心肌自动分区运动分析技术对正常儿童心功能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
心肌自动分区运动分析(A-SMA)是超声发展的一项新技术,是可以实时、客观定量评价心室整体和局部的收缩、舒张功能的新方法。全方位M型超声心动图(FAM)技术可以对所有室壁节段从任意方向和角度进行全面定量检测,从而评价心脏局部功能。本课题应用A-SMA和FAM技术对160例不同年龄正常儿童进行心功能测定,并建立了相关检测指标的参考值。我们检测左心室各节段面积变化率(FAC)、总面积变化率(FAC-T),标化峰值充盈率(nPFR)、标化峰值射血率(nPER)、射血分数(EF)、室壁收缩期最大幅度等心功能参数,从而对正常儿童心脏整体和局部的舒缩功能进行全面测定分析。
     研究结果:
     1、建立了正常儿童各年龄组的左心室FAC-D、FAC-S、FAC-T、ESV、EDV、EF、nPER、nPFR、室壁收缩期最大幅度的正常参考值。
     2、正常儿童左心室ESV和EDV随年龄增长而增加,并且各组间差异有非常显著性。
     3、左室nPFR在各组间显示有增加,于组4发生显著性变化,有随年龄增长有增加趋势。
     4、正常儿童A-SMA显示室壁运动色彩随心动周期而变化,左心室所有室壁均以一定颜色顺序进行变化且色彩完整均匀。
     5、正常儿童各组左室壁FAC-S、FAC-D从基底段至心尖段有减低的趋势,基底段大于中间段,但差异无显著性意义;中间段大于心尖段,差异有非常显著性或显著性。提示左室短轴切面室壁基底段和中间段对整体功能影响较大,而心尖段最小。
     6、正常儿童左室短轴切面同水平FAC-T有随年龄增长而改变的趋势。各组左室短轴二尖瓣切面FAC-T大于乳头肌水平切面,但差异无显著性意义;乳头肌水平切面大于心尖水平切面,差异有非常显著性。提示左室短轴方向上三个平面整体功能以心尖水平切面最弱。
     结论:A-SMA和FAM技术可以全面定量检测正常儿童的心功能,包括心脏整体和局部的舒缩功能,并建立了相关检测指标的参考值,从而为临床提供了正常儿童心功能的新客观指标,为进一步研究儿童心功能异常改变奠定了基础。
In the process of Continued growth and development of the childhood, all the organs and tissues gradually grow up, the cardiovascular system will also be changed, function matures. So the puerile normal ranges of the heart functional parameters in different periods are also different, the evaluation of abnormal cardiac function in the different age groups of children must adopt diagnostic criteria with corresponding age. Therefore defination of a relatively constant standard with the corresponding age can make accurate judgements of cardiac function. Clinical judgement on cardiac function in patients with abnormal heart is very importantfor the evaluation of the damage. The pediatric clinical assessment of cardiac function of children often based on the symptoms and signs, there are some subjectivities. Because children have unclear statements of the symptoms and are influenced by the original disease, the diagnosis of cardiac function in children is often easy to be neglected and clinical treatment is difficult to accurately grasp the opportunity, easy to delay the condition. Hence the need to adopt an objective clinical parameters can improve the diagnostic sensitivity and specificity.
     In the evaluation of cardiac structure and function, echocardiography is the most commonly used in the clinical study of the testing facility. With the continuous development of new technologies of echocardiography, some of the new left ventricular function evaluation methods and clinical indicators are gradually applied, and a growing emphasis on the role have occupied an important position, because not only these new technologies can be judged as a whole and local function of left ventricular, but also they can also detect systolic and diastolic function.
     As a newly developed technology, A-SMA technology is based on a "organizations-blood interface" automatic detection technology. The technology has the function which can dectect endocardial automatic edge, according to the different points of Integral Backscatter of the myocardium and blood ,it can automatically detect in real time with the blood of myocardial tissue interface, which can complete endocardial automatic edge detection. Transform and gradeing by color coding which can show the heart of endometrial changes in the diferent phrase can make the quantitative detection to the fractional area change (FAC) and fractional area change-total (FAC-T) per cardiac cycle. Left ventricular time-volume curve and its derivative curve acompanied with each cardiac cycle automatically calculate and display, it can obtain a number of cardiac function parameters in a continuous cardiac cycle: normalization peak filling rate (nPFR) and normalization peak ejection rate (nPEP). A-SMA technology is a technology of quantitative analysis,it not only give an objective quantitative evaluation of the overall cardiac function, can also directly show that local abnormal movement. As A-SMA technology can make a real-time quantitative analysis of heart function, it is a new clinical technology which is convenient, time - saving, quantitative and objective ,at the same time ,it can make a real- time dynamic monitor on cardiac function. A-SMA technology which can make a quantitative analysis of local wall motion can automatically display measurements in real time, it does not frozen images and overcome the the cumbersome procedures of repeated operation.it reduces the the human factors which impact the accuracy in the manual operation, it also significantly increases working efficiency and accuracy of the inspection.
     Free angle model (FAM), also known as anatomy, anatomy linear M-mode echocardiography. There is no limitation in the angles and positions of its sampling with the largest differences from the traditional M-model. we can make a comprehensive quantitative detection of all wall segments from any direction and angle, and in the regional wall, thickness, the range of motion and the rate of thickening were observed which we can evaluate local systolic and diastolic function. FAM overcome M-mode constraints, and have improved precision and accuracy in the echocardiographic measurement. The greatest advantage lies in the sampling line 360°rotation, which can be sure to vertically pass the relevant structure, improve the accuracy and repeatability in measuring partial wall thickness, range of motion and the rate of thickening to evaluate local systolic and diastolic function.
     This study used Aloka SSD 5500 color ultrasonic machine, with A-SMA, FAM analysis software, and detection of 160 healthy children. Start A-SMA system, in the level of the left ventricular, mitral valve of short axis and papillary muscle of short axis were divided into six equal wedge region, the short axis of cardiac apical level is divided into four equal wedge region.A-SMA observation shows that the Kinesis color changes, and to detect the fractional area change-systolic (FAC-S) and the fractional area change-diastolic (FAC-D) in each region;the fractional area change-total (FAC-T) of the level systolic and diastolic phase shows in the form of histograms and data. Admission to the apical four-chamber view, the left ventricle time-volume curve and its derivative curve with each cardiac cycle automatically calculate and display, the use of the curve will obtain the following parameters: normalization peak filling rate (nPFR), normalization peak ejection rate (nPER), ejection fraction (EF), end diastolic volume (EDV), end systolic volume (ESV). FAM analysis system set three ultrasound sampling line, in the same cardiac cycle make the six-segment Kinesis curve at the same time, measure the maximum range of motion in the systolic wall.
     The results of this study show that: the normal range with normal puerile left ventricular EDV and ESV increases with age, four groups between children have the significant difference. In the left ventricular nPFR all age groups showed an increase, in the Group 4, it has significant changes with an increasing trend with increasing age. Normal children A-SMA wall motion color will change with cardiac cycle, the all left ventricular wall can change in the order of a certain color s and complete uniformity. In the group of normal children ,left wall FAC-S and FAC-D from the basement to apical segment have a reducing trend, those of the basement of left wall is more than of the middle, but the difference was not significant; those of the middle is more than of the apex, the difference was highly significant or has significance. Tip basement wall of the left ventricular short axis and the middle suggest that have the greater influence on the overall function, and apex have the lest influence. Children with left ventricular fraction of FAC-T has to change with age and the growth trend. Within each group FAC-T in the short axis view at the mitral valve level is greater than the short axis view at the papillary muscle level, but the difference was not significant; the short axis view at the papillary muscle level is greater than the Short axis view at the apex level, the difference was significant. which suggest that the overall function of the three plane in the left ventricular short axis direction and the plane of apex of heart in the short axis direction are weakest.
     A-SMA and FAM technology can be combined with comprehen- sive quantitative detection of children with normal heart function, in- cluding heart of the overall and partial systolic and diastolic function, and they construct the reference values of relevant indicators. So it provides the children with the new objective indicators of normal clinical cardiac function which settled foundation for further research on children's heart disfunction.
引文
1. Williams RV, Ritter S, Tani LY, Quantitative assessment of ventricular function in children with single ventricle using the Doppler myocardial performance index. Am J Cardiol, 2000, 86(10):1106-1110.
    2. 李卫萍, 孙秀英, 赵宝珍, 等. 超声心动图对儿童左心室正常发育指标和心功能的评估价值. 中国临床康复, 2005,9(3):190-191.
    3. Aoki M, Harada K, Ogawa M, et al. Quantitative assessment of right ventricular function using doppler tissue imaging in fetuses with and without heart failure. J Am Soc Echocardiogr, 2004, 17(1):28-35.
    4. Pinto FJ. Echocardiography in left ventricular dysfunction. Ital Heart J, 2004,5(6):41S-47S.
    5. 李璞, 徐长新, 迟斌. 自动室壁分区运动分析技术与全方位 M型超声心动图对冠心病节段性室壁运动异常的对比研究. 中国超声医学杂志, 2002,18(9):666-668.
    6. Moreno R, Zamorano JL, Alvarez L, et al. Value of automated segmental motion analysis in the assessment of aortic stenosis severity. J Heart Valve Dis. 2002,11(6):785-792.
    7. Fujino T, Ono S, Murata K, et al. New method of on-line quantification of regional wall motion with automated segmental motion analysis. J Am Soc Echocardiogr, 2001,14(9):892-901.
    8. Liu J, Murata K, Fujino T, et al. Effect of dobutamine on regionaldiastolic left ventricular asynchrony in patients with left ventricular hypertrophy. Circ J, 2003,67(2):119-124.
    9. 刘金耀, 杜军, 刘波, 等. 心内膜自动检测技术无创评估高心病左 室 舒 张 期 非 同 步 化 运 动 . 中 华 超 声 影 像 学 杂 志 , 2000,(5):290-293.
    10. 赖小今, 朱峻, 陶杰, 等. 室壁分区运动分析及全方位 M 型超声心动图技术无创评价室壁运动状态与冠脉造影检查的相关性. 中国超声医学杂志, 2007,23(4):262-264.
    11. 李璞, 迟斌, 付少波. 等. 应用心肌自动分区运动分析技术评价扩 张 型 心 肌 病 室 壁 运 动 异 常 . 中 华 超 声 影 像 学 杂 志 , 2003,12(8):507- 508.
    12. 王青, 李越, 温朝阳, 等. LEJ-1 全方向 M 型超声心动图系统对左室局部与整体收缩功能量变关系的研究. 中国医学影像技术, 2003,19(11):1512-1515.
    13. Iwado Y, Mizushige K, Watanabe K, et al. Quantitative analysis of myocardial response to dobutamine by measurement of left ventricular wall motion using omnidirectional M-mode echocardio- gramphy. Am J Cardiol, 1999,83(5):765-769.
    14. Pierard LA, Ashman JK, Oldstad B, et al. Dimensional quantify- cation of cardiacanatomy, utilizing anatomical M-mode, a new postprocessing technique used on high frame rate two dimensional digitally stored cineloop. EurHeart J, 1995,16(suppl):510.
    15. Katsuki K, Nakatani S, Kanzaki H, et al. Clinical validation of accuracy of anatomical M-mode measurements: effect of harmonicimaging. J Cardiol, 2001,37(1):35-42.
    16. Mele D, Pedine I, Alboni P, et al. Anatomic M-mode: a new technique for quantitative assessment of left ventricular size and function. Am J Cardiol, 1998,81(12A):82G-85G.
    17. Strotmann JM, Escobar Kvitting JP, Wilkenshoff UM, et al. Anatomic M-mode echocardiography: A new approach to assess regional myocardial function--A comparative in vivo and in vitro study of both fundamental and second harmonic imaging modes. J Am Soc Echocardiogr, 1999,12(5):300-307.
    18. Schiller NB, Shah PM, Crawford M, et al. Recommendations for quantitation of the left ventricle by two-dimensional echocardio- graphy. J Am Soc Echo, 1989,2(5):358-367.
    19. 周永昌, 郭万学主编. 超声医学. 第 5 版. 北京: 科学技术文献出版社, 2006,509.
    20. Hayashida W, Kumada T, Kambayashi M, Early diastolic regional function of the hypertrophied left ventricle.Int-J-Cardiol, 1996, 53(2): 153.
    21. 张张, 唐红, 宋彬, 等. 实时三维超声心动图定量评价左心室容积及射血分数. 中国超声医学杂志, 2006,22(2):102-104.
    22. 刘晓琴. 综述. 实时三维超声心动图技术及其应用现状. 国外医学儿科学分册, 2005,32(1):1-3.
    23. 袁文利. 综述. 实时三维超声心动图的临床应用进展. 中国医学影像学杂志, 2006,14(1):49-51.
    24. Miyatake K, Yamagishi M, Yanaka N, et al. New method ofevaluation left ventricular wall motion by color-coded tissue Doppler imaging: in vitro and vivo studies[J]. JACC, 1995,25(3): 717-724.
    25. TRAMBAIOLO P, TONTIG, SALUSTRIA, et al. Deteminants of Doppler echocardiography: from qualiative analysis to quantitative approach. J Am Soc Echocardiogr, 2001,14:85-96.
    26. Perez JE, Klein SC, Prater DM, et al. Automated, on-line quantification of left ventricular dimensions and function by echocardiography with backscatter imaging and lateral gain com- pensation. Am J Cardiol, 1992,70:1200-1205.
    27. Moreno R, Zamorano J. New imaging techniques in the asessment of patients with aortic stenosis. Herz, 2002,3:246-253.
    28. Moreno R, Aubele A, Alvarez L, et al. Nuevas tecnologías en la valoración de la función sistólica del ventrículo izquierdo: armónnico de tejidos, detección automótica de bordes y colorqui- nesis. Monocardio. 2001,3:99-105.
    29. 赖小今, 朱峻, 明松, 等. 常规超声心动图结合自动室壁分区运动分析和全方位M型超声心动图技术评价冠状动脉支架植入术后心脏整体功能. 中华超声影像学杂志, 2007,16(4):298-300.
    30. Lindower PD, Rath L, Preslar J, et al. Quantification of left ventricular function with an automated border detection system and comparison with radionuclide ventriculography [J]. Am J Cardiol, 1994,73(2):195.
    31. Yvorchuk KJ, Davies RA, Chan KL. Measurement of leftventricular ejection fraction by acoustic quantification and comparison with radionuclide angiograph[J]. Am J Cardiol, 1994, 74(10):1052.
    32. Perez JE, Waggoner AD, Barzlai B, et al. On line assessment of ventricular function by automatic boundary detection and ultrasonic backscatter imaging[J]. Am J Cardiol, 1992,19:313.
    33. 王青, 李越, 温朝阳, 等. LEJ-1 全方向 M 型超声心动图对正常人左室局部收缩舒张功能的研究. 中国医学影像技术, 2003,19(12):1672-1675.
    34. 宋军, 高东梅, 李新颖, 等. 定量组织速度成像技术对正常左室心肌运动特点分析. 中国超声诊断杂志, 2003,4(5):335-336.
    35. 徐兆峰, 刘凤英, 范崇济. M-型彩色多普勒测量儿童舒张早期左室血流传播速度. 天津医药, 2002,30(12):722-723.
    36. Kombluth m, Liang D, Ploma A, et al. Native tisse harmonic imaging improves endocardial border defintion and visualization of cardiac structures. J Am Soc Echocardiogr, 1998,11:693.
    37. 王新房. 充分发挥 M 型超声心动图的潜力. 中国医学影像技术, 2003,01:104-105.
    38. 金红, 杜国庆, 魏立亚, 等. 直线解剖 M 型在心梗患者左心收缩功能测定中的应用. 中国医学影像技术, 2001,17(7):642-643.
    39. Palmes PP, Masuyamn T, Yamamoto K, et al. High-frame-rate tissue harmonic imaging enhances anatomic M-mode sections of the left ventricle in short-axis views. Jam Soc Echocardiogr, 2000,13(8): 738-747.
    40. Chan J, Wahi S, Cain P, Marwick TH. Anatomical M-mode: A novel technique for the quantitative evaluation of regional wall motion analysis during dobutamine echocardiography. Int J Card Imaging, 2000,16(4):247-255.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700