respectively; For the samples of Antimicrobial peptides, the correlation coefficients(Rcum), cross-validation (Rcv) and external validation correlation coefficients (Qext) were 0.869,0.834 and 0.702, respectively. Favorable stability and good prediction capability of the model indicated that VSW was applicable to the molecular structural characterization and biological activity prediction.
     (3) Divided Physicochemical Property Scores (DPPS), which were extracted from principal component analysis of 23 electronic properties,37 steric properties,54 hydrophobic properties and 5 hydrogen bond properties of 20 natural amino acids, were applied to the QSAR study of 58 angiotensin-converting enzyme inhibitors and 25 HLA-Cw*0102 epitopes. For the samples of ACE inhibitors, the correlation coefficients(Rcum), cross-validation (Rcv) and external validation correlation coefficients (Qext) were 0.943,0.909 and 0.916, respectively; For the samples of HLA-Cw*01 02 epitopes, the correlation coefficients(Rcum), cross-validation (Rcv) were 0.868 and 0.795, respectively. Satisfactory results showed that, data of DPPS may be a useful structural expression methodology for study on peptide QSAR due to their many advantages such as easy manipulation, plentiful structural information and high characterization competence.
引文
[1][美]马丁原著,王尔华编译.定量药物设计[M].北京,人民卫生出版社,1983,1-39.
    [2]李志良.定量构效关系研究进展[J].化学通报,1995,95-10.
    [3]Katritzky A R, Maran U, etc. Perspective:Structurally diverse quantitative structure-property relationship correlations of technologically relevant physical properties [J]. J. Chem. Inf. Comput. Sci.,2000,40,1-18.
    [4]Kubinyi H. From narcosis to hyperspace:The history of QSAR. Quant. Struct-Act. Relat.,2002,21(4),348-356.
    [5]Hansch C, Muir M, Fujita T, etc. The correlation of biological activity of plant growth regulators and chloromycetin derivatives with Hammett constants and partition coefficients. J. Am. Chem. Soc.,1963,85(18),2817-2824.
    [6]Hansch C, Fujita T. Correlation of biological activity of phenoxyacetic acids with hammett substituent constants and partition coefficient. Nature,1962,194(14), 178-180.
    [7]Hansch C, Fujita T. A method for the correlation of biological activity and chemical structure. J. Am. Chem. Soc.,1964,86(8),1616-1626.
    [8]Free SM Jr., Wilson JW. A mathematical contribution to structure activity studies. J. Med. Chem.,1964,7(4),395-399.
    [9]Unger SH, Hansch C. A reexamination of adrenergic blocking activity of beta-halo-beta-arylalkylamines on model building in structure-activity relationships. J. Med. Chem.,1973,16(7),745-749.
    [10]Fujita T, Ban T. Structure-activity study of phenethylamines as substrates of biosynthetic enzymes of sympathetic transmitters. J. Med. Chem.,1971,14(2), 148-152.
    [11]Kier LB, Murray WJ, Hall LH. Molecular connectivity 4:Relationship to biological activity. J.Med. Chem.,1975,18(12),1272-1274.
    [12]Randic M. One characterization of molecular branching. J. Am. Chem. Soc.,1975, 97(23),6609-6615.
    [13]Kier LB, Hall LH. An electrotopological state for atoms in molecules. J. Pharm. Res.,1990,7(8),801-807.
    [14]Liu SS, Yin CS, Li ZL, Cai SX. QSAR study of steroid benchmark and dipeptides based on MEDV-13. J. Chem. Inf. Comput. Sci.,2001,41(2),321-329.
    [15]Liu SS, Cai SX, Cao CZ, Li ZL. Molecular electronegative distance vector (MEDV) relating to 15 properties of alkanes. J. Chem. Inf. Comput. Sci.,2000,40(6), 1337-1348.
    [16]徐筱杰,侯廷军,乔学斌,章威.计算机辅助药物分子设计[M].北京,化学工业出版社,2004.
    [17]李仁利.药物构效关系[M].北京,中国医药科技出版社,2004.
    [18]陈凯先,蒋华良,嵇汝运.计算机辅助药物设计——原理、方法及应用[M].上海,上海科学技术出版社,2000.
    [19]郭宗儒.药物分子设计[M].北京,科学出版社,2005.
    [20]Cramer RD, Patterson DE, Bunce JD. Comparative molecular field analysis (CoMFA).1. Effect of shape on binding of steroids to carrier proteins. J. Am. Chem. Soc.,1988,110(18),5959-5967.
    [21]Doweyko AM. The hypothetical active site lattic-An approach to modeling active sites from data on inhibitor molecules. J. Med. Chem.,1988,31(7),1396-1406.
    [22]Xu Y, Liu H, Niu CY, Luo C, etc. Molecular docking and 3D QSAR studies on 1-amino-2-phenyl-4-(piperidin-1-yl)-butanes based on the structural modeling of human CCR5 receptor. Bioorg. Med. Chem.,2004,12(23),6193-6208.
    [23]李仁利.药物构效关系[M].北京,中国医药科技出版社,2004.
    [24]Klebe G., Abraham U, Mietzner T. Molecular similarity indices in a comparative analysis(CoMSIA) of drug molecules to correlate and predict their biological activity. J. Med. Chem.,1994,37(24),4130-4146.
    [25]Menezes IRA, Lopes JCD, Montanari CA, Oliva G, etc.3D QSAR studies on binding affinities of coumarin natural products for glycosomal GAPDH of Trypanosoma cruzi. J. Comput. Aid. Mol. Des.,2003,17(5-6),277-290.
    [26]Todeschini R, Lasagni M, Marengo E. New molecular descriptors for 2D and 3D structures. Theory. J. Chem.,1994,8(4),263-272.
    [27]Albuquerque MG, Hopfinger AJ, etc. Four-dimensional quantitative structure-activity relationship analysis of a series of interphenylene 7-oxabicycloheptane oxazole thromboxane A2 receptor antagonists. J. Chem. Inf. Comput. Sci.,1998,38(5), 925-938.
    [28]Hopfinger AJ, Wang S, Tokarski JS, Jin Baiqiang, etc. Construction of 3D-QSAR models using the 4D-QSAR analysis formalism. J. Am. Chem. Soc.,1997,119(43), 10509-10524.
    [29]Vedani A, Briem H, Dobler M, etc. Multiple conformation and protonation state representation in 4D-QSAR:The neurokinin-1 receptor system. J. Med. Chem., 2000,43(23),4416-4427.
    [30]Vedani A, Dobler M. Multi-dimentinal QSAR in drug research:Predicting binding affinities, toxicity and pharmacokinetic parameters. Prog. Drug Res.,2000,55, 105-135.
    [31]Vedani A, Dober M.5D QSAR:The key for simulating induced fit. J. Med. Chem., 2002,45(11),2139-2149.
    [32]Vedani A, Dobler M, Lill MA. Combining protein modeling and 6D-QSAR— simulating the binding of structurally diverse ligands to the estrogen receptor. J. Med. Chem.,2005,48(11),3700-3703.
    [33]Zhou P, Tian FF, Wu YQ, Li ZL, Shang ZC. Quantitative Sequence-Activity Model (QSAM):Applying QSAR Strategy to Model and Predict Bioactivity and Function of Peptides, Proteins And Nucleic Acids. Current Computer-Aided Drug Design, 2008,4,311-321.
    [34]Shinoda K, Sugimoto M, Tomita M, Ishihama Y. Informatics for peptide retention properties in proteomic LC-MS. Ptoteomics,2008,8,787-798.
    [35]Pripp AH, Isakssonb T, etc. Quantitative structure activity relationship modeling of peptides and proteins as a tool in food science. Trends in Food Science & Technology,2005,16,484-494.
    [36]Sneath PH. Relations between chemical structure and biological activity in peptides. J. Theor. Biol.,1966,12 (2),157-195.
    [37]Hellberg S, Eriksson L, Jonsson J, etc. Minimum analogue peptide sets (MAPS) for quantitative structure-activity relationships. Int. J. Pept. Protein Res.,1991,37(5), 414-424.
    [38]Hellberg S, Skagerberg B, Wold S. Peptide quantitative structure-activity relationships, a multivariate approach. J. Med. Chem.,1987,30(7),1126-1135.
    [39]Kidera A, Konishi Y, etc. Statistical analysis of the physical properties of the 20 naturally occuring amino acids. J. Protein Chem.,1985,4(1),23-55.
    [40]Sandberg M, Eriksson L, Jonsson J, etc. New chemical descriptors relevant for the design of biologically active peptides. A multivariate charaterrization of 87 aminoacids. J. Med. Chem.,1998,41(14),2481-2491.
    [41]Guan P, Doytchinova I A, etc. Analysis of peptide-protein binding using amino acid descriptors:prediction and experimental verification for human histocompatibility complex HLA-A*0201. J. Med. Chem.,2005,48(23),7418-7425.
    [42]Wu J, Aluko R E, Nakai S. Structural requirements of angiotensin Ⅰ-converting enzyme inhibitory peptides:quantitative structure-activity relationship modeling of peptides containing 4-10 amino acid residues. QSAR Comb. Sci.,2006,25(10), 873-880.
    [43]Genst E D, Areskoug D, Decanniere K, etc. Kinetic and affinity predictions of a protein-protein interaction using multivariate experimental design. J. Biol. Chem., 2002,277(33),29897-29907.
    [44]Ponce Y M, Marrero R M, Castro E A, etc. Protein quadratic indices of the "macromolecular pseudograph's α-carbon atom adjacency Matrix".1. Prediction of arc repressor alanine-mutant's stability. Molecules,2004,9(12):1124-1147.
    [45]Lin Z, Wu Y, Zhu B, Ni B, Wang L. Toward the quantitative prediction of T-Cell epitopes:QSAR studies on peptides having affinity with the class Ⅰ MHC molecular HLA-A*0201. J. Comput. Biol.,2004,11(4):683-694.
    [46]Cho S J, Zheng W, Tropsha A. Rational combinatorial library design.2. Rational design of targeted combinatorial peptide libraries using chemical similarity probe and the inverse QSAR approaches. J. Chem. Inf. Comput. Sci.,1998,38(2): 259-268.
    [47]Collantes E R, Dunn W J. Amino acid side chain descriptors for quantitative structure activity-relationship studies of peptide analogues. J. Med. Chem.,1995, 38(14):2705-2713.
    [48]de Armas R R, Diaz H G, Molina R, Uriarte E. Stochastic-based descriptors studying biopolymers biological properties:extended MARCH-INSIDE methodology describing antibacterial activity of lactoferricin derivatives. Biopolymers,2005, 77(5):247-256.
    [49]Mei H, Zhou Y, Sun L, Li Z. A new descriptor of amino acids and its application in peptide QSAR. Acta Phys.-Chem. Sin.2004,20(8):821-825.
    [50]梁桂兆,周鹏,周原,张巧霞,李志良.一组新氨基酸描述子用于肽定量构效关系研究.化学学报,2006,64(5):393-396.
    [51]Shu M, Huo DQ, Mei Hu, etc. New Descriptors of Amino Acids and Its Applications to Peptide Quantitative Structure-activity Relationship. Chinese J. Struct. Chem. 2008,27(11):1375-1383.
    [52]Mei H, Liao Z, Zhou Y, Li Z. A new set of amino acid descriptors and its application in peptide QSARs. Biopolymers (Pept. Sci.) 2005,80(6):775-786.
    [53]Zhou P, Tian FF, Zhang MJ, Li ZL. Applying generalized hydrophobicity scale of amino acids to quantitative prediction of human leukocyte antigen-A*0201 restricted cytotoxic T lymphocyte epitope. Chin. Sci. Bull.,2006,51(12): 1439-1443.
    [54]Liang GZ, Li ZL. A new sequence representation (FASGAI) as applied in better specificity elucidation for human immunodeficiency virus type 1 protease.Biopolymers (Pept. Sci.),2007,88(3):401-412.
    [55]Tian FF, Zhou P, Li Z. T-scale as a novel vector of topological descriptors for amino acids and its application in QSARs of peptides. J. Mol. Struct.,2007,830(1-3): 106-115.
    [56]Cocchi M, Johansson E. Amino acids characterization by GRID and multivariate data analysis. Quant. Struct.-Act. Relat.,1993,12(1):1-8.
    [57]丁俊杰,丁晓琴,赵立峰等.新型三维氨基酸结构描述符的研究及其在多肽QSAR中的应用[J].药学学报,2005,40(4):340-346.
    [58]Liu SS, Yin CS, Cai SX, Li ZL. A novel MHDV descriptor for dipeptide QSAR studies. J. Chin. Chem. Soc.,2001,48(2):253-260.
    [59]Tong JB, Liu SL, Zhou P, Wu B, Li Z. A novel descriptor of amino acids and its application inpeptide QSAR. Journal of Theoretical Biology,2008,253(1):90-97.
    [60]Norinder U, Svensson P. Descriptors for amino acids using MolSurf parametrization. J. Comput. Chem.,1998,19(1):51-59.
    [61]Lin ZH, Long HX, Bo Z, Wang YQ, Wu YZ. New descriptors of amino acids and their application to peptide QSAR study. Peptides,2008,29(10):1798-1805.
    [62]丁俊杰,晓琴,赵立峰等.多肽定量构效关系与分子设计[J].化学进展,2005,17(1):130-136.
    [63]梁桂兆,梅虎,周原等.计算机辅助药物设计中的多维定量构效关系模型化方法[J].化学进展,2006,18(1):120-127.
    [64]许禄.化学计量学方法[M].北京,科学出版社,1995.
    [65]Nomikos P, MacGregor J F. Monitoring of batch processes using multi-way principal components analysis[J].Am. Inst. Chem. Eng. J.,1994,40:1361-1375.
    [66]Jackson J E. Principal components and factor analysis:Part I—principal components [J]. Journal of Quality Technology,1980,12:201-213.
    [67]Ruymgaart F H. A robust principal component analysis[J]. Journal of Multivariate Analysis,1981,11:485-497.
    [68]梅虎,肽的定量构效关系研究[D].重庆大学博士学位论文,2005.
    [69]俞汝勤.化学计量学导论[M].长沙:湖南教育出版社,1991:1-180.
    [70]Kabe D G. On some multivariate statistical methodology with applications to statistics, psychology, and mathematical programming[J]. Journal of the Industrial Mathematics Society,1985,35:1-18.
    [71]Rencher A C, Pun F C. Inflation of R2 in best subset regression[J]. Technometrics, 1980,22:49-53.
    [72]Morrison D F. Multivariate statistical methods[M].3rd Ed, New York:McGraw-Hill. 1990:234-238.
    [73]Guttman I. Linear models:An introduction[M]. New York:Wiley.1982,578-579.
    [74]Smith D W, Gill D S, Hammond J J. Variable selection in multivariate multiple regression[J]. Journal of Statistical Computation and Simulation,1985,22:217-227.
    [75]许禄,邵学广.化学计量学方法[M].北京:科学出版社.2004,16-18,70-73.
    [76]Tropsha A, Gramatica P, Gombar V K. The importance of being earnest:Validation is the absolute essential for successful application and inerpretation of QSPR models [J]. QSAR Comb. Sci.,2003,22:69-77.
    [77]Golbraikh A, Tropsha A. Beware of Q2[J]. J. Mol. Graphics Mod.,2002,20: 269-276.
    [78]Gramatica P, Pilutti P, Papa E. Validated QSAR prediction of OH tropospheric degradation of VOCs:Splitting into training-test sets and consensus modeling[J]. J. Chem. Inf. Comput. Sci.,2004,44:1794-1802.
    [79]仝建波,刘淑玲等.一种新三维氨基酸描述子SVTD及在肽QSAR的应用.分析科学学报,2008,24(5):522-526.
    [80]Adenot M, Sarrauste de Menthiere C, etc. Peptides quantitative structure-function relationships:an automated mutation strategy to design peptides and pseudopeptides from substitution matrices. Journal of Molecular Graphics and Modeling,1999, 17(5-6):292-309.
    [81]梅虎,周原等HLA-A*0201限制性CTL表位定量结构与活性研究.化学学报,2006,64(9):949-952.
    [82]Frahm N, Korber BT, Adams CM, et al. Consistent cytotoxic-T-lymphocyte targeting of immuno dominant regions in human immunodeficiency virus across multiple ethnicities [J]. J Virol,2004,78 (5):2187-2200.
    [83]Yamaguchi H., Tanaka F., Ohta M., etc. Cancer Res.,2004,10 (3):890.
    [84]Hebart H., Rauser G., Stevanovic S.etc. Exp. Hematol,2003,31(10):966.
    [85]De Groot A.S., Jesdale B., Martin W., etc. Vaccine,2003,21 (27~30):4486.
    [86]唐凯临,李通化,陈开.多肽保留时间预测的研究.计算机与应用化学,2008,25(02):145-147.
    [87]熊清,王远强,李志良.变形虫穿孔肽及其类似物的结构表征与抗菌活性定量预测.计算机与应用化学,2006,23(10):1007-1012
    [88]李仁炳,胥江河,崔榕.HLA-A*0201限制性CTL表位肽定量构效关系研究.西南师范大学学报(自然科学版),2007,32(2):30-34.
    [89]林治华,胡勇,吴玉章.HLA-A*0201限制性CTL表位肽的三维定量构效关系的研究.化学学报,2004,62(18):1835-1840.
    [90]周鹏,李志良,田菲菲,张梦军.氨基酸广义疏水标度(GH-scale)用于HLA-A*0201限制性CTL表位定量预测.科学通报,2006,51(11):1259-1263.
    [91]张梦军,周鹏等.氨基酸非键作用指数用于HLA-A*0201限制性CTL表位定量预测研究.免疫学杂志,2007,23(4):440-444.
    [92]仝建波,张生万,成素丽,李改仙.三维氨基酸结构描述子矢量SVRDF及其在肽QSAR中的应用.药学学报,2007,42(1):40-46.
    [93]梅虎,周原等.一种新的氨基酸描述子及其在肽QSAR中的应用.物理化学学报,2004,20(8):821-825.
    [94]林治华,胡勇,吴玉章.HLA-A*0201限制性CTL表位肽的三维定量构效关系的研究.化学学报,2004,62(18):1835-1840.
    [95]Jianbo Tong, Shuling Liu, etc. A novel descriptor of amino acids and its application in peptide QSAR. Journal of Theoretical Biology,2008,253:90-97.
    [96]Garboczi D N, Ghosh P, etc. Structure of the complex between human T-cell receptor,viral peptide and HLA-A2. Nature,1996,384:134-141.
    [97]Doytchinova I A, Flower D R. Toward the quantitative prediction of T-Cell epitopes: CoMFA and CoMSIA studies of peptides with affinity for the class 1 MHC molecule HLA-A*0201. J. Med. Chem.,2001,44:3572-3581.
    [98]Sima P, Trebichavsky I, Sigler K. Mammalian antibiotic peptides. Folia Microbiol., 2003,48(2):123-137.
    [99]Simmaco M, Mignogna G, Barra D. Antimicrobial peptides from amphibian skin: what do they tell us. Biopolymers,1998,47(6):435-450.
    [100]Miele R, Birklund G, etc. Involvement of rel factors in the expression of antimicrobial peptide genes in amphibian. Eur. J. Biochem.2001,268(2):443-449.
    [101]Khush RS, Leulier F, Lemaitre B. Drosophila immunity:two paths to NF-kappa B. Trends Immunol.,2001,22(5):260-264.
    [102]Cherkasov A, Jankovic B. Application of'Inductive'QSAR descriptors for quantification of antibacterial activity of cationic polypeptides. Molecules,2004, 9(12):1034-1052.
    [103]F. Tian, L. Yang, etc. In silico quantitative prediction of peptides binding affinity to human MHC molecule:an intuitive quantitative structure-activity relationship approach. Amino Acids,2009 (36):535-554.
    [104]舒茂.新型氨基酸结构表征方法及其在定量构效关系中应用研究.重庆大学博士学位论文,2009.
    [105]Cushman D W, Cheung H S, Sabo E F, Ondetti, M A. Angiotensin-converting enzyme inhibitors:evolution of a new class of antihypertensive drugs. Baltimore: Urban and Schwarzenberg,1981.
    [106]Collantes E R, Dunn W J. Amino acid side chain descriptors for quantitative structure activity relationship studies of peptide analogues. J. Med. Chem.,1995, 38(14):2705-2713.
    [107]Jensen PE. Recent advances in antigen processing and presentation. Nat. Immunol., 2007,8:1041-1048.
    [108]Hauptmann G, Bahram S. Genetics of the central MHC. Curr. Opin. Immunol., 2004,16:668-672.
    [109]Heinonen KM, Perreault C. Development and functional properties of thymic and extrathymic T lymphocytes. Crit. Rev. Immunol.,2008,28:441-466.
    [110]Bashirova AA, Martin MP, etc. The killer immunoglobulin-like receptor gene cluster:tuning the genome for defense. Annu. Rev. Genomics. Hum. Genet.,2006, 7:277-300.
    [111]Flower DR. Bioinformatics for Vaccinology. Wiley-VCH,2008,302.
    [112]Guan P, Doytchinova IA, Flower DR. HLA-A3 supermotif defined by quantitative structure-activity relationship analysis. Protein Eng.,2003,16:11-18.
    [113]Korber B, LaBute M, Yusim K. Immunoinformatics comes of age. PLoS Comput. Bio.,2006,12:e71.
    [114]Doytchinova IA, Flower DR. Toward the Quantitative Prediction of T Cell Epitopes:CoMFA and CoMSIA Studies of Peptides with Affinity for the Class I MHC Molecule HLA-A*0201. J. Med. Chem.,2001,44:3572-3581.
    [115]Hattotuwagama CK, Guan P, Doytchinova IA, Flower DR. New Horizons In Mouse Immunoin formatics:Reliable In Silico Prediction Of Mouse Class I Histocompatibility Major Complex Peptide Binding Affinity. Org. Biomol. Chem., 2004,2:3274-3283.
    [116]Snary D, Barnstable CJ, Bodmer WF, Crumpton MJ. Molecular structureof human histocompatibility antigens:the HLA-C series. Eur. J. Immunol.,1977,7: 580-585.
    [117]Kiepiela P, Leslie AJ, Honeyborne I, Ramduth D, Thobakgale C, et al. Dominant influence of HLA-B in mediating the potential co-evolution of HIV and HLA. Nature,2004,432:769-775.
    [118]Rao X, Costa AI, van Baarle D, Kesmir C. A comparative study of HLA binding affinity and ligand diversity:implications for generating immunodominant CD8+ T cell responses. J. Immunol.,2009,182:1526-1532.
    [119]Cao J, McNevin J, McSweyn M, Liu Y, Mullins JI, et al. Novel cytotoxic T-lymphocyte escape mutation by a three-amino-acid insertion in the human immunodeficiency virus type 1 p6Pol and p6Gag late domain associated with drug resistance. J. Virol.,2008,82:495-502.
    [120]Goulder PJ, Bunce M, Luzzi G, Phillips RE, McMichael AJ. Potential underestimation of HLA-C-restricted cytotoxic T-lymphocyte responses. AIDS, 1997,11:1884-1886.
    [121]Yokoyama WM. Natural killer cell immune responses. Immunol. Res.,2005,32: 317-325.
    [122]Fellay J, Shianna KV, Ge D, Colombo S, Ledergerber B, et al. A whole genome association study of major determinants for host control of HIV-1. Science,2007, 317:944-947.
    [123]Brooks AG, Boyington JC, Sun PD. Natural killer cell recognition of HLA class I molecules. Rev. Immunogenet,2000,2:433-448.
    [124]Barber LD, Percival L, Valiante NM, Chen L, Lee C, et al. The interlocus recombinant HLA-B*4601 has high selectivity in peptide binding and functions characteristic of HLA-C. J. Exp. Med.,1996,184:735-740.
    [125]Andersen MH, Sφndergaard I, Zeuthen J, Elliott T, Haurum JS. An assay for peptide binding to HLA-Cw*0102. Tissue Antigens,1999,54:185-190.
    [126]Valerie A. Walshe, Channa K. Hattotuwagama, etc. Integrating In Silico and In Vitro Analysis of Peptide Binding Affinity to HLA-Cw*0102:A Bioinformatic Approach to the Prediction of New Epitopes. PLoS ONE,2009,4(11):e8095.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700