数学建模方法在药物化学及大鼠大脑新陈代谢中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结构活性/性质关系方法(Structure Activity-Property Relationship,SAR/SPR)是目前国际上一个相当活跃的研究领域,近些年人们对该领域研究的投入呈现逐年递增的趋势。SAR/SPR方法的研究对象主要包含物质各种各样的物理化学性质参数,生物活性,毒性,以及药物的生物利用度等等,研究领域涉及化学、生物学、药学以及环境化学等诸多学科。该方法主要是从化合物的分子结构出发,利用理论计算的方法得到各种各样的物理化学参数,然后从中选择出与研究对象密切相关的参数,建立相关的线性或非线性模型,用来估测物质的性质和活性等,最后,研究人员可以根据所建立的模型从分子水平上讨论物质性质以及活性的作用机理。该方法的出现可以很好的促进学科间交叉,具有重要的理论和实际意义且具有很好的应用前景。
     本论文首先从分子结构的定量描述和结构活性/性质关系的建立入手,总结了SAR/SPR方法在物质物理化学性质预测,药物筛选领域内的应用。该论文着重讨论了一种新型的改进机器学习算法,即格式搜索支持向量机(Grid-Search Support Vector Machine,GS-SVM)方法,建立了高效、稳定的定量结构活性关系(Quantitative Structure-Property Relationship,QSPR)和分类结构活性关系(Classification Structure-Activity Relationship,CSAR)模型。最后,本论文又研究了数学模型在大鼠大脑新陈代谢领域内的应用研究,研究了尼古丁对大脑各个部位代谢速率的影响。该论文主要有以下四章组成:
     第一章首先对机器学习和相关的统计学习理论进行了简单的介绍;然后详细的描述了论文主要采用的算法——支持向量机的基本原理,同时对其它各种分类方法作一简单总结;最后对QSAR方法的基本原理,主要步骤以及模型稳定性和可靠性的判定方法作一概述。
     第二章详细讨论了QSPR方法在物质性质预测领域内的应用,其中主要包括以下两个方面的工作:(a)运用QSPR方法对18种人体必需的氨基酸的比旋光度进行了预测。该工作首先应用启发式算法对CODESSA软件所产生的化学描述符进行筛选,建立线性回归模型,模型的复相关系数(R~2)为0.918;随着特征描述符(+1,-1分别代表左旋和右旋)的引入,模型的复相关系数提高为0.970,模型的预测结果得到了很大的改观。该模型为预测手性化合物的比旋光度提供了一种文献未曾报导过的新型研究方法。(b)应用启发式算法和支持向量机算法分别建立线性和非线性模型,对196种化合物的表面张力进行预测。通过模型对比,非线性SVM模型的结果明显优于线性模型的结果,对于训练集和测试集的复相关系数和误差因子分别为0.9348和0.9097,1.22和1.07。该模型的建立为表面化学的研究提供了一种新型的研究方法。
     第三章详细地介绍了改进支持向量机算法——格式搜索支持向量机算法在分类领域内的应用。主要包括以下三个方面的工作:(a)基于格式搜索支持向量机算法对141种新型抗艾滋病药物核苷类衍生物进行了分类研究。首先,根据CODESSA软件产生的描述符,利用线性判别分析方法选取与抗艾活性最紧密相关的描述符,同时建立线性分类模型。该模型对于训练集,测试集的预测准确率分别为83.0%和88.6%。从预测结果可见,有改善的必要性。因此,为了得到更加精确的预测模型,基于所选择的描述符,利用格式搜索支持向量机算法建立了非线性模型,得到了较好的预测结果——91.5%(训练集)和91.4%(测试集)。该工作对新型抗艾滋核苷类药物的筛选提供了一定的理论指导。(b)利用分类构效关系(Classification Structure-Activity Relationship,CSAR)方法对噻吩类衍生物的遗传毒性进行了分类研究。首先利用前向性逐步线性判别分析方法选择出与遗传毒性最为相关的结构参数同时建立线性分类模型;利用所选择的这些参数作为格式搜索支持向量机的输入变量,建立非线性模型,对噻吩类衍生物的遗传毒性进一步进行预测。通过模型对比,非线性GS-SVM方法能够提供更加精确的预测结果92.9%(训练集)和92.6%(测试集)。通过结果分析与讨论,我们找到了化合物一些与药物遗传毒性相关的结构因素。该模型的建立对噻分类衍生物的遗传毒性的研究提供了简便、有效且快捷的方法。(c)利用LDA和GS-SVM联用方法分别建立了线性和非线性两种分类模型,对167种药物的生物利用度进行了研究。线性LDA方法用来选取与药物的生物利用度最为密切相关的结构参数,同时根据选取的参数,建立线性和非线性二元分类模型。非线性GS-SVM模型的判断正确率为85.82%(训练集),84.85%(测试集)和85.63%(整体数据集),要远远高于LDA模型。相比于原始文献而言,该工作为药物的生物利用度的研究提供了另外一种新的研究手段。
     前三章是在兰州大学化学化工学院胡之德教授的指导下完成的,论文第四章主要是在美国耶鲁大学医学院,在Prof.Graeme F.Mason的指导下完成的。该章的工作主要是通过数学建模的方法研究了尼古丁对大鼠大脑各个区域的新陈代谢物质的总含量以及代谢速率进行了研究。首先,通过经典的单变量t检验方法,对大鼠大脑各区域的化合物的总含量进行了对比研究,发现大脑纹状体(γ-氨基丁酸(GABA),谷氨酸(Glutamate)和N-乙酰天冬氨酸(N-acetylaspartate,NAA))、顶叶皮层(肌酸(Creatine),Glutamate和NAA)、额叶皮层(NAA)、颞叶皮层(丙氨酸(Alanine),胆碱(Choline))、髓质(天冬氨酸(Aspartate),Glutamate)、嗅球(NAA)等部位在注射尼古丁后均有显著变化。然后,通过简单的线性判别分析方法对38只大鼠进行了分类研究。根据大鼠不同部位,不同代谢物质所组成的变量集合,来判断大鼠接受药物注射的情况(生理盐水和尼古丁)。结果显示38只大鼠仅有一只预测错误,这表明尼古丁对大鼠大脑的新陈代谢影响有可能进行预测。最终,我们根据Glutamate的C4,Glutamine的C4以及GABA的C2的13C标记情况对大鼠大脑各区域的新陈代谢速率和尼古丁的影响也进行了初步研究。
Nowadays, structure activity-property relationship (SAR/SPR) approach is avery popular method in many research groups. Over the past twenty years a largenumber of papers has been published every year and the number continues to rise. Theaims of the SAR/SPR method are very broad, including various physical-chemicalproperties of substances, biology activity, toxicology, bioavailability, etc, and its'research area is related to chemistry, biology, drugs and environmental chemistry.Therefore, the development of this approach will drive the advancement of the crossdiscipline.In chemiformatics, this method only utilizes the information of themolecular structures, and calculated multifarious physical-chemical parameters usingtheoretical computation approaches. Using these parameters and the selected trainingset, some mathematical methods, such as heuristic method, genetic algorithm, lineardiscriminant analysis, etc, are used to select the most important descriptors, and thenconstruct many different linear or non-linear models. Using these models, researcherscan successfully predict the properties and activities of the compounds. At last, thisapproach also provides some important information, which can be used to discuss thebasic theory of the activities and the influence factors of the properties on molecularlevel.
     In the first part of this dissertation, we discuss the application of SAR/SPRmethod in the physical-chemical properties of substrates and drug screen domain. Thefocus of this dissertation is on an improved new machine learning method: grid searchsupport vector machine (GS-SVM). Using this method, we build efficient, and stablequantitative structure-property relationship (QSPR) and classification structure- activity relationship (CSAR) models. At last, this dissertation also covers theapplication of mathematical modeling to the rat brain's metabolism, and in particularthe influence of nicotine in the rates of different rat brain regions. This dissertationconsists of four chapters:
     The first chapter discusses the machine learning method and the statisticallearning theory; then describes the basic theory of support vector machine algorithm,and also summarizes the other classification methods. At last, we describe the basictheory of QSAR methods, the main steps, the stability and reliability of the models.
     In the second chapter, we investigate the application of QSPR method in thedomain of prediction of the properties of substrates. It consists of two separate parts:(a) The QSPR method was developed to predict power rotation of 18 kinds ofnecessary amino acids. The heuristic method (HM) was utilized to select the mostimportant descriptors which were calculated from the molecular structures alone, andto build a linear regression model at the same time. The coefficient of determination(R~2) of this model is 0.918. In order to build a more reliable model, another descriptor-molecular chirality was added (+1 represent left hand, and -1 represent right hand)into the pool of former selected descriptors, and got much better results-R~2=0.970.The work provides a new and efficient way to investigate the power rotation of chiralcompounds. (b) The heuristic method and support vector machine were used toconstruct linear and non-linear regression models to predict 196 compounds' surfacetension. By comparing both of the models, the non-linear regression SVM model getsmuch better results than the linear one, and the coefficient of determination and factorof error were 0.9348 and 0.9097, 1.22 and 1.07 for the training and test set,respectively. This study provides a new method for the research of surface chemistry.
     The third chapter detailed introduce an improved support vector machinemethod - grid-search support vector machine (GS-SVM), and also discuss its'application in classification area. This chapter consists of three sections: (a) The GSSVMmethod was used for the classification of the anti-HIV activity of 141 kinds ofnucleosides derivatives. At first, the stepwise linear discriminant analysis method wasused to select the major descriptors which were significantly influence the anti-HIVactivity, and build a dual linear classification model. The predictability of this modelis 83.0% and 88.6% for the training set and test set separately. In order to arrive at amore accurate model, another non-linear classification model - GS-SVM - wasconstructed using the same selected descriptors, and got better results, 91.5% (trainingset), 91.4% (test set). This study provides a new approach to guide the research on theanti-HIV activity of nucleoside derivatives. (b) Using classification structure-activityrelationship (CSAR) method, the genotoxicity property of thiophene derivatives wasinvestigated. In this project, the stepwise LDA method was used to select the mostimportant descriptors, which correlated strongly with genotoxicity, and build a linearclassification model at the same time. Using the selected parameters and improvedsupport vector machine method (GS-SVM), another non-linear classification modelwas finish. By comparing the results of these two models, the GS-SVM methodprovides a more accurate predictions: 92.9% for the training set, and 92.6% for thetest set. At the same time, some important information was obtained by theinterpretation of the selected descriptors. (c) The LDA and GGS-SVM methods wereseparately used again to build a linear and non-linear classification model for 167kinds of drugs' bioavailability. Turner and his co-workers utilized regression methodsto research the bioavailability and got some results that were not promising. In thiswork, we used another way to study it, and got better results. By comparing the two generated models, the GS-SVM models give much better predicted results: 85.82%(training set), 84.85% (test set) and 85.63% (all data set). Thus this investigationprovides a new approach to investigate the bioavailability.
     The first three chapters were finish in Lanzhou University, under the supervisionof Prof. Zhide Hu, and the last chapter was finish in the school of Medicine, YaleUniversity, under the supervision of Dr. Graeme F. Mason. In this chapter, themathematical modeling method was used to research the total quantity of metabolitesand the metabolic rates in different regions of the rat brain. At first, the classical t-testmethod was used to analyze the effect of nicotine on the individual parameters(different metabolites and different regions) of total concentration of metabolites. Theresults indicated that the following parameters were significantly changed after a doseof subcutaneously injected nicotine: striatum (GABA, glutamate, and NAA), parietalcortex (creatine, glutamate and NAA), frontal cortex (NAA), temporal cortex (alanine,choline), medulla (aspartate, glutamate), and olfactory bulb (NAA). By comparing thesame compounds, in different regions, we found that NAA was significantlydecreased in every region. Later, the LDA method was used to separate the 38 ratsinto two different groups (saline and nicotine), using the parameters different regions(except olfactory bulb) multiply different compounds (except lactate). Thisclassification model only gave one wrong rat. The results indicated that nicotine hadeffect on the metabolism of the rat brain. At last, the metabolic rates in differentregions and the effect of nicotine were determined using the 13C labeled glutamateC4, glutamine C4 and GABA C2.
引文
[1]Mulier, F., Vapnik-Chervonenkis (VC) learning theory and its applications, IEEE Transactions on Neural Networks, 1999, 10 (5): 985-987.
    [2]史忠值,知识发现,北京:清华大学出版社,2002.
    [3]张乃尧,阎平凡,神经网络与模糊控制,北京:清华大学出版社,1999.
    [4]Vapnik, V., An overview of statistical learning theory, IEEE Trans. on Neural Networks, 1999, 10 (5): 988-999.
    [5]N., V. V., Estimation of dependencies based on empirical data, Springer-Verlag, 1982.
    [6]Vapnik,V.N.,张学工译,著.,统计学习理论的本质,北京:清华大学出版社,2000.
    [7]Cores, C., Vapnik, V. N., Support vector networks, Machine Learning, 1995, 20 (3): 273-293.
    [8]Schlkopf, B., C., B., V., V., Extracting support data for a given task, First international conference on knowledge discovery and data mining, Menlo park, 1995: 237-243.
    [9]Vapnik, V., Golowich, S., Smola, A., Support vector method for function approximation, Regression estimation, and signal procession, Advances in Neural Information Processing Systems. Cambridge, MA, 1997:281-287.
    [10]徐立本,机器学习引论,长春:吉林大学出版社,1993.
    [11]Garnerman, A., Machine Leaming: Progress and Prospects, Royal Holloway, University of London, Egham, UK, 1996.
    [12]Nilsson, N. J., Introduction to Machine Leaning, Stanford University, 1996.
    [13]田文英,机器学习与数据发掘,石家庄职业技术学院学报,2004,16(6):30-32.
    [14]Carbonell, J. G., Introduction:Paradigms for machine learning, Artificial Intelligence, 1989, 40 (1-3): 1-9.
    [15]Goldman, B. B., Walters, W. P., Chapter 8 Machine Learning in Computational Chemistry, Annual Reports in Computational Chemistry, 2006, 2: 127-140.
    [16]Fisher, R. A., The use of multiple measurements in taxonomic problems, Annals of Eugenics, 1936, 7 (2): 179-188.
    [17]陈凯,朱钰,机器学习及其相关算法综述,统计与信息论坛,2007,22(5).
    [18]安增波,张彦,机器学习方法的应用研究,长治学院学报,2007,24(2):21-24.
    [19]罗瑜,支持向量机在机器学习中的应用研究,博士学位论文,2007,西南交通大学.
    [20]Rosenblatt, F., The perceptron: a probabilistic model for information storage and organization in the brain, Psychological Review, 1958, 65 (6): 386-408.
    [21]Vapnik, V., The Nature of Statistical Learning Theory, Springer-Verlag, New York, USA, 1995.
    [22]Burges, C. J. C., A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery, 1998, 2 (2): 121-167.
    [23]邓乃扬,田英杰,数据挖掘中的新方法一支持向量机,北京:科学出版社,2004.
    [24]薛春霞,SVM在QSPR中的应用及基于配体的计算机辅助药物设计,博士毕业论文,2005,兰州大学.
    [25]赵春燕,QSAR研究在生命分析化学和环境化学中的应用,博士毕业论文,2006,兰州大学.
    [26]Vapnik, V., Statistical Learning Theory, John Wiley and Sons, New York, 1998.
    [27]Vapnik, V., Chervonenkis, A. Y., The necessary and sufficient conditions for consistency in the empirical risk minimization method, Pattern Recognition and Image Analysis, 1991, 1: 283-305.
    [28]Vapnik,V.,张学工译,统计学习理论的本质,北京:清华大学出版社,2000.
    [29]罗雪晖,李霞,张基宏,支持向量机及其应用研究,深圳大学学报(理工版),2003,20:40-46.
    [30]陶卿,曹进德,孙德敏,基于支持向量机分类的回归方法,软件学报,2002,13:1024-1028.
    [31]陆文聪,陈念贻,叶晨洲,李国正,支持向量机算法和软件Chem SVM介绍,计算机与应用化学,2002,19:697-702.
    [32]张国云,支持向量机算法及其应用研究,博士学位论文,2006,湖南大学.
    [33]Bartlett, P. L., Shawe-Taylor, J., Generalization performance on support vector machines and other pattern classifiers, in B. Sholkopf ,C. Burges ,and A. Smola Eds. Advances in Kernel Methods-Support Vector Learning, Cambridge, MA: MIT Press, 1999.
    [34]Pontil, M., Verri, A., Properties of Support Vector Machines, Neural Computation, 1998, 10 (4): 955-974.
    [35] Scholkopf, B., Kah-Kay, S., Burges, C. J. C., Girosi, F., Niyogi, P., Poggio, T.,Vapnik, V., Comparing support vector machines with Gaussian kernels to radial basis function classifiers, Signal Processing, IEEE Transactions on, 1997, 45(11): 2758-2765.
    [36] 许建华,张学工,李衍达,支持向量机的新发展,控制与决策,2004,19(5):481-484.
    [37] 张浩然,汪晓东,支持向量机的学习方法综述,浙江师范大学学报,2005,28(3):283-287.
    [38] 叶晨洲,杨杰,姚莉秀,陈念贻,统计学习理论的原理与应用,计算机与应用化学,2002,19:712-716.
    [39] 陈念贻,陆文聪,陆治荣,优化建模技术和机器学习理论的新发展,计算机与应用化学,2002,19:677-682.
    [40] Cristianini, N., Shawe-Taylor, J., An introduction to support vector machines,Cambridge University Press, Cambridge, UK, 2000.
    [41] Thorsten, J., Learning to Classify Text Using Support Vector Machines: Methods,Theory, and Algorithms, Kluwer, 2002.
    [42] 陈念贻,陆文聪,叶晨洲,李国正,支持向量机及其他核函数算法在化学计量学的应用,计算机与应用化学,2002,19:691-696.
    [43] 陈念贻,陆文聪,支持向量机算法在化学和化工中的应用,计算机与应用化学2002.19:673-676.
    [44] Belousov, A. I., Verzakov, S. A., Frese, J. v., Applicational aspects of support vector machines, Journal of Chemometrics, 2002, 16 (8-10): 482-489.
    [45] Belousov, A. I., Verzakov, S. A., von Frese, J., A flexible classification approach with optimal generalisation performance: support vector machines,Chemometrics and Intelligent Laboratory Systems, 2002, 64 (1): 15-25.
    [46] Gunn, S. R., Brown, M., Bossley, K. M., Network performance assessment for neurofuzzy data modeling, Lecture Notes in Computer Science, 1997, 1280:313-323.
    [47] Christianini, N., Shawe-Taylor, J., An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods, Cambridge University Press,Cambridge, UK, 2000.
    [48] Vapnik, V., Chervonenkis, A. Y., The necessary and sufficient conditions for consistency in the empirical risk minimization method, Pattern Recognition and Image Analysis, 1991, 1: 283-305.
    [49] Vapnik, V., Estimation of Dependences Based on Empirical Data, Springer:Berlin, 1982.
    [50] Smola, A. J., Sch(o|¨)lkopf, B., A tutorial on support Vector regression; NeuroCOL2 Technical report series NC2-TR-1998-030, October, 1998.
    [51] Burges, C. J. C., A tutorial of support vector machines for pattern recognition,http://svm.research.bell-labs.com/SVMdoc.html, 1998.
    [52] Vapnik, V., Golowich, S., Smola, A., Support Vector Method for function approximation, regression estimation, and signal processing, Advances in Neural Information Processing Systems, 1997, 9:281-287.
    [53] 陶卿,姚穗,范劲松,方廷健,一种新的机器学习算法:support vectormachines,模式识别与人工智能,2000,13:285-290.
    [54] Cai, Y. D., Liu, X. J., Xu, X. B., Chou, K. C., Support vector machines for predicting HIV protease cleavage sites in protein, Journal of Computational Chemistry, 2002, 23 (2): 267-274.
    [55] Krebel, U., Pairwise classification and support vector machines[A]. In:Solla B,Burges,C,Smola A, eds. Advances in kernel methods-support vector learning,Cambridge, MA:MIT Press, 1999: 255-268.
    [56] Chih-Wei, H., Chih-Jen, L., A comparison of methods for multiclass support vector machines, Neural Networks, IEEE Transactions on, 2002, 13 (2): 415-425.
    [57] Platt., J. C., Cristianini, N., Shawe-Taylor, J., Large margin DAGs for multiclass classification[M]. In S. A. Solla. T.K. Leen and K.R. Muller, Editors, Advances in neural information processing systems,The MIT Press, 2000: 547-553.
    [58] Angulo, C., Parra, X., Catal, A., K-SVCR. A support vector machine for multiclass classification, Neurocomputing, 2003, 55 (1-2): 57-77.
    [59] J.Weston, Watkins, C., Multi-class support vector machines[M]. In M. Verleysen,Editor, Proceedings of ESANN99, Brussels, D. Facto Press, 1999.
    [60] Joachims, T., Learning to classify text using support vector machines: methods,theory, and algorithms, Boston: Kluwer, 2002.
    [61] 赵晖,支持向量机分类方法及其在文本分类中的应用研究,博士论文,2005,大连理工大学.
    [62] Takahashi, F., Abe, S., Decision-tree based multiclass support vector machines,Proceedings of the ninth international conference on neural information processing, Singapore, 2002, pp 1418-1422.
    [63] Schwenker, F., Hierarchical support vector machines for multi-class pattern recognition, Proceedings of the fourth international conference on knowledge-based intelligent engineering system & allied technologies, Chennai, 2000, pp561-565.
    [64] Schwenker, F., Palm, G., Tree-structured support vector machines for multi-class pattern recognition, kittler J, Roli F, eds. Multiple Classifier Systems, Springer,2001, pp 409-417.
    [65] 边肇祺,张学工,模式识别(第二版),北京:清华大学出版社,2000.
    [66] Amari, S., Wu, S., Improving support vector machine classifiers by modifying kernel functions, Neural Networks, 1999, 12 (6): 783-789.
    [67] Vapnik, V., Lemer, A., Pattern recognition using generalized portrait method,Automation and remote control, 1963, 24 (6): 774-780.
    [68] Vapnik, V., Chervoknenkis, A. Y., On the uniform convergence of relative frequencies of events to their probabilities, Theory of probabilities and its application, 1971, 16 (2): 263-280.
    [69] Vapnik, V., Estimation of dependence based on empirical data, Berlin:Springer-Verlag, 1982.
    [70] Boser, B., Guyon, I., Vapnik, V., A training algorithm for optimal margin classifier, Proceedings of fifth annual workshop on computational learning theory, Baltimore, 1992, pp 144-152.
    [71] Cortes, C., Vapnik, V., Support vector networks, Machine Learning, 1995, 20 (3):273-297.
    [72] Vaonik, V.; Golowich, S., Smola, A., Support vector method for function approximation, regression estimation, and signal processing[A].In: Mozer M,Jordan M, Petsche T,eds, Adavances in neural information processing systems 9, Cambridge, MA: MIT Press, 1997, p 281-287.
    [73] Smola, A., Learning with kernel, Berlin:Technischen University, 1998.
    [74] Williamson, R. C., Smola, A. J., Scholkopf, B., Generalization performance of regularization networks and support vector machines via entropy numbers of compact operators, Information Theory, IEEE Transactions on, 2001, 47 (6):2516-2532.
    [75] Scholkopf, B., Smola, A. J., Williamson, R. C., Bartlett, P. L., New Support Vector Algorithms, Neural Computation, 2000, 12 (5): 1207-1245.
    [76] Suykens, J. A. K., Vandewalle, J., Least Squares Support Vector Machine Classifiers, Neural Processing Letters, 1999, 9 (3): 293-300.
    [77] Mangasarian, O. L., Generalized support vector machines [A]. In: Smola A,Bartlett P L, Scholkopf B et al., eds Advances in Large Margin Classifiers,Cambridge, MA:MIT Press, 2000, p 135-146.
    [78] Bastos, D., campos, D., A fast training algorithm for unbiased proximal SVM, In Proceedings international conference on acoustics speech and signal processing,Philadelphia, 2005, pp 245-248.
    [79] Lin, C. F., Wang, S. D., Fuzzy support vector machines, Neural Networks, IEEE Transactions on, 2002, 13 (2): 464-471.
    [80] 邓乃扬,田英杰,数据挖掘中的新方法-支持向量机,北京:科学出版社,2004.
    [81] 张铃,支持向量机理论与基于规划的神经网络学习算法,计算机学报,2001,24(2):113-118.
    [82] 田盛丰,黄厚宽,回归型支持向量机的简化算法,软件学报,2002,13(6):1169-1172.
    [83] 孙剑,郑南宁,张志华,一种训练支撑向量机的改进贯序最小优化算法,软件学报,2002,13(10):2007-2013.
    [84] 李蓉,叶世伟,史忠植,SVM-KNN分类器-一种提高SVM分类精度的新方法,电子学报,2002,30(5):745-748.
    [85] 李红莲,王春花,袁保宗,一种改进的支持向量机NN-SVM,计算机学报,2003,26(8):1015-1020.
    [86] 刘焕香,基于支持向量机方法QSAR/QSPR在化学、生物及环境科学中的应用研究,博士毕业论文,2005,兰州大学.
    [87] 任月英,QSPR/QSAR在药物、分析化学和环境科学中的应用,博士毕业论文,2007.兰州大学.
    [88] 司宏宗,基因表达式编程与支持向量机在疾病诊断和QSAR/QSPR中的应用研究,博士毕业论文,2006,兰州大学.
    [89] 王冰,SVM在肾结石分类和计算热力学参数中的应用,硕士学位论文,2006,兰州大学.
    [90] 马卫平,线性和非线性方法在QSAR/QSPR研究中的应用,博士学位论文,2007,兰州大学.
    [91] 栾峰,支持向量机(SVM)和径向基神经网络(RBFNN)方法在化学、环境化学和药物化学中的应用研究,博士学位论文,2006,兰州大学.
    [92] Li, S. T., Wang, Y. N., Face recognition using wavelet transform and support vector machines, Pattern Recognition and Image Analysis, 2004, 14 (3): 471-478.
    [93] Brown, M., Lewis, H. G., Gunn, S. R., Linear spectral mixture models and support vector machines for remote sensing, Geoscience and Remote Sensing,IEEE Transactions on, 2000, 38 (5): 2346-2360.
    [94] Skrobot, V. L., Castro, E. V. R., Pereira, R. C. C., Pasa, V. M. D., Fortes, I. C. P.,Use of Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) in Gas Chromatographic (GC) Data in the Investigation of Gasoline Adulteration, Energy & Fuels, 2007, 21 (6): 3394-3400.
    [95] Bakken, G. A., Jurs, P. C., Classification of Multidrug-Resistance Reversal Agents Using Structure-Based Descriptors and Linear Discriminant Analysis,Journal of Medicinal Chemistry, 2000, 43 (23): 4534-4541.
    [96] Banas, K., Jasinski, A., Banas, A. M., Gajda, M., Dyduch, G., Pawlicki, B.,Kwiatek, W. M., Application of Linear Discriminant Analysis in Prostate Cancer Research by Synchrotron Radiation-Induced X-Ray Emission, Analytical Chemistry, 2007, 79 (17): 6670-6674.
    [97] McFarland, J. W., Cooper, C. B., Newcomb, D. M., Linear discriminant and multiple regression analyses of anticoccidial triazines, Journal of Medicinal Chemistry, 1991, 34 (6): 1908-1911.
    [98] Mattson, J. S., Mattson, C. S., Spencer, M. J., Spencer, F. W., Classification of petroleum pollutants by linear discriminant function analysis of infrared spectral patterns, Analytical Chemistry, 1977, 49 (3): 500-502.
    [99] Tang, F., Tao, H., Fast linear discriminant analysis using binary bases, Pattern Recognition Letters, 2007, 28 (16): 2209-2218.
    [100] 沈其君,SAS统计分析,南京:东南大学出版社,2001.
    [101] 陈桂明;戚红雨,潘伟,MATLAB数理统计(6.0),北京:科学出版社,2002.
    [102] Belhumeur, P. N., Hespanha, J. P., Kriegman, D. J., Eigenfaces vs. Fisherfaces:recognition using class specific linear projection, Pattern Analysis and Machine Intelligence, IEEE Transactions on, 1997, 19 (7): 711-720.
    [103] Baudat, G., Anouar, F., Generalized Discriminant Analysis Using a Kernel Approach, Neural Computation, 2000, 12 (10): 2385-2404.
    [104] 王静,夏结来,叶冬青,判别分析方法在医学应用中的进展,数理统计与管理, 2008,27(2):369-376.
    [105] 李建军,丁正生,张海燕,常用判别分类方法分析,西安科技大学学报,2007,27:138-142.
    [106] 陈峰,医用多元统计分析方法,第1版,北京:中国统计出版社,2000.
    [107] Arun Kumar, M., Gopal, M., Least squares twin support vector machines for pattern classification, Expert Systems with Applications, 2009, 36 (4): 7535-7543.
    [108] Kahraman, P., Turkay, M., Classification of 1,4-Dihydropyridine Calcium Channel Antagonists Using the Hyperbox Approach, Industrial & Engineering Chemistry Research, 2007, 46 (14): 4921-4929.
    [109] Yao, X. J., Liu, H. X., Zhang, R. S., Liu, M. C., Hu, Z. D., Panaye, A., Doucet,J. P., Fan, B. T., QSAR and Classification Study of 1,4-Dihydropyridine Calcium Channel Antagonists Based on Least Squares Support Vector Machines,Molecular Pharmaceutics, 2005, 2 (5): 348-356.
    [110] Sengur, A., Multiclass least-squares support vector machines for analog modulation classification, Expert Systems with Applications, 2009, 36 (3, Part 2):6681-6685.
    [111] Mitra, V., Wang, C.-J., Banerjee, S., Text classification: A least square support vector machine approach, Applied Soft Computing, 2007, 7 (3): 908-914.
    [112] Suykens, J. A. K., Vandewalle, J., De Moor, B., Optimal control by least squares support vector machines, Neural Networks, 2001, 14 (1): 23-35.
    [113] Suykens, J. A. K., Vandewalle, J., Chaos control using least-squares support vector machines, International Journal of Circuit Theory and Applications, 1999, 27 (6): 605-615.
    [114] Chua, K. S., Efficient computations for large least square support vector machine classifiers, Pattern Recognition Letters, 2003, 24 (1-3): 75-80.
    [115] Viaene, S., Baesens, B., Gestel, T. V., Suykens, J. A. K., Poel, D. V. d.,Vanthienen, J., Moor, B. D., Dedene, G., Knowledge discovery in a direct marketing case using least squares support vector machines, International Journal of Intelligent Systems, 2001, 16 (9): 1023-1036.
    [116] Suykens, J. A. K., Gestel, T. V., Brabanter, J. D., Moor, B. D., Vandewalle, J.,,Least Squares Support Vector Machines, World Scientific, Singapore, (ISBN 981-238-151-1) 2002.
    [117] Brown, D. E., Pittard, C. L., Park, H., Classification trees with optimal multivariate decision nodes, Pattern Recognition Letters, 1996, 17 (7): 699-703.
    [118] Amor, N. B., Benferhat, S., Elouedi, Z., Qualitative classification with possibilistic decision trees, Modern Information Processing, 2006:159-169.
    [119] Mendon(?)a, L. F., Vieira, S. M., Sousa, J. M. C., Decision tree search methods in fuzzy modeling and classification, International Journal of Approximate Reasoning, 2007, 44 (2): 106-123.
    [120] Shlien, S., Nonparametric classification using matched binary decision trees,Pattern Recognition Letters, 1992, 13 (2): 83-87.
    [121] Ren, S. J., Phenol mechanism of toxic action classification and prediction: a decision tree approach, Toxicology Letters, 2003, 144 (3): 313-323.
    [122] Celko, J., Decision, Classification, and Regression Trees, Joe Celko's Analytics and OLAP in SQL, 2006, p 129-137.
    [123] 杨学兵,张俊,决策树算法及其核心技术,计算机技术与发展,2007 17(1):43-45.
    [124] 田苗苗,数据挖掘之决策树方法概述,长春大学学报,2004,14(6):48-51.
    [125] 乔向杰,陈功平,数据挖掘中分类算法的可扩展性研究,信阳师范学院学报,2006.2:239-242.
    [126] 数据挖掘原理与算法,北京:清华大学出版社,2005,p123-127.
    [127] Salzberg, S. L., C4.5: Programs for Machine Learning by J. Ross Quinlan.Morgan Kaufmann Publishers, Inc., 1993, Machine Learning, 1994, 16 (3): 235-240.
    [128] Quinlan, J. R., Induction of decision trees, Machine Learning, 1986, 1 (1): 81-106.
    [129] 迟庆云,决策树分类算法及其应用,枣庄学院学报,2005,22:29-31.
    [130] Mehta, M., Agrawal, R., Rissanen, J., SLIQ: A Fast and Scalable Classifier for Data Mining, IBM Almaden Research Center, 1996: 147- 162.
    [131] Breiman, L., Bagging predictors, Machine Learning, 1996, 24 (2): 123-140.
    [132] Dietterich, T. G., Ensemble Methods in Machine Learning, Workshop on Multiple Classifier Systems, 2000:1-15.
    [133] Pfurtscheller, G., Neuper, C., Motor imagery and direct brain-computer communication, Proceedings of the IEEE, 2001, 89 (7): 1123-1134.
    [134] Breiman, L., Random Forests, Machine Learning, 2001, 45 (1): 5-32.
    [135] Efron, B., Tibshirani, R.,., 1 (1) :, Bootstrap measures for standard errors,confidence interval and other measures of statistical accuracy, Statistical Science,1986, 1 (1): 54-74.
    [136] Palmer, D. S., O'Boyle, N. M., Glen, R. C., Mitchell, J. B. O., Random Forest Models To Predict Aqueous Solubility, Journal of Chemical Information and Modeling, 2007, 47 (1): 150-158.
    [137] 张华伟,王明文,甘丽新,基于随机森林的文本分类模型研究,山东大学学报,2006,41(3):139-143.
    [138] 贾富仓,李华,基于随机森林的多谱核磁共振图像分割,计算机工程,2005,31(10):159-161.
    [139] Ehrman, T. M., Barlow, D. J., Hylands, P. J., Virtual Screening of Chinese Herbs with Random Forest, Journal of Chemical Information and Modeling,2007, 47 (2): 264-278.
    [140] Gislason, P. O., Benediktsson, J. A., Sveinsson, J. R., Random Forests for land cover classification, Pattern Recognition Letters, 2006, 27 (4): 294-300.
    [141] Harb, R., Yan, X. D., Radwan, E., Su, X. G., Exploring precrash maneuvers using classification trees and random forests, Accident Analysis & Prevention,2009, 41 (1): 98-107.
    [142] Pardo, M., Sberveglieri, G., Random forests and nearest shrunken centroids for the classification of sensor array data, Sensors and Actuators B: Chemical, 2008,131 (1): 93-99.
    [143] Svetnik, V., Liaw, A., Tong, C., Culberson, J. C., Sheridan, R. P., Feuston, B. P.,Random Forest: A Classification and Regression Tool for Compound Classification and QSAR Modeling, Journal of Chemical Information and Computer Sciences, 2003, 43 (6): 1947-1958.
    [144] Diaz-Uriarte, R., de Andres, S. A., Variable selection from random forests:application to gene expression data, Localizaci(?)n: http://arxiv.org/abs/q-bio/0503025, 2005.
    [145] Archer, K. J., Kimes, R. V., Empirical characterization of random forest variable importance measures, Computational Statistics & Data Analysis, 2008,52 (4): 2249-2260.
    [146] 邱一卉,林成德,基于随机森林方法的异常样本检测方法,福建工程学院学报,2007,5(4):392-396.
    [147] 刘刚,数据发掘技术与分类算法研究,博士学位论文,2004,解放军信息工程大学.
    [148] 王连生,韩朔睽,分子结构、性质与活性,北京,化学工业出版社,1997.
    [149] Hansch, C., Quantitative approach to biochemical structure-activity relationships, Accounts of Chemical Research, 1969, 2 (8): 232-239.
    [150] Hansch, C., Fujita, T., p-σ-π Analysis. A Method for the Correlation of Biological Activity and Chemical Structure, Journal of the American Chemical Society, 1964, 86 (8): 1616-1626.
    [151] Adamson, G. W., Bawden, D., A Substructural Analysis Method for Structure-Activity Correlation of Heterocyclic Compounds Using Wiswesser Line Notation, Journal of Chemical Information and Computer Sciences, 1977, 17 (3):164-171.
    [152] Kubinyi, H., Kehrhahn, O. H., Quantitative structure-activity relationships. 1.The modified Free-Wilson approach, Journal of Medicinal Chemistry, 1976, 19 (5): 578-586.
    [153] Cammarata, A., Interrelation of the regression models used for structure-activity analyses, Journal of Medicinal Chemistry, 1972, 15 (6): 573-577.
    [154] Fujita, T., Ban, T., Structure-activity relation. 3. Structure-activity study of phenethylamines as substrates of biosynthetic enzymes of sympathetic transmitters, Journal of Medicinal Chemistry, 1971, 14 (2): 148-152.
    [155] Free, S. M., Wilson, J. W., A Mathematical Contribution to Structure-Activity Studies, Journal of Medicinal Chemistry, 1964, 7 (4): 395-399.
    [156] Topliss, J. G., Quantitative Structure-Activity Relationships of Drugs, New York, Academic Press, 1983.
    [157] Goldberg, L., Structure-Activity Correlation as a Predictive Tool in Toxicology,Washington, Hemispheres, 1983, Goldberg, L.
    [158] Martin, Y. C., Quantitative Drug Design A Critical Introduction, New York,Marcel Dekker, 1978.
    [159] Jurs, P. C., Stouch, T. R., Czerwinski, M., Narvaez, J. N., Computer-assisted studies of molecular structure biological activity relationships, Journal of Chemical Information and Computer Sciences, 1985, 25 (3): 296-308.
    [160] Bonchev, D., Trinajstic, N., Information theory, distance matrix, and molecular branching, The Journal of Chemical Physics, 1977, 67 (10): 4517-4533.
    [161] Gutman, I., Ruscic, B., Trinajstic, N., C. F. Wilcox, Jr., Graph theory and molecular orbitals. XII. Acyclic polyenes, The Journal of Chemical Physics,1975, 62 (9): 3399-3405.
    [162] Hosoya, H., Graphical enumeration of the coefficients of the secularpolynomials of the Huckel molecular orbitals, Theoretica Chimica Acta (Berlin), 1972, 25: 215-222.
    [163] Randic, M., Characterization of molecular branching, Journal of the American Chemical Society, 1975, 97 (23): 6609-6615.
    [164] Wiener, H., Structural Determination of Paraffin Boiling Points, Journal of the American Chemical Society, 1947, 69 (1): 17-20.
    [165] Morffew, A. J., Bibliography for molecular graphics, Journal of Molecular Graphics and Modelling, 1983, 1: 17-23.
    [166] Humblet, C., Marshall, G. R., Three-dimensional computer modeling as an aid to drug design, Drug Development Research, 1981, 1 (4): 409-434.
    [167] Langridge, R., Ferrin, T. E., Kuntz, I. D., Connolly, M. L., Real-time color graphics in studies of molecular interactions, Science, 1981, 211 (4483): 661-666.
    [168] Gund, P., Andose, J. D., Rhodes, J. B., Smith, G. M., Three-dimensional molecular modeling and drug design, Science, 1980, 208 (4451): 1425-1431.
    [169] Feldmann, R. J., Bing, D. H., Furie, B. C., Furie, B., Interactive computer surface graphics approach to study of the active site of bovine trypsin,Proceedings of the National Academy of Sciences U S A, 1978, 75 (11): 5409-5412.
    [170] Katz, L., Levinthal, C., Interactive Computer Graphics and Representation of Complex Biological Structures, Annual Review of Biophysics and Bioengineering, 1972, 1 (1): 465-504.
    [171] Levinthal, C., Molecular model-building by computer, Scientific American,1966, 214: 42-52.
    [172] Pullman, B., Parr, R. G., The New World of Quantum Chemistry. Dordrecht(Holland) Boston (USA), D. Reidel Publishing Co., 1976.
    [173] 缪强,化学信息学导论,北京,高等教育出版社,2001.
    [174] 许禄,胡昌玉,应用化学图论,北京,科学出版社,2000.
    [175] Katritzky, A. R., Lobanov, V. S., Karelson, M., QSPR: The Correlation and Quantitative Prediction of Chemical and Physical Properties from Structure,Chemical Society Reviews, 1995: 279-287.
    [176] 王连生,支正良,分子连接性与分子结构-活性,北京,中国环境科学出版社,1992.
    [177] Katritzky, A. R., Fara, D. C., Petrukhin, R. O., Tatham, D. B., Maran, U.,Lomaka, A., Karelson, M., The Present Utility and Future Potential for Medicinal Chemistry of QSAR / QSPR with Whole Molecule Descriptors,Current Topics in Medicinal Chemistry, 2002, 2: 1333-1356.
    [178] Katritzky, A. R., Petrukhin, R., Tatham, D., Basak, S., Benfenati, E., Karelson,M., Maran, U., Interpretation of Quantitative Structure-Property and -Activity Relationships, Journal of Chemical Information and Computer Sciences, 2001,41 (3): 679-685.
    [179] Katritzky, A. R., Maran, U., Lobanov, V. S., Karelson, M., Structurally Diverse Quantitative Structure-Property Relationship Correlations of Technologically Relevant Physical Properties, Journal of Chemical Information and Computer Sciences, 2000, 40 (1): 1-18.
    [180] Katritzky, A. R., Karelson, M., Maran, U., Wang, Y., QSPR and QSAR Models Derived Using Large Molecular Descriptor Spaces. A Review of CODESSA Applications, Collection of Czechoslovak Chemical Communications, 1999, 64:1551-1571.
    [181] Katritzky, A. R., Murugan, R., Grendze, M. P., Toomey, J. E., Jr, M. K.,Lobanov, V., Rachwal, P., Predicting Physical Properties from Molecular Structure, Chemical Technology, 1994, 24:17-23.
    [182] 俞庆森,朱龙观,分子设计导论,北京,高等教育出版社,2000.
    [183] 陈凯先;蒋华良,嵇汝运,计算机辅助药物设计-原理、方法及应用,上海,上海科学技术出版社,2000.
    [184] 周家驹,王亭,药物设计中的分子模型化方法,北京,科学出版社,2001.
    [185] Gasteiger,J.;Engle著,T.;.梁逸曾;徐峻,姚建华等译,化学信息学教程,北京,化学工业出版社,2005.
    [186] Katritzky, A. R., Maran, U., Lobanov, V. S., Karelson, M., Structurally Diverse Quantitative Structure-Property Relationship Correlations of Technologically Relevant Physical Properties, Journal of Chemical Information and Computer Sciences, 2000, 40 (1): 1-18.
    [187] Katritzky, A. R., Lobanov, V. S., Karelson, M., QSPR: the correlation and quantitative prediction of chemical and physical properties from structure, Chemical Society Reviews, 1995, 24:279-287.
    [188] Katritzky, A. R.; Lobanov, V. S., Karelson, M., CODESSA: Reference Manual,University of Florida, Gainesville, Florida, 1994.
    [189] Katritzky, A. R.; Lobanov, V. S., Karelson, M., CODESSA Training Manual,University of Florida, Gainesville, FL, USA, 1995.
    [190] Katritzky, A. R.; Lobanov, V. S., Karelson, M., CODESSA Version 2.0 Reference Manual., University of Florida, GainesviIle, FL, USA, 1995-1997.
    [191] 卢纹岱, SPSS for Windows 统计分析,北京,电子工业出版社, 2002.
    [192] Cong, P., Li, T., Numeric genetic algorithm Part Ⅰ. Theory, algorithm and simulated experiments, Analytica Chimica Acta, 1994, 293 (1-2): 191-203.
    [193] Holland, J. H., Adaptation in Natural and artificial Systems, Ann Arbor: The University of Michigan Press, 1975.
    [194] 李华昌,谢淑兰,易忠胜,遗传算法的原理与应用,矿冶,2005,14:87-90.
    [195] Devillers, J., Genetic Algorithms in Molecular Modeling, Academic Press,London 1996.
    [196] Clark, D. E., Evolutionary Algorithms in Molecular Design, Wiley-VCH,Weinheim (GER), 2000.
    [197] Livingstone, D. J., Manallack, D. T., Statistics using neural networks: chance effects, Journal of Medicinal Chemistry, 1993, 36 (9): 1295-1297.
    [198] Manallack, D. T., Ellis, D. D., Livingstone, D. J., Analysis of linear and nonlinear QSAR data using neural networks, Journal of Medicinal Chemistry,1994, 37 (22): 3758-3767.
    [199] Tetko, I. V., Livingstone, D. J., Luik, A. I., Neural network studies. 1.Comparison of overfitting and overtraining, Journal of Chemical Information and Computer Sciences, 1995, 35 (5): 826-833.
    [200] Tetko, I. V., Villa, A. E. P., Livingstone, D. J., Neural Network Studies. 2.Variable Selection, Journal of Chemical Information and Computer Sciences,1996, 36 (4): 794-803.
    [201] Livingstone, D. J., Manallack, D. T., Tetko, I. V., Data modelling with neural networks: Advantages and limitations, Journal of Computer-Aided Molecular Design, 1997, 11 (2): 135-142.
    [202] Ferguson, A. M., Heritage, T., Jonathon, P., Pack, S. E., Phillips, L., Rogan, J.,Snaith, P. J., EVA: A new theoretically based molecular descriptor for use in QSAR/QSPR analysis, Journal of Computer-Aided Molecular Design, 1997, 11(2): 143-152.
    [203] Kovalishyn, V. V., Tetko, I. V., Luik, A. I., Kholodovych, V. V., Villa, A. E. P.,Livingstone, D. J., Neural Network Studies. 3. Variable Selection in the Cascade-Correlation Learning Architecture, Journal of Chemical Information and Computer Sciences, 1998, 38 (4): 651-659.
    [1] Yao, X. J., Liu, M. C., Zhang, X. Y., Hu, Z. D., Fan, B. T., Radial basis function network-based quantitative structure-property relationship for the prediction of Henry's law constant, Analytica Chimica Acta, 2002, 462 (1): 101-117.
    [2] Yasri, A., Hartsough, D., Toward an Optimal Procedure for Variable Selection and QSAR Model Building, Journal of Chemical Information and Computer Sciences, 2001, 41 (5): 1218-1227.
    [3] Liu, H. X., Zhang, R. S., Yao, X. J., Liu, M. C., Hu, Z. D., Fan, B. T., Prediction of electrophoretic mobility of substituted aromatic acids in different aqueous- alcoholic solvents by capillary zone electrophoresis based on support vector machine, Analytica Chimica Acta, 2004, 525 (1): 31-41.
    [4] Xue, C. X., Yao, X. J., Liu, H. X., Liu, M. C., Hu, Z. D., Fan, B. T., Development of migration models for acids in capillary electrophoresis using heuristic and radial basis function neural network methods, ELECTROPHORESIS, 2005, 26(11): 2154-2164.
    [5] Xu, H. Y., Zou, J. W., Jiang, Y. J., Hu, G. X., Yu, Q. S., Quantitative structure-chromatographic retention relationship for polycyclic aromatic sulfurheterocycles, Journal of Chromatography A, 2008, 1198-1199: 202-207.
    [6] Du, H. Y., Wang, J., Zhang, X. Y., Yao, X. J., Hu, Z. D., Prediction of retention times of peptides in RPLC by using radial basis function neural networks and projection pursuit regression, Chemometrics and Intelligent Laboratory Systems,2008, 92 (1): 92-99.
    [7] Liu, H. X., Yao, X. J., Zhang, R. S., Liu, M. C., Hu, Z. D., Fan, B. T., Accurate Quantitative Structure-Property Relationship Model To Predict the Solubility of C60 in Various Solvents Based on a Novel Approach Using a Least-Squares Support Vector Machine, Journal of Physical Chemistry B, 2005, 109 (43):20565-20571.
    [8] Si, H. Z., Yao, X. J., Liu, H. X., Wang, J., Li, J. Z., Hu, z. D., Liu, M. C.,Prediction of binding rate of drug to human plasma protein based on heuristic method and support vector machine, Acta Chimica Sinica, 2006, 64 (5): 415-422.
    [9] Du, H. Y., Wang, J., Watzl, J., Zhang, X. Y., Hu, Z. D., Prediction of inhibition of matrix metalloproteinase inhibitors based on the combination of Projection Pursuit Regression and Grid Search method, Chemometrics and Intelligent Laboratory Systems, 2008, 93 (2): 160-166.
    [10] Liu, H. X., Zhang, R. S., Yao, X. J., Liu, M. C., Hu, z. D., Fan, B. T., Prediction of the Isoelectric Point of an Amino Acid Based on GA-PLS and SVMs, Journal of Chemical Information and Computer Sciences, 2004, 44 (1): 161-167.
    [11] 汪杰,旋光法测定卡托普利片的含量,中国医院药学杂志,2001,21(11):651-652.
    [12] 罗纪盛,Concise Tutorial for Biochemistry Third Edition(生物化学简明教程-3版),高等教育出版社,北京,2003,p 2-12.
    [13] Katritzky, A. R., Petrukhin, R., Jain, R., Karelson, M., QSPR Analysis of Flash Points, Journal of Chemical Information and Computer Sciences, 2001, 41 (6):1521-1530.
    [14] 卢纹岱, Statistical analysis of SPSS for Windows (SPSS for Windows统计分析),电子工业出版社,北京,2000,p286-288.
    [15] Katritzky, A. R., Oliferenko, A. A., Oliferenko, P. V., Petrukhin, R., Tatham, D.B., Maran, U., Lomaka, A., Acree, W. E., A General Treatment of Solubility. 1.The QSPR Correlation of Solvation Free Energies of Single Solutes in Series of Solvents, Journal of Chemical Information and Computer Sciences, 2003, 43 (6):1794-1805.
    [16] Katritzky, A. R.; Lobanov, V. S., Karelson, M., CODESSA: Reference Manual,Version 2, University of Florida, 1994.
    [17] Trevizo, C., Daniel, D., Nirmalakhandan, N., Screening Alternative Degreasing Solvents Using Multivariate Analysis, Environmental Science & Technology,2000, 34 (12): 2587-2595.
    [18] 庄国波,徐为勃,表面张力测定的几种方法,江苏广播电视大学学报,1994,4:60-63.
    [19] Defay, R., Prigogine, L., Surface Tension and Adsorption, John Wiley & Sons,New York, 1966.
    [20] Reid, C. R., Sherwood, T. K., The Properties of Gases and Liquids, McGraw-Hill,New York, 1966.
    [21] Liu, H. X., Yao, X. J., Liu, M. C., Hu, Z. D., Fan, B. T., Prediction of gas-phase reduced ion mobility constants (K0) based on the multiple linear regression and projection pursuit regression, Talanta, 2007, 71 (1): 258-263.
    [22] Zhou, Y. P., Jiang, J. H., Lin, W. Q., Xu, L., Wu, H. L., Shen, G. L., Yu, R. Q., Artificial neural network-based transformation for nonlinear partial least-square regression with application to QSAR studies, Talanta, 2007, 71 (2): 848-853.
    [23] Yu, K., Cheng, Y. Y., Machine learning techniques for the prediction of the peptide mobility in capillary zone electrophoresis, Talanta, 2007, 71 (2): 676-682.
    [24] Liu, W. Q., Yi, P. G., Tang, Z. L., QSPR models for various properties of polymethacrylates based on quantum chemical descriptors, QSAR & Combinatorial Science, 2006, 25 (10): 936-943.
    [25] Katritzky, A. R., Sild, S., Karelson, M., General quantitative structure-property relationship treatment of the refractive index of organic compounds, Journal of Chemical Information and Computer Sciences, 1998, 38 (5): 840-844.
    [26] Ehresmann, B., deGroot, M. J., Alex, A., Clark, T., New Molecular Descriptors Based on Local Properties at the Molecular Surface and a Boiling-Point Model Derived from Them, Journal of Chemical Information and Computer Sciences,2004, 44 (2): 658-668.
    [27] Ha, Z. Y., Ring, Z., Liu, S. J., Quantitative Structure-Property Relationship (QSPR) Models for Boiling Points, Specific Gravities, and Refraction Indices of Hydrocarbons, Energy Fuels, 2005, 19 (1): 152-163.
    [28] Stanton, D. T., Jurs, P. C., Computer-assisted study of the relationship between molecular structure and surface tension of organic compounds, Journal of Chemical Information and Computer Sciences, 1992, 32 (1): 109-115.
    [29] James, K. C., Solubility and Related properties, Marcel Dekker, New York, 1986.
    [30] Egemen, E., Nirmalakhandan, N., Trevizo, C., Predicting Surface Tension of Liquid Organic Solvents, Environmental Science & Technology, 2000, 34 (12):2596-2600.
    [31] Kauffman, G. W., Jurs, P. C., Prediction of Surface Tension, Viscosity, and Thermal Conductivity for Common Organic Solvents Using Quantitative Structure-Property Relationships, Journal of Chemical Information and Computer Sciences, 2001, 41 (2): 408-418.
    [32] Wypych, G., Knovel Solvents- A Properties Database, ChemTec Publishing,2000.
    
    [33]http://www.knovel.com/knovel2/Toc.jsp?BookID=635&VerticalID=0.
    [34] Katritzky, A. R.; Lobanov, V. S., Karelson, M., CODESSA: Training Manual,University of Florida, Gainesville, Florida, 1995.
    [35] Katritzky, A. R.; Lobanov, V. S., Karelson, M., Comprehensive descriptors for structural and statistical analysis, Reference Manual, Version 2.0, University of Florida, Gainesville, Florida, 1994.
    [36] Katritzky, A. R., Petrukhin, R., Jain, R., Karelson, M., QSPR Analysis of Flash Points, J. Chem. Inf. Comput. Sci., 2001, 41 (6): 1521-1530.
    [37] Burges, C. J. C., A Tutorial on Support Vector Machines for Pattern Recognition,Data Mining and Knowledge Discovery, 1998, 2 (2): 121-167.
    [38] Vapnik, V. N., Statistical Learning Theory, Wiley, New York, 1998.
    [39] Cristianini, N., Shawe-Taylor, J., An Introduction to Support Vector Machines, Cambridge University Press, Cambridge, UK, 2000.
    
    [40] Gunn, S. R.; Brown, M., Bossley, K. M., Network Performance Assessment for Neurofuzzy Data Modelling, Book Network Performance Assessment for Neurofuzzy Data Modelling, 1997, 313-323.
    [41] Liu, H. X., Hu, R. J., Zhang, R. S., Yao, X. J., Liu, M. C., Hu, Z. D., Fan, B. T.,The prediction of human oral absorption for diffusion rate-limited drugs based on heuristic method and support vector machine, Journal of Computer-Aided Molecular Design, 2005, 19(1): 33-46.
    [42] Katritzky, A. R., Kuanar, M., Fara, D. C., Karelson, M., Acree Jr, W. E., QSPR treatment of rat blood:air, saline:air and olive oil:air partition coefficients using theoretical molecular descriptors, Bioorganic & Medicinal Chemistry, 2004, 12(17): 4735-4748.
    
    [43] Neural Networks for Pattern Recognition, Clarendon Press: Oxford, 1997.
    [44] Liu, H. X., Zhang, R. S., Luan, F., Yao, X. J., Liu, M. C., Hu, Z. D., Fan, B. T.,Diagnosing Breast Cancer Based on Support Vector Machines, Journal of Chemical Information and Computer Sciences, 2003, 43 (3): 900-907.
    [45] Wang, W. J., Xu, Z. B., Lu, W. Z., Zhang, X. Y., Determination of the spread parameter in the Gaussian kernel for classification and regression,Neurocomputing, 2003, 55 (3-4): 643-663.
    [46] Zhu, B. Y., Zhao, Z. G., Interface Chemistry Foundation, Chemical Industry Press, Beijing, China, 1999, p p. 78.
    [47] Katritzky, A. R., Tatham, D. B., Maran, U., Theoretical Descriptors for the Correlation of Aquatic Toxicity of Environmental Pollutants by Quantitative Structure-Toxicity Relationships, Journal of Chemical Information and Computer Sciences, 2001, 41 (5): 1162-1176.
    [48] Bosque, R., Sales, J., A QSPR Study of O-H Bond Dissociation Energy in Phenols, Journal of Chemical Information and Computer Sciences, 2003, 43 (2):637-642.
    [1] Cohen, J., NEWS FOCUS SPECIAL REPORT: The Next Frontier for HIV/AIDS:Myanmar, Science, 2003, 301 (5640): 1650-1655.
    [2] Cohen, J., Asia and Africa: On Different Trajectories?, Science, 2004, 304 (5679):1932-1938.
    [3] Cohen, J., HIV/AIDS IN INDIA: HIV/AIDS: India's Many Epidemics, Science,2004, 304 (5670): 504-509.
    [4] Cohen, J., HIV/AIDS IN CHINA: Poised for Takeoff?., Science, 2004, 304 (5676):1430-1432.
    [5] http://www.aidsinfo.nih.gov/other/cbrochure/english/05 en.html/(2005)
    [6] Clercq, E. D., Toward Improved Anti-HIV Chemotherapy: Therapeutic Strategies for Intervention with HIV Infections, Journal of Medicinal Chemistry, 1995, 38(14): 2491-2517.
    
    [7] el Kouni, M. H., Trends in the design of nucleoside analogues as anti-HIV drugs,Current Pharmaceutical Design, 2002, 8 (8): 581-593.
    
    [8] Mansour, T. S., Storer, R., Antiviral Nucleosides, Current Pharmaceutical Design,1997, 3 (2): 227-264.
    
    [9] Horwitz, J. P., Chua, J., Noel, M., Nucleosides. V. The Monomesylates of 1-(2'-Deoxy-β-D-lyxofuranosyl)thymine~(1,2), Journal of Organic Chemistry, 1964, 29(7): 2076-2078.
    
    [10] Gu, Z., Wainberg, M. A., Nguyen-Ba, P., L'Heureux, L., de Muys, J. M., Rando,R. F., Anti-HIV-1 activities of 1,3-dioxolane guanine and 2,6-diaminopurine dioxolane, Nucleosides Nucleotides, 1999, 18 (4-5): 891-892.
    
    [11] de Muys, J. M., Gourdeau, H., Nguyen-Ba, N., Taylor, D. L., Ahmed, P. S.,Mansour, T., Locas, C., Richard, N., Wainberg, M. A., Rando, R. F., Anti-human immunodeficiency virus type 1 activity, intracellular metabolism, and pharmacokinetic evaluation of 2'-deoxy-3'-oxa-4'-thiocytidine, Antimicrobial Agents and Chemotherapy, 1999, 43 (8): 1835-1844.
    
    [12] Richard, N., Salomon, H., Rando, R., Mansour, T., Bowlin, T. L., Wainberg, M.A., Selection and characterization of human immunodeficiency virus type 1 variants resistant to the (+) and (-) enantiomers of 2'-deoxy-3'-oxa-4'-thio-5-fluorocytidine, Antimicrobial Agents and Chemotherapy, 2000, 44 (5): 1127-1131.
    
    [13] Estrada, E., Vilar, S., Uriarte, E., Gutierrez, Y., In Silico Studies toward the Discovery of New Anti-HIV Nucleoside Compounds with the Use of TOPS-MODE and 2D/3D Connectivity Indices. 1. Pyrimidyl Derivatives, Journal of Chemical Information and Computer Sciences, 2002, 42 (5): 1194-1203.
    
    [14] Hansch, C, Leo, A., Exploring QSAR: Fundamentals and Applications in Chemistry and Biology, the American Chemical Society, Washington, DC, 1995.
    
    [15] Kubinyi, H., QSAR and 3D QSAR in drug design Part 1: methodology, Drug Discovery Today, 1997, 2(11): 457-467.
    
    [16] Kubinyi, H., QSAR and 3D QSAR in drug design Part 2: applications and problems, Drug Discovery Today, 1997, 2 (12): 538-546.
    [17] Karelson, M., Molecular Descriptors in QSAR/QSPR, John Wiley & Sons, New York, 2000.
    [18] Todeschini, R., Consonni, V., Handbook of Molecular Descriptors, Wiley-VCH,Weinheim, Germany, 2000.
    [19] Devillers, J., Balaban, A. T., Topological Indices and Related Descriptors in QSAR and QSPR, Gordon and Breach Science Publishers, Amsterdam, 1999.
    [20] Vapnik, V., The Nature of Statistical Learning Theory, Springer-Verlag, New York, USA, 1995.
    
    [21] Vapnik, V., Statistical Learning Theory, John Wiley and Sons, New York, 1998.
    [22] Cristianini, N., Shawe-Taylor, J., An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods, Cambridge University Press,Cambridge, UK, 2000.
    [23] Herbrich, R., Learning Kernel Classifiers Theory and Algorithms, MIT Press,Cambridge, MA, 2002.
    [24] Sch□kopf, B., Smola, A. J., Learning with Kernels: Support Vector Machines,Regularization, Optimization, and Beyond, MIT Press, Cambridge, MA, 2002.
    [25] http: //www.mdli.com/ (2005)
    
    [26] Pang, S. N., Kim, D. J., Bang, S. Y., Membership authentication in the dynamic group by face classification using SVM ensemble, Pattern Recognition Letters,2003, 24 (1-3): 215-225.
    
    [27] Liu, H. X., Zhang, R. S., Luan, F., Yao, X. J., Liu, M. C., Hu, Z. D., Fan, B. T.,Diagnosing Breast Cancer Based on Support Vector Machines, Journal of Chemical Information and Computer Sciences, 2003, 43 (3): 900-907.
    [28] Byvatov, E., Fechner, U., Sadowski, J., Schneider, G., Comparison of Support Vector Machine and Artificial Neural Network Systems for Drug/Nondrug Classification, Journal of Chemical Information and Computer Sciences, 2003,43(6): 1882-1889.
    
    [29] Duchowicz, P. R., Talevi, A., Bruno-Blanch, L. E., Castro, E. A., New QSPR study for the prediction of aqueous solubility of drug-like compounds, Bioorganic & Medicinal Chemistry, 2008, 16 (17): 7944-7955.
    [30] Wennmohs, F., Schindler, M., Development of a multipoint model for sulfur in proteins: A new parametrization scheme to reproduce high-level ab initio interaction energies, Journal of Computational Chemistry, 2005, 26 (3): 283-293.
    [31] Bao, L., Sun, Z., Identifying genes related to drug anticancer mechanisms using support vector machine, FEBS Letters, 2002, 521 (1-3): 109-114.
    
    [32] Liu, H. X., Zhang, R. S., Yao, X. J, Liu, M. C., Hu, Z. D., Fan, B. T., QSAR Study of Ethyl 2-[(3-Methyl-2,5-dioxo(3-pyrrolinyl))amino]-4-(trifluoromethyl) pyrimidine-5-carboxylate: An Inhibitor of AP-1 and NF-kB Mediated Gene Expression Based on Support Vector Machines, Journal of Chemical Information and Computer Sciences, 2003,43 (4): 1288-1296.
    
    [33] Xue, C. X., Zhang, R. S., Liu, H. X., Yao, X. J., Liu, M. C, Hu, Z. D., Fan, B. T.,An Accurate QSPR Study of O-H Bond Dissociation Energy in Substituted Phenols Based on Support Vector Machines, Journal of Chemical Information and Computer Sciences, 2004, 44 (2): 669-677.
    
    [34] Xue, C. X., Zhang, R. S., Liu, M. C., Hu, z. D., Fan, B. T., Study of the Quantitative Structure-Mobility Relationship of Carboxylic Acids in Capillary Electrophoresis Based on Support Vector Machines, Journal of Chemical Information and Computer Sciences, 2004, 44 (3): 950-957.
    
    [35] Wang, J., Du, H. Y., Liu, H. X., Yao, X. J., Hu, Z. D., Fan, B. T., Prediction of surface tension for common compounds based on novel methods using heuristic method and support vector machine, Talanta, 2007, 73 (1): 147-156.
    
    [36] http: //www.kernel-machines.org/ (2005)
    
    [37] Hyperchem, Release 4.0 for windows, Hypercube, Inc., 1995.
    
    [38] Stewart, J. P., MOPAC 6.0, Quantum Chemistry Program Exchange; QCPE, No.455,, Indiana University, Bloomington, 1989.
    
    [39] Katritzky, A. R.; Lobanov, V. S., Karelson, M., CODESSA Training Manual,University of Florida, Gainesville, FL, USA, 1995.
    
    [40] Katritzky, A. R.; Lobanov, V. S., Karelson, M., CODESSA Reference Manual,University of Florida, Gainesville, FL, USA, 1994.
    
    [41] Kachigan, S., Statistical Analysis-An Interdisciplinary Introduction to Univariate and Multivariate Methods,, Radius Press, New York, 1986.
    
    [42] Fisher, R. A., The use of multiple measurements in taxonomic problems, Annual Eugenics, 1936, 7: 179-188.
    
    [43] Kier, L. B., Use Of molecular negentropy to encode structure governing biological- activity, Journal of Pharmaceutical Sciences, 1980, 69: 807-810.
    
    [44] Bonchev, D., Information Theoretic Indices for Characterization of Chemical Structure, Wiley-Interscience, New York, 1983.
    [45] Rohrbaugh, R. H., Jurs, P. C, Descriptions of molecular shape applied in studies of structure/activity and structure/property relationships, Analytica Chimica Acta, 1987, 199:99-109.
    
    [46] Strouf, O., Chemical Pattern Recognition, Wiley, New York, 1986.
    [47] Zefirov, N. S., Kirpichenok, M. A., Jzmailov, F. F., Trofimov, M. J., Calculation schemes for atomic electronegativities in molecular graphs within the framework of Sanderson's principle, Doklady Akademii Nauk SSSR, 1987, 296:883-887.
    [48] Basak, S. C, Balaban, A. T., Grunwald, G. D., Gute, B. D., Topological Indices:Their Nature and Mutual Relatedness, Journal of Chemical Information and Computer Sciences, 2000, 40 (4): 891-898.
    [49] Stanton, D., T., Jurs, P. C., Development and use of charged partial surface area structural descriptors in computer-assisted quantitative structure-property relationship studies Analytical Chemistry, 1990, 62 (21): 2323-2329.
    [50] Stanton, D. T., Egolf, L. M., Jurs, P. C., Hicks, M. G., Computer-assisted prediction of normal boiling points of pyrans and pyrroles, Journal of Chemical Information and Computer Sciences, 1992, 32 (4): 306-316.
    [51] Purves, D., Harvey, C., Tweats, D., Lumley, C. E., Genotoxicity testing: current practices and strategies used by the pharmaceutical industry, Mutagenesis, 1995,10(4): 297-312.
    [52] He, L. N., Jurs, P. C., Custer, L. L., Durham, S. K., Pearl, G. M., Predicting the genotoxicity of polycyclic aromatic compounds from molecular structure with different classifiers, Chemical Research in Toxicology, 2003, 16 (12): 1567-1580.
    
    [53] Nath, J., Krishna, G., Safety screening of drugs in cancer therapy, Acta Haematologica, 1998, 99 (3): 138-147.
    [54] Kennedy, T., Managing the drug discovery/development interface, Drug Discovery Today, 1997, 2(10): 436-444.
    [55] van de Waterbeemd, H., Gifford, E., ADMET in silico modelling: towards prediction paradise?, Nature Reviews Drug Discovery, 2003, 2 (3): 192-204.
    [56] Mattioni, B. E., Kauffman, G. W., Jurs, P. C., Custer, L. L., Durham, S. K., Pearl,G. M., Predicting the Genotoxicity of Secondary and Aromatic Amines Using Data Subsetting To Generate a Model Ensemble, Journal of Chemical Information and Computer Sciences, 2003, 43 (3): 949-963.
    [57] Li, H., Ung, C. Y., Yap, C. W., Xue, Y., Li, Z. R., Cao, Z. W., Chen, Y. Z.,Prediction of Genotoxicity of Chemical Compounds by Statistical Learning Methods, Chemical Research in Toxicology, 2005, 18 (6): 1071-1080.
    
    [58] Debnath, A. K., Hansch, C, Kim, K. H., Martin, Y. C, Mechanistic interpretation of the genotoxicity of nitrofurans (antibacterial agents) using quantitative structure-activity relationships and comparative molecular field analysis, Journal of Medicinal Chemistry, 1993, 36 (8): 1007-1016.
    
    [59] Zhang, Q. Y., Aires-de-Sousa, J., Random Forest Prediction of Mutagenicity from Empirical Physicochemical Descriptors, Journal of Chemical Information and Modeling, 2007, 47 (1): 1-8.
    
    [60] Basak, S. C, Mills, D. R., Balaban, A. T., Gute, B. D., Prediction of Mutagenicity of Aromatic and Heteroaromatic Amines from Structure: A Hierarchical QSAR Approach, Journal of Chemical Information and Computer Sciences, 2001, 41 (3): 671-678.
    
    [61] Hirose, A., Ishiwa, S., Ciloy, J. M., Takahashi, M., Hirata-Koizumi, M., Kamata,E., Ono, A., Ema, M., Hayashi, M., Development of in silico hepatotoxicity predicting system on sub-acute repeated dose toxicity test for industrial chemicals, Toxicology Letters, 2008, 180 (Supplement 1): S68-S68.
    
    [62] Brown, N. A., Shull, G., Kao, J., Goulding, E. H., Fabro, S., Teratogenicity and lethality of hydantoin derivatives in the mouse: Structure-toxicity relationships,Toxicology and Applied Pharmacology, 1982, 64 (2): 271-288.
    
    [63] Matthews, E. J., Kruhlak, N. L., Daniel Benz, R., Contrera, J. F., A comprehensive model for reproductive and developmental toxicity hazard identification: I. Development of a weight of evidence QSAR database,Regulatory Toxicology and Pharmacology, 2007, 47 (2): 115-135.
    
    [64] Monti, E., Gariboldi, M., Maiocchi, A., Marengo, E., Cassino, C., Gabano, E.,Osella, D., Cytotoxicity of cis-Platinum(II) Conjugate Models. The Effect of Chelating Arms and Leaving Groups on Cytotoxicity: A Quantitative Structure-Activity Relationship Approach, Journal of Medicinal Chemistry, 2005, 48 (3):857-866.
    
    [65] Lee, A. C., Shedden, K., Rosania, G. R., Crippen, G. M., Data Mining the NCI60 to Predict Generalized Cytotoxicity, Journal of Chemical Information and Modeling, 2008,48 (7): 1379-1388.
    [66] Villemin, D., Cherqaoui, D., Mesbah, A., Predicting Carcinogenicity of Polycyclic Aromatic Hydrocarbons from Back-Propagation Neural Network, Journal of Chemical Information and Computer Sciences, 1994, 34 (6): 1288-1293.
    [67] Sun, H., Prediction of Chemical Carcinogenicity from Molecular Structure,Journal of Chemical Information and Computer Sciences, 2004, 44 (4): 1506-1514.
    [68] Arbillaga, L., Azqueta, A., van Delft, J. H. M., L(?)pez de Cerain, A., In vitro gene expression data supporting a DNA non-reactive genotoxic mechanism for ochratoxin A, Toxicology and Applied Pharmacology, 2007, 220 (2): 216-224.
    [69] Bolz(?)n, A. D., Bianchi, M. S., Genotoxicity of streptozotocin, Mutation Research/Reviews in Mutation Research, 2002, 512 (2-3): 121-134.
    [70] Snyder, R. D., Pearl, G. S., Mandakas, G., Choy, W. N., Goodsaid, F.,Rosenblum, I. Y., Assessment of the sensitivity of the computational programs DEREK, TOPKAT, and MCASE in the prediction of the genotoxicity of pharmaceutical molecules, Environmental and Molecular Mutagenesis, 2004, 43(3): 143-158.
    [71] Bolz(?)n, A. D., Bianchi, M. S., Genotoxicity of Streptozotocin, Mutation Research/Reviews in Mutation Research, 2002, 512 (2-3): 121-134.
    [72] Habersetzer, F., Larrey, D., Babany, G., Degott, C., Corbic, M., Pessayre, D.,Benhamou, J. P., Clotiazepam-induced acute hepatitis, Journal of hepatology,1989, 9 (2): 256-259.
    [73] Coladangelo, R., Liver dysfunction caused by tiaprofenic acid, The Lancet, 1986,327 (8484): 803-803.
    [74] McMurtry, R. J., Mitchell, J. R., Renal and hepatic necrosis after metabolic activation of 2-substituted furans and thiophenes, including furosemide and cephaloridine, Toxicology and Applied Pharmacology, 1977, 42 (2): 285-300.
    [75] Fonnum, F., Lock, E. A., Cerebellum as a target for toxic substances, Toxicology Letters, 2000, 112-113: 9-16.
    [76] Bradley, P., Berry, M., Effects of thiophene on the purkinjc cell dendritic tree: A quantitative golgi study, Neuropathology and Applied Neurobiology, 1979, 5 (1):9-16.
    [77] Albrechtsen, R., Jensen, H., Histochemical investigation of thiophen necrosis in the cerebellum of rats, Acta Neuropathologica, 1973, 26 (3): 217-223.
    [78] Herndon, R. M., Thiophen induced granule cell necrosis in the rat cerebellum an electron microscopic study, Experimental Brain Research, 1968, 6 (1): 49-68.
    [79] Christomanos, A., Scholz, W., Klinische beobachtungen undpathologisch-anatomische befunde am zentralnervensy stem mit thiophen vergifteter hunde, Z.Neurol. Psychiatr., 1933, 144: 1-20.
    [80] Kropp, K. G., Fedorak, P. M., A review of the occurrence, toxicity,and biodegradation of condensed thiophenes found in petroleum, Canadian Journal of Microbiology, 1998, 44 (7): 605-622.
    [81] Murphy, S. E., Amin, S., Coletta, K., Hoffmann, D., Rat liver metabolism of benzo[b]naphtho[2,1-d]thiophene, Chemical Research in Toxicology, 1992, 5(4): 491-495.
    [82] Misra, B., Amin, S., Synthesis and mutagenicity of trans-dihydrodiol metabolites of benzo[b]naphtho[2,l-d]thiophene, Chemical Research in Toxicology, 1990, 3(2): 93-97.
    [83] Sinsheimer, J. E., Hooberman, B. H., Das, S. K., Savla, P. M., Ashe, A. J.,Genotoxicity of chryseno[4,5-bcd]thiophene and its sulfone derivative,Environmental and Molecular Mutagenesis, 1992, 19 (3): 259-264.
    [84] Machinist, J. M., Mayer, M. D., Shet, M. S., Ferrero, J. L., Rodrigues, A. D.,Identification of the human liver cytochrome P450 enzymes involved in the metabolism of zileuton (ABT-077) and its N-dehydroxylated metabolite,Abbott-66193, Drug Metabolism and Disposition, 1995, 23 (10): 1163-1174.
    [85] Mizutani, T., Yoshida, K., Kawazoe, S., Formation of toxic metabolites from thiabendazole and other thiazoles in mice. Identification of thioamides as ring cleavage products, Drug Metabolism and Disposition, 1994, 22 (5): 750-755.
    [86] Mosier, P. D., Jurs, P. C., Custer, L. L., Durham, S. K., Pearl, G. M., Predicting the Genotoxicity of Thiophene Derivatives from Molecular Structure, Chemical Research in Toxicology, 2003, 16 (6): 721-732.
    [87] Luan, F., Zhang, R. S., Zhao, C. Y., Yao, X. J., Liu, M. C., Hu, Z. D., Fan, B. T.,Classification of the carcinogenicity of N-Nitroso compounds based on support vector machines and linear discriminant analysis, Chemical Research in Toxicology, 2005, 18 (2): 198-203.
    [88] Liebler, D. C., Guengerich, F. P., Elucidating mechanisms of drug-induced toxicity, Nature Reviews Drug Discovery, 2005,4 (5): 410-420.
    [89] Guengerich, F. P., MacDonald, J. S., Applying Mechanisms of Chemical Toxicity to Predict Drug Safety, Chemical Research in Toxicology, 2007, 20 (3):344-369.
    [90] Sacan, M. T., Ozkula, M., Erdem, S. S., QSPR analysis of the toxicity of aromatic compounds to the algae (Scenedesmus obliquus), Chemosphere, 2007,68 (4): 695-702.
    [91] Theil, F.-P., Guentert, T. W., Haddad, S., Poulin, P., Utility of physiologically based pharmacokinetic models to drug development and rational drug discovery candidate selection, Toxicology Letters, 2003, 138 (1-2): 29-49.
    [92] Vedani, A., Descloux, A.-V., Spreafico, M, Ernst, B., Predicting the toxic potential of drugs and chemicals in silico: A model for the peroxisome proliferator-activated receptor y (PPARγ) Toxicology Letters, 2007, 173 (1): 17-23.
    [93] Freidig, A. P., Dekkers, S., Verwei, M., Zvinavashe, E., Bessems, J. G. M., van de Sandt, J. J. M., Development of a QSAR for worst case estimates of acute toxicity of chemically reactive compounds, Toxicology Letters, 2007, 170 (3):214-222.
    [94] Xue, Y., Yap, C. W., Sun, L. Z., Cao, Z. W., Wang, J. F., Chen, Y. Z., Prediction of P-Glycoprotein Substrates by a Support Vector Machine Approach, Journal of Chemical Information and Computer Sciences, 2004, 44 (4): 1497-1505.
    [95] Yap, C. W., Cai, C. Z., Xue, Y., Chen, Y. Z., Prediction of Torsade-Causing Potential of Drugs by Support Vector Machine Approach, Toxicological Sciences, 2004, 79 (1): 170-177.
    [96] Quillardet, P., Hofnung, M., The SOS chromotest: a review, Mutation Research/Reviews in Genetic Toxicology, 1993, 297 (3): 235-279.
    [97] Vasilieva, S., SOS Chromotest methodology for fundamental genetic research,Research in Microbiology, 2002, 153 (7): 435-440.
    [98] Katritzky, A. R.; Lobanov, V. S., Karelson, M., CODESSA: Reference Manual,Version 2, University of Florida, 1994.
    
    [99] Katritzky, A. R.; Lobanov, V. S., Karelson, M., Comprehensive descriptors for structural and statistical analysis, Reference Manual, Version 2.0, University of Florida, Gainesville, Florida, 1994.
    
    [100] Weast, R. C, Handbook of Chemistry and Physics., CRC Press, Cleveland, OH,p. F-112,1974.
    [101] Basak, S. C, Balaban, A. T., Grunwald, G. D., Gute, B. D., Topological Indices:Their Nature and Mutual Relatedness, Journal of Chemical Information and Computer Sciences, 2000,40 (4): 891-898.
    [102] Katritzky, A. R., Tatham, D. B., Maran, U., Theoretical Descriptors for the Correlation of Aquatic Toxicity of Environmental Pollutants by Quantitative Structure-Toxicity Relationships, Journal of Chemical Information and Computer Sciences, 2001,41 (5): 1162-1176.
    [103] Kirpichenok, M. A., Zefirov, N. S., Electronegativity and geometry of molecules. 1. General principles of the method and analysis of the effect of short-range electrostatic interactions on bond lengths in organic molecules, Zh.Org. Khim., 1987, 23: 673-691.
    [104] Ren, Y. Y., Liu, H. X., Xue, C. X., Yao, X. J., Liu, M. C., Fan, B. T.,Classification study of skin sensitizers based on support vector machine and linear discriminant analysis, Analytica Chimica Acta, 2006, 572 (2): 272-282.
    [105] Turner, J. V., Glass, B. D., Agatonovic-Kustrin, S., Prediction of drug bioavailability based on molecular structure, Analytica Chimica Acta, 2003, 485(1):89-102.
    
    [106] http://www.answers.com/topic/bioavailability (2007-3-27)
    [107] Stoncr, C. L., Cleton, A., Johnson, K., Oh, D.-M., Hallak, H., Brodfuehrer, J.,Surendran, N., Han, H.-K., Integrated oral bioavailability projection using in vitro screening data as a selection tool in drug discovery, International Journal of Pharmaceutics, 2004,269 (1): 241-249.
    [108] Parrott, N., Lave, T., Prediction of intestinal absorption: comparative assessment of GASTROPLUS? and IDEA?, European Journal of Pharmaceutical Sciences, 2002, 17 (1 -2): 51 -61.
    [109] Bohets, H., Annaert, P., Mannens, G., van beijterveldt, L. V., Anciaux, K.,Verboven, P., Meuldermans, W., Lavrijsen, K., Strategies for absorption screening in drug discovery and development Current Topics in Medicinal Chemistry, 2001, 1 (5): 367-383.
    [110] Waterbeemd, H., Quantitative structure-absorption relationships, in:B.Testa[Ed.], Pharmacokinetic optimizaiton in drug research: Biological,Physiochemical and Computational Strategies, Wiley-VCH, New York, 2001,pp. 499-511.
    [111] van de Waterbeemd, H., Smith, D. A., Beaumont, K., Walker, D. K., Property-Based Design: Optimization of Drug Absorption and Pharmacokinetics, Journal of Medicinal Chemistry, 2001, 44 (9): 1313-1333.
    
    [112] Yoshida, F., Topliss, J. G., QSAR Model for Drug Human Oral Bioavailabilityl,Journal of Medicinal Chemistry, 2000,43 (13): 2575-2585.
    
    [113] Testa, B., Pharmacokinetic optimization in drug research: biological,physicochemical, and computational strategies, Wiley, Weinheim, 2001, p 11.
    
    [114] Wang, J., Liu, H. X., Qin, S., Yao, X. J., Liu, M. C., Hu, Z. D., Fan, B. T.,Study on the Structure-Activity Relationship of New Anti-HIV Nucleoside Derivatives Based on the Support Vector Machine Method, QSAR & Combinatorial Science, 2007, 26 (2): 161-172.
    
    [115] Du, H. Y., Wang, J., Watzl, J., Zhang, X. Y., Hu, Z. D., Classification structure-activity relationship (CSAR) studies for prediction of genotoxicity of thiophene derivatives, Toxicology Letters, 2008, 177 (1): 10-19.
    
    [116] Fatemi, M. H., Prediction of ozone tropospheric degradation rate constant of organic compounds by using artificial neural networks, Analytica Chimica Acta,2006, 556 (2): 355-363.
    
    [117] Garcia-Alvarez-Coque, M. C, Torres-Lapasio, J. R., Baeza-Baeza, J. J., Models and objective functions for the optimisation of selectivity in reversed-phase liquid chromatography, Analytica Chimica Acta, 2006, 579 (2): 125-145.
    
    [118] Luan, F., Xue, C. X., Zhang, R. S., Zhao, C. Y., Liu, M. C, Hu, Z. D., Fan, B.T., Prediction of retention time of a variety of volatile organic compounds based on the heuristic method and support vector machine, Analytica Chimica Acta,2005,537(1-2): 101-110.
    
    [119] Kachigan, S. K., Statistical Analysis, Radius Press, New York, 1986.
    
    [120] Christianini, N., Shawe-Taylor, J., An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods, Cambridge University Press,Cambridge, UK, 2000.
    
    [121] Cores, C, Vapnik, V. N., Support vector networks, Machine Learning, 1995, 20(3): 273-293.
    
    [122] Burges, C. J. C, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery, 1998, 2 (2): 121-167.
    [123] Si, H. Z., Wang, T., Zhang, K. J., Hu, Z. D., Fan, B. T., QSAR study of 1,4-dihydropyridine calcium channel antagonists based on gene expression programming, Bioorganic & Medicinal Chemistry, 2006, 14(14): 4834-4841.
    [124] Bosque, R., Sales, J., A QSPR Study of O-H Bond Dissociation Energy in Phenols, Journal of Chemical Information and Computer Sciences, 2003, 43 (2):637-642.
    [125] Molecular Descriptors in QSAR/QSPR Analysis, Wiley & Sons, New York,2000.
    [126] Luan, F., Ma, W., Zhang, X., Zhang, H., Liu, M., Hu, Z., Fan, B. T.,Quantitative structure-activity relationship models for prediction of sensory irritants (logRD_(50)) of volatile organic chemicals, Chemosphere, 2006, 63 (7):1142-1153.
    [127] Seydel, J. K., Schaper, K. J., Quantitative structure-pharmacokinetic relationships and drug design, Pharmacology & Therapeutics, 1981, 15 (2):131-182.
    [128] Norinder, U., Osterberg, T., Artursson, P., Theoretical calculation and prediction of intestinal absorption of drugs in humans using MolSurf parametrization and PLS statistics, European Journal of Pharmaceutical Sciences, 1999, 8(1): 49-56.
    [1] Govindaraju, V., Young, K., Maudsley, A. A., Proton NMR chemical shifts and coupling constants for brain metabolites, NMR in Biomedicine, 2000, 13 (3):129-153.
    [2] de Graaf, R. A., In vivo NMR Spectroscopy -2nd Edition Principles and Techniques, John Weiley & Sons, Ltd, 2007.
    [3] Shulman, R. G., Brown, T. R., Ugurbil, K., Ogawa, S., Cohen, S. M., den Hollander, J. A., Cellular applications of 31P and 13C nuclear magnetic resonance, Science, 1979,205 (4402): 160-166.
    [4] Alger, J. R., Sillerud, L. O., Behar, K. L., Gillies, R. J., Shulman, R. G., Gordon, R.E., Shae, D., Hanley, P. E., In vivo carbon-13 nuclear magnetic resonance studies of mammals, Science, 1981, 214 (4521): 660-662.
    [5] Neurohr, K. J., Barrett, E. J., Shulman, R. G., In vivo carbon-13 nuclear magnetic resonance studies of heart metabolism, Proceedings of the National Academy of Sciences of the United States of America, 1983, 80 (6): 1603-1607.
    [6] Brindle, K. M., Boyd, J., Campbell, I. D., Porteous, R., Soffe, N., Observation of carbon labelling in cell metabolites using proton spin echo NMR, Biochemical and Biophysical Research Communications, 1982, 109 (3): 864-871.
    [7] Ogino, T., Arata, Y., Fujiwara, S., Proton correlation nuclear magnetic resonance study of metabolic regulations and pyruvate transport in anaerobic Escherichia coli cells, Biochemistry, 1980, 19 (16): 3684-3691.
    [8] Sillerud, L. O., Alger, J. R., Shulman, R. G., High-resolution proton NMR studies of intracellular metabolites in yeast using 13C decoupling, Journal of Magnetic Resonance (1969), 1981, 45 (1): 142-150.
    [9] Foxall, D. L., Cohen, J. S., Tschudin, R. G., Selective observation of 13C-enriched metabolites by 1H NMR, Journal of Magnetic Resonance (1969), 1983, 51 (2):330-334.
    [10] Rothman, D. L., Behar, K. L., Hetherington, H. P., den Hollander, J. A., Bendall,M. R., Petroff, O. A., Shulman, R. G.,1H-Observe/13C-decouple spectroscopic measurements of lactate and glutamate in the rat brain in vivo, The Proceedings of the National Academy of Sciences, 1985, 82 (6): 1633-1637.
    [11] de Graaf, R. A., Mason, G. F., Patel, A. B., Behar, K. L., Rothman, D. L., In vivo 1H-[13C]-NMR spectroscopy of cerebral metabolism, NMR in Biomedicine,2003, 16 (6-7): 339-357.
    [12] Brindle, K. M., Boyd, J., Campbell, I. D., Porteous, R., Soffe, N., Observation of carbon labelling in cell metabolites using proton spin echo NMR, Biochemical and Biophysical Research Communications, 1982, 109 (3): 864-871.
    [13] Mason, G. F., Rothman, D. L., Behar, K. L., Shulman, R. G., NMR determination of the TCA cycle rate and alpha-ketoglutarate/glutamate exchange rate in rat brain, Journal of Cerebral Blood Flow & Metabolism, 1992, 12 (3):434-447.
    [14] Fitzpatrick, S. M., Hetherington, H. P., Behar, K. L., Shulman, R. G., The flux from glucose to glutamate in the rat brain in vivo as determined by 1H-observed,13C-edited NMR spectroscopy, Journal of Cerebral Blood Flow & Metabolism,1990, 10(2): 170-179.
    [15] Mason, G. F., Rothman, D. L., Basic principles of metabolic modeling of NMR 13C isotopic turnover to determine rates of brain metabolism in vivo, Metabolic Engineering, 2004, 6(1): 75-84.
    [16] Patel, A. B., Chowdhury, G. M., de Graaf, R. A., Rothman, D. L., Shulman, R.G., Behar, K. L., Cerebral pyruvate carboxylase flux is unaltered during bicuculline-seizures, Journal of Neuroscience Research, 2005, 79 (1-2): 128-138.
    [17] Mason, G. F., Rothman, D. L., Behar, K. L., Shulman, R. G., NMR determination of the TCA cycle rate and alpha-ketoglutarate/glutamate exchange rate in rat brain, Journal of Cerebral Blood Flow & Metabolism, 1992, 12 (3):434-447.
    [18] Alcolea, A., Carrera, J., Medina., A., A hybrid Marquardt-Simulated Annealing method for solving the groundwater inverse problem, in ModelCARE 99. Zurich,Switzerland, 1999.
    
    [19] Mason, G. F., Gruetter, R., Rothman, D. L., Behar, K. L., Shulman, R. G.,Novotny, E. J., Simultaneous determination of the rates of the TCA cycle,glucose utilization, alpha-ketoglutarate/glutamate exchange, and glutamine synthesis in human brain by NMR, Journal of Cerebral Blood Flow &Metabolism, 1995, 15 (1): 12-25. Application of mathematical modeling in Neurochemistry
    
    [20] Gruetter, R., Seaquist, E. R., Ugurbil, K., A mathematical model of compartmentalized neurotransmitter metabolism in the human brain, American Journal of Physicol -Endocrinology and Metabolism, 2001, 281 (1): E100-112.
    [21] The health consequences of smaking; Nicotine Addiction., A report to the Surgeon General, US Department of Health and Human Services, 1980: 9.
    [22] Stapleton, J. M., Gilson, S. F., Wong, D. F., Villemagne, V. L., Dannals, R. F.,Grayson, R. F., Henningfield, J. E., London, E. D., Intravenous Nicotine Reduces Cerebral Glucose Metabolism: A Preliminary Study,Neuropsychopharmacology, 2003, 28 (4): 765-772.
    [23] Lukas, R. J., Neuronal nicotinic acetylcholine receptors. In Barrantes F. (ed). The Nicotinic Acetylcholine Receptor: Current Views and Future Trends, Springer:Berlin, New York, 1998, p 145-173.
    [24] Clarke, P. B. S., Pert, C. B., Pert, A., Autoradiographic distribution of nicotine receptors in rat brain, Brain Research, 1984, 323 (2): 390-395.
    [25] London, E. D., Dam, M., Fanelli, R. J., Nicotine enhances cerebral glucose utilization in central components of the rat visual system, Brain Research Bulletin, 1988, 20 (3): 381-385.
    [26] Balfour, D. J. K., The effects of nicotine on brain neurotransmitter systems, Pharmacology & Therapeutics, 1982, 16 (2): 269-282.
    [27] Nagata, K.; Shinohara, T.; Kanno, I.; Hatazawa, J., Domino, E., Effects of tobacco cigarette smoking on cerebral blood flow in normal adults. In: Domino EF (ed). Brain Imaging of Nicotine and Tobacco Smoking, NPP Books: Ann Arbor, 1995, p 95-107.
    [28] Rose, J. E.; Behm, F. M.; Westman, E. C.; Johnson, M. P., Bates, J. E., Mathew,R. J. Acute effects of nicotine on regional and global cerebral blood flow (Abstract). Society Research on Nicotine and Tobacco, Symposium Brain Imaging of Nicotine and Tobacco Smoking, New Orleans, LA., 1998, p 27-29.
    [29] London, E. D., Connolly, R. J., Szikszay, M., Wamsley, J. K., Dam, M., Effects of nicotine on local cerebral glucose utilization in the rat, Journal of Neuroscience, 1988, 8 (10): 3920-3928.
    [30] London, E. D., Connolly, R. J., Szikszay, M., Wamsley, J. K., Distribution of cerebral metabolic effects of nicotine in the rat, European Journal of Pharmacology, 1985, 110 (3): 391-392.
    [31] London, E. D., Fanelli, R. J., Kimes, A. S., Moses, R. L., Effects of chronic nicotine on cerebral glucose utilization in the rat, Brain Research, 1990, 520 (1-2): 208-214.
    
    [32] Marenco, T., Bernstein, S., Cumming, P., Clarke, P. B. S., Effects of nicotine and chlorisondamine on cerebral glucose utilization in immobilized and freely-moving rats, British Journal of Pharmacology, 2000, 129 (1): 147-155.
    
    [33] London, E. D., Cascella, N. G., Wong, D. F., Phillips, R. L., Dannals, R. F.,Links, J. M., Herning, R., Grayson, R., Jaffe, J. H., Henry N. Wagner, J.,Cocaine-Induced Redoppuction of Glucose Utilization in Human Brain A Study Using Positron Emission Tomography and [Fluorine 18]-Fluorodeoxyglucose Archives of General Psychiatry, 1990, 47 (6): 567-574.
    
    [34] London, E. D.; Cascella, N. G.; Wong, D. F.; Phillips, R. L.; Dannals, R. F.;Links, J. M.; Herning, R.; Grayson, R.; Jaffe, J. H., Henry N. Wagner, J.,Cocaine-induced reduction of glucose utilization in human brain (Chaper 22 in book Drug Abuse in the Decade of the Brain), Editor Gabriel G. Nahas and Thomas F. Burks 1997.
    
    [35] Volkow, N. D., Wang, G.-J., Fowler, J. S., Hitzemann, R., Angrist, B., Gatley, S.J., Logan, J., Ding, Y.-S., Pappas, N., Association of Methylphenidate-Induced Craving With Changes in Right Striato-orbitofrontal Metabolism in Cocaine Abusers: Implications in Addiction, The American Journal of Psychiatry, 1999,156(1): 19-26.
    
    [36] Kimes, A. S., London, E. D., Glucose utilization in the rat brain during chronic morphine treatment and naloxone-precipitated morphine withdrawal, The Journal of Pharmacology and Experimental Therapeutics, 1989, 248 (2): 538-545.
    
    [37] Anwer, J., Saeed Dar, M., In vivo effects of (-)-nicotine on ethanol-induced increase in glucose utilization in the mouse cerebellum, Brain Research Bulletin,1995, 36 (4): 343-348.
    
    [38] Grunwald, F., Schrock, H., Kuschinsky, W., The effect of an acute nicotine infusion on the local cerebral glucose utilization of the awake rat, Brain Research, 1987, 400 (2): 232-238.
    
    [39] Matta, S., Balfour, D., Benowitz, N., Boyd, R., Buccafusco, J., Caggiula, A.,Craig, C., Collins, A., Damaj, M., Donny, E., Gardiner, P., Grady, S., Heberlein,U., Leonard, S., Levin, E., Lukas, R., Markou, A., Marks, M., McCallum, S., Parameswaran, N., Perkins, K., Picciotto, M., Quik, M., Rose, J., Rothenfluh, A.,Schafer, W., Stolerman, I., Tyndale, R., Wehner, J., Zirger, J., Guidelines on nicotine dose selection for in vivo research, Psychopharmacology, 2007, 190 (3):269-319.
    [40] Kassiou, M, Eberl, S., Meikle, S. R., Birrell, A., Constable, C., Fulham, M. J.,Wong, D. F., Musachio, J. L., In vivo imaging of nicotinic receptor upregulation following chronic (-)-nicotine treatment in baboon using SPECT, Nuclear Medicine and Biology, 2001, 28 (2): 165-175.
    [41] Howell, L. L., Effects of caffeine on ventilation during acute and chronic nicotine administration in rhesus monkeys, The Journal of Pharmacology and Experimental Therapeutics, 1995, 273 (3): 1085-1094.
    [42] Grove, K. L., Sekhon, H. S., Brogan, R. S., Keller, J. A., Smith, M. S., Spindel, E.R., Chronic maternal nicotine exposure alters neuronal systems in the arcuate nucleus that regulate feeding behavior in the newborn rhesus macaque, Journal of Clinical Endocrinology & Metabolism, 2001, 86 (11): 5420-5426.
    [43] Sekhon, H. S., Jia, Y., Raab, R., Kuryatov, A., Pankow, J. F., Whitsett, J. A.,Lindstrom, J., Spindel, E. R., Prenatal nicotine increases pulmonary alpha7 nicotinic receptor expression and alters fetal lung development in monkeys, The Journal of Clinical Investigation, 1999, 103 (5): 637-647.
    [44] Ator, N. A., Griffiths, R. R., Nicotine self-administration in baboons, Pharmacology Biochemistry and Behavior, 1983, 19 (6): 993-1003.
    [45] Slifer, B. L., Balster, R. L., Intravenous self-administration of nicotine: with and without schedule-induction, Pharmacology Biochemistry and Behavior, 1985, 22(1):61-69.
    [46] Goldberg, S. R., Spealman, R. D., Goldberg, D. M., Persistent behavior at high rates maintained by intravenous self-administration of nicotine, Science, 1981,214 (4520): 573-575.
    [47] Spealman, R. D., Goldberg, S. R., Maintenance of schedule-controlled behavior by intravenous injections of nicotine in squirrel monkeys, The Journal of Pharmacology and Experimental Therapeutics, 1982, 223 (2): 402-408.
    [48] Buccafusco, J. J., Jackson, W. J., Beneficial effects of nicotine administered prior to a delayed matching-to-sample task in young and aged monkeys, Neurobiology of Aging, 1991, 12 (3): 233-238.
    [49] Buccafusco, J. J., Jackson, W. J., Terry, A. V., Jr., Marsh, K. C., Decker, M. W.,Arneric, S. P., Improvement in performance of a delayed matching-to-sample task by monkeys following ABT-418: a novel cholinergic channel activator for memory enhancement, Psychopharmacology (Berl), 1995, 120 (3): 256-266.
    [50] Buccafusco, J. J., Jackson, W. J., Jonnala, R. R., Terry, A. V., Jr., Differential improvement in memory-related task performance with nicotine by aged male and female rhesus monkeys, Behavioural Pharmacology, 1999, 10 (6-7): 681-690.
    [51] Elrod, K., Buccafusco, J. J., Jackson, W. J., Nicotine enhances delayed matching-to-sample performance by primates, Life Sciences, 1988, 43 (3): 277-287.
    [52] Katner, S. N., Davis, S. A., Kirsten, A. J., Taffe, M. A., Effects of nicotine and mecamylamine on cognition in rhesus monkeys, Psychopharmacology (Berl),2004, 175 (2): 225-240.
    [53] Prendergast, M. A., Terry, A. V., Jr., Jackson, W. J., Marsh, K. C., Decker, M.W., Arneric, S. P., Buccafusco, J. J., Improvement in accuracy of delayed recall in aged and non-aged, mature monkeys after intramuscular or transdermal administration of the CNS nicotinic receptor agonist ABT-418,Psychopharmacology (Berl), 1997, 130 (3): 276-284.
    [54] Terry, A. V., Jr., Buccafusco, J. J., Jackson, W. J., Scopolamine reversal of nicotine enhanced delayed matching-to-sample performance in monkeys,Pharmacology Biochemistry and Behavior, 1993, 45 (4): 925-929.
    [55] Witte, E. A., Davidson, M. C., Marrocco, R. T., Effects of altering brain cholinergic activity on covert orienting of attention: comparison of monkey and human performance, Psychopharmacology (Berl), 1997, 132 (4): 324-334.
    [56] Domino, E. F., Ni, L., Zhang, H., Nicotine alone and in combination with L-DOPA methyl ester or the D(2) agonist N-0923 in MPTP-induced chronic hemiparkinsonian monkeys, Experimental Neurology, 1999, 158 (2): 414-421.
    [57] Hudzik, T. J., Wenger, G. R., Effects of drugs of abuse and cholinergic agents on delayed matching-to-sample responding in the squirrel monkey, The Journal of Pharmacology and Experimental Therapeutics, 1993, 265 (1): 120-127.
    [58] Schoedel, K. A., Sellers, E. M., Palmour, R., Tyndale, R. F., Down-regulation of hepatic nicotine metabolism and a CYP2A6-like enzyme in African green monkeys after long-term nicotine administration, Molecular Pharmacology,2003, 63 (1): 96-104. Application of mathematical modeling in Neurochemistry
    
    [59] Takada, K., Swedberg, M. D., Goldberg, S. R., Katz, J. L., Discriminative stimulus effects of intravenous 1-nicotine and nicotine analogs or metabolites in squirrel monkeys, Psychopharmacology (Berl), 1989, 99 (2): 208-212.
    [60] Ding, Y. S., Volkow, N. D., Logan, J., Garza, V., Pappas, N., King, P., Fowler, J.S., Occupancy of brain nicotinic acetylcholine receptors by nicotine doses equivalent to those obtained when smoking a cigarette, Synapse, 2000, 35 (3):234-237.
    [61] Marenco, S., Carson, R. E., Berman, K. F., Herscovitch, P., Weinberger, D. R.,Nicotine-induced dopamine release in primates measured with [11C]raclopride PET, Neuropsychopharmacology, 2004, 29 (2): 259-268.
    [62] Aizawa, H., Kobayashi, Y., Yamamoto, M., Isa, T., Injection of nicotine into the superior colliculus facilitates occurrence of express saccades in monkeys,Journal of Neurophysiology, 1999, 82 (3): 1642-1646.
    [63] Turner, D. M., Influence of route of administration on metabolism of [14C]nicotine in four species, Xenobiotica, 1975, 5 (9): 553-561.
    [64] Gaitonde, M. K., Rate of utilization of glucose and 'compartmentation' of a-oxoglutarate and glutamate in rat brain, Biochemical Jouranl, 1965, 95: 803-810.
    [65] Hawkins, R. A., Miller, A. L., Cremer, J. E., Veech, R. L., Measurmenf of the glucose utilization by rat brain in vivo, Journal of Neurochemistry, 1974, 23 (5):917-923.
    [66] Erdo, S. L., Postmortem increase of GABA levels in peripheral rat tissues:Prevention by 3-mercapto-propionic acid, Journal of Neural Transmission, 1984,60(3): 303-314.
    [67] Alderman, J. L., Shellenberger, M. K., γ-Aminobutyric acid (GABA) in the rat brain: re-evaluation of sampling procedures and the post-mortem increase,Journal of Neurochemistry, 1974, 22 (6): 937-940.
    [68] Lovell, R. A., Elliott, S. J., Elliott, K. A. C, The a-aminobutyric acid and factor I content of brain, Journal of Neurochemistry, 1963, 10 (7): 479-488.
    [69] Minard, F. N., Mushahwar, I. K., Synthesis of [gamma]-aminobutyric acid from a pool of glutamic acid in brain after decapitation, Life Sciences, 1966, 5 (15):1409-1413.
    [70] Mayne, M, Shepel, P. N., Geiger, J. D., Recovery of high-integrity mRNA from brains of rats killed by high-energy focused microwave irradiation, Brain Research Protocols, 1999, 4: 295-302.
    [71] Cheung, T., Cardinal, R., Hippocampal lesions facilitate instrumental learning with delayed reinforcement but induce impulsive choice in rats, BMC Neuroscience, 2005, 6 (1): 36.
    [72] Paxinos, G., Watson, C., The rat atlas in stereotaxic coordinates, 2nd edn.Academic, San Diego, CA, 1986.
    [73] Mason, G. F., CWave: software for the design and analysis of 13C labeling studies performed in vivo, Proc. International Society of Magnetic Resonance in Medicine, 2000, 3: 1870.
    [74] Mansvelder, H. D., Fagen, Z. M., Chang, B., Mitchum, R., McGehee, D. S.,Bupropion inhibits the cellular effects of nicotine in the ventral tegmental area,Biochemical Pharmacology, 2007, 74 (8): 1283-1291.
    [75] Sokoloff, L., Reivich, M., Kennedy, C., Rosiers, M. H. D., Patlak, C. S.,Pettigrew, K. D., Sakurada, O., Shinohara, M., The [~(14)C] Deoxyglucose method for the measurement of local cerebral glucose utilization: Theory, procedure, and normal values in the conscious and anesthetized albino rat, Journal of Neurochemistry, 1977, 28 (5): 897-916.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700