腐殖酸对高锰酸钾氧化酚类化合物的影响及机理探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了更真实地反应高锰酸钾在饮用水处理中与微污染物的作用规律,本论文研究了腐殖酸对高锰酸钾氧化酚类化合物过程的影响并对机理进行了探讨。腐殖酸(1.0mg L~(-1))在pH 4-8之间可显著提高高锰酸钾氧化苯酚的速率,而当pH为9或10时,腐殖酸的存在对高锰酸钾氧化苯酚过程略有抑制。腐殖酸对高锰酸钾氧化苯酚的影响取决于腐殖酸的浓度及高锰酸钾/苯酚的摩尔比。
     由于腐殖酸本身非常复杂,为降低腐殖酸结构的复杂性,利用超滤分离技术把腐殖酸按照分子量进行分级,考察不同分子量范围的腐殖酸对高锰酸钾氧化过程的影响。在中性条件下,随着腐殖酸级分分子量的增加,高锰酸钾氧化苯酚的效率显著提升。当腐殖酸存在时,高锰酸钾氧化苯酚的二级表观速率常数与254nm处的比紫外吸光度(SUVA),465或665nm处的比可见光吸光度(SVA)有良好的正相关性(R2>0.72)。这表明,腐殖酸的π电子密度可强烈地影响高锰酸钾与苯酚之间的反应活性,通过荧光光谱分析也可得出相应的结论。FTIR分析表明,富含脂肪族、类聚糖结构以及羧基官能团的腐殖酸级分对高锰酸钾氧化苯酚的促进作用较弱。
     由于超滤分级实验选用的是商业腐殖酸,其并不能很好的代表真实土壤中或水中的腐殖酸。因此,本文选用六种不同来源的腐殖酸对高锰酸钾氧化酚类化合物的影响也进行了研究,其中包括两种商业腐殖酸、三种土壤腐殖酸以及一种河流腐殖酸。当存在不同来源腐殖酸时,高锰酸钾在中性条件下氧化苯酚及2-氯酚的表观速率常数,顺序如下:商业腐殖酸(上海化工)>土壤腐殖酸>商业腐殖酸(Fluka)>河流腐殖酸。腐殖酸(上海化工)对不同氯酚化合物均有强化作用,其中对于2,6-二氯酚的强化作用最为明显。FTIR光谱分析可得出,河流腐殖酸与土壤或商业腐殖酸相比,含有较多的羧基、脂肪族官能团以及多聚糖结构,但其C=C双键的含量较少,因此,其对高锰酸钾氧化酚类化合物的影响甚为微弱;同时,荧光区域积分(FRI)或SVA与表观速率常数建立相关性分析可得出,腐殖酸中含有大环芳香结构或较长的共轭双键时对高锰酸钾氧化酚类化合物更为有利。
To further investigate application of permanganate in drinking water treatment processes and environmental remediation, the effects of humic acids (HAs), as one of most common background matrices, on the phenol oxidation by permanganate were studied. Phenol oxidation by permanganate was enhanced by the presence of HA (1.0 mg L~(-1)) at pH 4-8 while slightly inhibited at pH 9-10. The effects of HA on phenol oxidation by permanganate were dependent on HA concentration and permanganate/phenol molar ratios.
     Due to heterogeneous HA structural features, the separation of HS into different nominal molecular weight (NMW) fractions to reduce their heterogeneity is a necessary step. The high NMW fractions of HA enhanced phenol oxidation by permanganate at pH 7 more significantly than the low fractions of HA. The apparent second-order rate constants of phenol oxidation by permanganate in the presence of HA correlated well with their specific ultraviolet absorption (SUVA) at 254 nm and specific violet absorption (SVA) at 465 or 665 nm of HAs. High positive correlation coefficients (R2>0.72) implied thatπ-electrons of HA strongly influenced reactivity of phenol towards permanganate, which agreed well with the information provided by Fluorescence spectroscopy. The FTIR analysis indicated that the HA fractions rich in aliphatic character, polysaccharide-like substances and the amount of carboxylate groups had less effects on phenol oxidation by permanganate.
     However, a limitation of the study was the use of commercial HA, which may not be appropriate as analogues of true soil or aqueous humic substances. Hence, the influence of HA extracted from different aquatic and soil sources was also investigated, including two types of commercial HAs, three types of soil HAs and one type of aqueous HA. The apparent second-order rate constants of oxidation of phenol and 2-chlorophenol by permanganate in the presence of HAs from different origins follow the order of commercial HA (Shanghai Chemical) > soil HAs>commercial HA (Fluka) > aqueous HA. The FTIR analysis indicated aqueous HA with high contents of carboxylate, aliphatic groups and polysaccharide-like substances and low amount of C=C moieties in aqueous HA resulted in no enhancement in the oxidation of phenol and 2-CP by permanganate under neutral conditions. Positive correlation between SVA/FRI and the apparent second-order reaction rates suggested that the reactions between permanganate and 2-CP/phenol were greatly affected by HA with large extent ofπ-electron, such as the great number of aromatic rings or long conjugated bonds in HA structure.
引文
1 X.Y. Xu, N.R. Thomson. A long-term bench-scale investigation of permanganate consumption by aquifer materials. J. Contam. Hydrol. 2009, 110: 3~4.
    2 G.P. Fitzgerald. Use of potassium permanganate for control of problem algae. J. Am. Water Works Ass. 1966, 8: 609~614.
    3 K.C. Huang, G.E. Hoag, P.Chheda, et al. Kinetics study of oxidation of trichloroethylene by potassium permanganate. Environ. Eng. Sci. 1999, 16(4): 265~274。
    4 R.G. Spicher, R.T. Strinde. Potassium permanganate oxidation of organic contaminants in water supplies. J. Am. Water Works Ass. 1963, 55(9): 1174~1182.
    5 Y.E. Yan, F.W. Schwartz. Kinetics and mechanism for TCE oxidation by permanganate. Environ. Sci. Technol. 2000, 34(12): 2535~2541.
    6 K.B. Wiberg, R.D. Geer. The kinetics of permanganate oxidation of alkenes. J. Am. Chem. Soc. 1966, 88: 5827~5832.
    7 D.G. Lee, T. Chen. Oxidation of hydrocarbons. 18. Mechanism of the reaction between permanganate and carbon-carbon doubles. J. Am. Chem. Soc. 1997, 111: 7534~7538
    8 D.G. Lee, J.R. Brownridge. Permanganate oxidation of crotonic acid. spectrometric detection of an intermediate. J. Am. Chem. Soc. 1973, 95: 3034~3045.
    9 R.H. Waldemer, P.G. Tratnyek. Kinetics of contaminant degradation by permanganate. Environ. Sci. Technol. 2006, 40: 1055~1061.
    10 J. Ma, N. Graham, G.B. Li. Effect of permanganate preoxidation in enhancing the coagulation of surface waters - Laboratory case studies. J. Wat. Suppl. Res. Technol-AQUA, 1997, 46(1): 1~10.
    11 J. Ma, N. Graham. Controlling the formation of chloroform by permanganate preoxidation - Destruction of precursors. J. Wat. Suppl. Res. Technol-AQUA, 1996, 45(6): 308~315.
    12 J. Ma, G.B. Li. Laboratory and full-scale plant studies of permanganateoxidation as an aid to the coagulation. Wat. Sci. Technol. 1993, 27(11): 47~54.
    13 J. Ma, G.B. Li, Z.L. Chen, et al. Enhanced coagulation of surface waters with high organic content by permanganate preoxidation. Wat. Sci. Technol: Wat. Supply 2001, 1(1):51~61.
    14许国仁,李圭白,王向东等.高锰酸钾复合药剂对水中藻类和臭味去除效果生产性试验研究.给水排水. 1998, 24(2): 13~15.
    15马军.高锰酸钾去除与控制饮用水中有机污染物的效能与机理.博士论文,哈尔滨建筑工程学院, 1990.
    16刘慧.天然水中本底成分对高锰酸钾去除微量酚的影响.硕士学位论文,哈尔滨建筑大学, 1998.
    17杨晶晶.水中微量高锰酸钾的测定及其氧化双酚A的研究.硕士学位论文,哈尔滨工业大学, 2008.
    18 J. Ma, N.J.D. Graham. Degradation of atrazine by manganese-catalysed ozonation: Influence of humic substances. Water Res. 1999, 33(3): 785~793.
    19 H. Lee, W. Choi. Photocatalytic oxidation of arsenite in TiO2 suspension: Kinetics and mechanisms. Environ. Sci. Technol. 2002, 36(17): 3872~3878.
    20 M. Fukushima, K. Tatsumi, K. Morimoto. The fate of aniline after a photo-fenton reaction in an aqueous system containing iron(III), humic acid, and hydrogen peroxide. Environ. Sci. Technol. 2000, 34(10): 2006~2013.
    21 M. Fukushima, A. Sawada, M. Kawasaki, et al. Influence of humic substances on the removal of pentachlorophenol by a biomimetic catalytic system with a water-soluble iron(III)-Porphyrin complex. Environ. Sci. Technol. 2003, 37(5): 1031~1036.
    22 T.A. Bellar, J.J. Lichtenberg. The Occurrence of Organohalide in Chlorinated Drinking Water. J. Am. Water. Works. Ass. 1974, 66(12): 703~706.
    23 U. Pinkernell, U. von Gunten. Bormate Minimization during Ozonation: Mechanistic Considerations. Environ. Sci. Technol. 2001, 35: 2525~2531.
    24 V. K. Sharma. Potassium ferrate(VI): an Enviromentally Friendly oxidant. Adv. Environ. Res. 2002, 6: 143~156.
    25 R. Bartzatt, M. Cano, L. Johnson, et al. Removal of Toxic Metals and Nonmetals from Contaminated Water. J. Toxicol. Env. Heal. 1992, 35: 205~210.
    26 E.M. Potts, D.R. Churchwell. Removal of Radionuclides in WastewatersUtilizing Potassium Ferrate(VI). Water Environ. Res. 1994, 66: 107~109.
    27马军,李圭白,严煦世.高锰酸钾预处理控制氯化消毒过程.同济大学学报. 1993, 21(8): 349~354.
    28 H. Liang, Y.L. Yang, W.J. Gong, et al. Effect of Pretreatment by Permanganate/Chlorine on Algae Fouling Control for Ultrafiltration (UF) Membrane System. Desalination. 2008, 222(5): 74~80.
    29 E. Rodriguez, M. E. Majado, J. Meriluoto, et al. Oxidation of Microcystins by Permanganate: Reaction Kinetics and Implications for Water Treatment. Water Res. 2007, 41: 102~110.
    30袁德玉,杨开,杨小俊等.高锰酸钾去除地表水中锰的生产试验.工业用水与废水. 2005, 36(3): 13~15.
    31刘锐平,李星,夏圣骥等.高锰酸钾强化三氯化铁共沉降去除亚砷酸盐的效能与机理.环境科学. 2005, 26(1): 72~75.
    32 J. Ma, G. B. Li. Laboratory and Full-Scale Plant Studies of Permanganate Oxidation as an Aid Coagulation. Water Sci. Tech.1993, 27(11): 47~54.
    33 P.A. Vella, J.A. Munder. Toxic Pollutant Destruction. Emerging Technologies. Hazardous Waste management III. Atlanta, American Chemical Society, 1993: 85~105.
    34 R. Stewart. Oxidation in Organic Chemistry. New York, London, Academic Press, 1965: 2~33.
    35 K.C. Huang, G.E. Hoag, P. Chheda, et al. Oxidation of Chlorinated Ethenes by Ppotassium Permanganate: a Kinetics Study. J. Hazard. Mater. 2001, B87: 155~169.
    36 G.D. Lee. Phase Trasfer Assisted Permanganate Oxidations. In: W.S. Trahanovsky. Oxidation in Organic Chemistry. New York, Academic Press, 1982: 147~206.
    37 J. Walton, P. Labine, A. Reidies. The Chemistry of Permanganate in Degradative oxidations. In: W.W. Eckenfelder, A.R. Bowers. J.A. Roth. Chemical Oxidation. Lancaster, Basel, Technomic Publishing Co. Inc., 1991: 19~205.
    38张锦,李圭白,马军.高锰酸钾复合药剂去除水中微量酚类化合物的效能研究.哈尔滨建筑大学学报. 2001, 34(3): 65~67.
    39 E. Zahonyi-Budo, L.I. Simandi. Induced oxidation of Phosphorus(III) by aShort-lived Manganate(V) Intermediate in the Permanganate Oxidation of Arsenite(III). Inorg. Chim. Acta.1992, 191: 1~2.
    40 L.I. Simandi. E. Zahoyi-budo. Relative Reactivities of Hydroxy Compounds with Short~lived Manganese(V). Inorg. Chim. Acta. 1998, 281: 235~238.
    41 Th. Strassner, M. Busold. A Density Functional Theory Study on the Mechanism of the Permanganate Oxidation of Substituted Alkenes. J. Org. Chem, 2001, 66: 672~676.
    42 K.A. Gardner, L.L. Kuehnert, J.M. Mayer. Hydrogen Atom Abstraction by Permanganate: Oxidation of Arylalkanes in Organic Solvents. Inorg. Chem. 1997, 36: 2069~2078.
    43 M. Jaky, J. Szammer, E. Simon-Trompler. Kinetics and mechanism of the oxidation of ketones with permanganate ions. J. Chem. Soc., Perkin Trans. 2000, 2: 1597~1602.
    44 D.G. Lee, E.J. Lee, W.D. Chandler. Mechanism of the Reaction between Alkynes and Permanganate ion. J. Org. Chem. 1985, 50: 4306~4309.
    45 F. Freeman, D.K. Lin, G.R. Moore. Kinetics and Mechanism of the Oxidation of Aliphatic Aldehydes in Acid Media. J. Org. Chem. 1982, 47: 56~59.
    46 Y. E. Yan, F. W. Schwartz. Oxidative Degradation and Kinetics of Chlorinated Ethylenes by Potassium Permanganate. J. Contam. Hydrol. 1999, 37: 343~365.
    47于天仁.土壤化学原理.北京:科学出版社, 1987.
    48 M. Eladia,P. Mendez,J. Havel,J. Patocka. Humic substances-compouds of still unknown structure: applications in agriculture, industry, environment, and biomendicine. J. Appl. Biomed. 2005, 3: 13~24.
    49 F.J. Stevenson. Humus chemistry. New York: John Wiley Interscience, 1982.
    50 J. Buffle, F.L. Greter, W. Haerdi. Measurement of complexation properies of humic and fulvic acids in natural waters with lead and copper ion-selective electrodes. J. Anal. Chem. 1977, 49: 216~222.
    51邬洪源,黄海涛,赵桦萍.腐殖酸中官能团的测定方法的研究.高师理科学刊. 2000, 20(1): 31~33.
    52李克斌.土壤腐殖酸的提取及表征.陕西化工, 1998, 27(4): 11-13.
    53何海军,瞿文川,钱君龙.湖泊沉积物中的腐殖酸的紫外-可见分光光度法测定.分析测定技术与仪器. 1996, 2(1):14~18.
    54陶澍,崔军,张朝生.水生腐殖酸的可见-紫外光谱特征.地理学报. 1990, 45(4): 484~489.
    55叶舟.分光光度法测定污泥中腐殖酸的含量.环境科学与技术, 1989, 1: 34~36.
    56孙伟亚,何广平,吴宏海,高嵩.珠江河口水体沉积物中腐殖酸的提取与表征. 2006, 35(1): 63~66.
    57贺婧,颜丽,杨凯等.不同来源腐殖酸的组成和性质的研究. 2003,34(4): 343~345.
    58彭安,王文华.水体腐殖酸及其络合物蓟运河腐殖酸的提取和表征.环境科学学报, 1981, 1(2): 126~139.
    59 M. Schnitzer, S.U. Khan. Humic Substances in the Environment. Marcel Dekker, New York, 1972.
    60 J. Chen, B. Gu, E.J. LeBoeuf, et al. Spectroscopic characterization of the structural and functional properties of natural organic matter fractions. Chemosphere 2002, 48: 59~68.
    61 E.W.D. Huffman, H.A. Stuber. Analytical methodology for elemental analysis of humic substances. In: G.R. Aiken, D.M. McKnight, R.L. Wershaw, et al. (eds). Humic substances in soil, sediment and water. New York: John Wiley&Sons, 1985: 433~455.
    62 F.J. Stevenson. Humus chemistry. New York: John Wiley Interscience, 1982.
    63 P.R. Bloom, J.A. Leenheer. Vibrational, electronic, and high-energy spectroscopic methods for characterizing humic substances. In: M.H.B. Hayes, P. MacCarthy, R.L. Malcolm, et al. (eds). Humic substances II: in search of structure. New York: John Wiley & Sons, 1989: 409~446.
    64 N. Senesi, T.M. Miano, M.R. Provenzano. Fluorescence spectroscopy as a means if distinguishing fulvic and humic acids from dissolved and sedimentary aquatic sources and terrestrial sources. In: B. Allard, H. Boren, A. Grimvall (eds). Humic substances in the aquatic and terrestrial environment. Berlin: Springer Verlag, 1991: 63~73.
    65 F.H. Frimmel, G. Abbt-Braun, K.G. Heumann, et al. Refractory organic substances (ROS) in the environment. Weinheim: Wiley-VCH, 2002.
    66 N. Senesi, C. Steelink. Application of ERS spectroscopy to study of humic substances. In: Hayes, M.H.B, MacCarthy, P., Malcolm, R.L., et al. (eds).Humic substances II: in search of structure. New York: John Wiley & Sons, 1989: 373~408.
    67 H.R. Schulten, P. Leinweber, G. Jandl. Analytical pyrolysis of humic substances and dissolved organic matter in water. In: F.H. Frimmel, G. Abbt-Braum, K.G. Heumann, et al. (eds). Refractory organic substances (ROS) in the environment. Weinheim: Wiley-VCH, 2002: 163~187.
    68 J.C. Lobartini, G.A. Orioli, K.H. Tan. Characteristic of soil humic acid fractions separated by ultrafiltration. Commun. Soil Sci. Plant Anal. 1997, 28: 787~796.
    69 J. Peuravuori, K. Pihlaja. Pyrolysis electron impact mass spectrometry in studying aquatic humic substances. Anal. Chim. Acta. 1997, 350: 241~247.
    70 C.A. Shand, M.V. Cheshire, Bedrock C.N., et al. Solid-phase P-31 NMR spectra of peat and mineral soils, humic acids and soil solution components: influence of iron and manganese. Plant and Soil. 1999, 214(1-2): 153~163.
    71 J.K. Edzwald Coagulation in drinking water treatment: particles, organics and coagulants. In IAWQ/IWSA Joint Specialized Conference, Control of organic material by coagulation and floc separation processes, Geneva, Switzerland, 1992.
    72 R. Kretzschmar, H. Holthoff, H. Sticher. Influence of pH and humic acid on coagulation kinetics of kaolinite: A dynamic light scattering study. J. Colloid Interf. Sci. 1998, 202(1): 95~103.
    73 A. Venault, L. Vachoud, C. Pochat, et al. Elaboration of chitosan/activated carbon composites for the removal of organic micropollutants from waters. Environ. Technol. 2008, 29(12): 1285~1296.
    74 J.E. Kilduff, T. Karanfil, Y.P. Chin, et al. Adsorption of natural organic polyelectrolytes by activated carbon: A size-exclusion chromatography study. Environ. Sci. Technol. 1996, 30(4): 1336~1343.
    75 X.H. Guan. Adsorption of phosphates and organic acids on aluminum hydroxide in aquatic environment: mechanisms and interactions. PhD dissertation, The Hong Kong University of Science and Technology, 2005.
    76 C.S. Philip, C. Singer. Control of disinfection by-products in drinking water. J. Environ. Eng. 1994, 120(4-6): 727~744.
    77 P. Westerhoff, P. Chao, H. Mash. Reactivity of natural organic matter withaqueous chlorine and bromine. Water Res. 2004, 38(6): 1502~1513.
    78 G.E. Renken. Ozonation at Wiggins water purification works, Durban, South Africa. Ozone Sci. Eng. 1994, 16(3): 247~260.
    79 M.A. Urynowicz. In Situ chemical oxidation with permanganate: assessing the competitive interactions between target and nontarget compounds. Soil Sediment Contam. 2008, 17:53~62.
    80 J. Ma, N.J.D. Graham. Degradation of atrazine by manganese-catalysed ozonation: Influence of humic substances. Water Res. 1999, 33(3): 785~793.
    81 H. Lee, W. Choi. Photocatalytic oxidation of arsenite in TiO2 suspension: Kinetics and mechanisms. Environ. Sci. Technol. 2002, 36(17): 3872~3878.
    82 M. Fukushima, K. Tatsumi, K. Morimoto. The fate of aniline after a photo-fenton reaction in an aqueous system containing iron(III), humic acid, and hydrogen peroxide. Environ. Sci. Technol. 2000, 34(10): 2006~2013.
    83 M. Fukushima, A. Sawada, M. Kawasaki, et al. Influence of humic substances on the removal of pentachlorophenol by a biomimetic catalytic system with a water-soluble iron (III) - Porphyrin complex. Environ. Sci. Technol. 2003, 37(5): 1031~1036.
    84杨桂朋.海水中酚类有机物在粘土或沉积物上吸附特性的模拟研究.海洋科学, 1999,5: 60~64.
    85王华东.水环境污染概论.北京:北京师范大学出版社, 1989, 112~157.
    86尹伊伟等.取代氮杂环类化合物对大型蚤的定量结构活性关系研究.农药, 1996, 35(5): 21~24.
    87加藤康伸.播磨滩中壬基酚的分布.水环境学会志, 2002, 25(3): 170~174.
    88 G. Vincent, G. Angetetti, A. Bjvrseth. Organic micropollutants in the aquatic environment. Kluwer,1991, 285.
    89刘够生等.氯代苯酚类衍生物对水生生物发光细菌的定量结构.活性关系研究.江西师范大学学报, 2001, 25(4): 613~631.
    90何燧源.环境化学.上海:华东理工大学出版社, 1997.
    91 H. Philip, A. Howard, E. Huber. Biodegradation data evaluation for Structure/biodegradability relations. Environ. Toxicol. Chem. 1987, 6: 1~10.
    92 P. Koziollek, H.J. Knackmuss, K. Taeger, et al, A dynamic river model for biodegradability studies. Biodegradation 1996, 7: 109~120.
    93 U. Psgga. Testing biodegradability with standardized methods. Chemosphere1997, 35, 2953~2972.
    94 K.T. jarvinen, E.S. Melin, J.A. Puhakka. High-rate bioremediation of chlorophenol-contaminated groundwater at low temperatures. Environ. Sci. Technol. 1994, 28, 2387~2392.
    95陆光华.取代苯类在江水中的生物降解及QSBR研究.吉林大学博士学位论文, 1993.
    96胡守仁.神经网络导论.北京:国防科技大学出版社, 1993.
    97 J.R. Parsons, H.A. Govers. Quantitative Structure, activity, relationships for biodegradafion. Ecotoxcol. Enciron. Saf. 1990, 19: 212~227.
    98 M. Brent, T. Peyton, T. Wilson, et al. Kinetics of phenol biodegradation in high salt solutions.Water Res. 2002, 36, 4811~4820.
    99 T. Tanaka, K. Yanada, T. Tonosaki, et al. Enzymatic degradation of alkylphenols, bisphenol A, synthentic estrogen and phthalic ester.Water Sci. Technol. 2000, 42: 89~95.
    100孙为军,周集体,项学敏等.苯酚在大连近海海水中的生物降解动力学.中国环境科学, 1999, 19(1): 26~28.
    101王晓蓉.环境化学.南京大学出版社, 1993.
    102 X.J. Li, J.W. Cubbage, W.S. Jenks. Photocatalytic degradation of 4-chlorophenol. 2. The 4-chlorocatechol pathway. J. Org. Chem. 1999, 64(23): 8525~8536.
    103周明华,吴祖成,施药等. UV/H2O2系统协同降解苯酚的动力学研究.高校化学工程学报. 2002, 16(5): 536~542.
    104 E. Naffrechoux, S. Chanoux, C. Pettier, et al. Sonochemical and photochemical oxidation of organic matter. Ultrason. Sonochem. 2000, 7: 255~259.
    105 R.S. Swift. Organic matter characterization. In: D.L. Sparks et al. Methods of Soil Analysis. Part 3. Chemical methods. Soil Sci. Soc. Am. Book Series: 5. Soil Sci. Am. Madison, WI, 1996.
    106 J.E. Kilduf, W.J. Weber. Transport and separation of organic macromolecules in ultrafiltration proeesses,Environ. Sci. Technol. 1992, 26, 569~577.
    107 Y. Chen, N. Senesi, M. Schnitzer. Information provided on humic substances by E4/E6 ratios. Soil Sci. Soc. Am. J. 1977, 41, 352~358.
    108 E. Rodriguez,; G.D. Onstad,; T.P.J. Kull, et al. Oxidative elimination of cyanotoxins: comparison of ozone, chlorine, chlorine dioxide and permanganate. Water Res. 2007, 41, 3381~3393.
    109 J. Klausen, S.B. Haderlein, R.P. Schwarzenbach. Oxidation of substituted anilines by aqueous MnO2: Effect of co-solutes on initial and quasi-steady-state kinetics. Environ. Sci. Technol. 1997, 31, 2642~2649.
    110 P.G. Tratnyek, J. Hoigné. Oxidation of substituted phenols in the environment: a QSAR analysis of rate constants for reaction with singlet oxygen. Environ. Sci. Technol. 1991, 25, 1596~1604.
    111 D. Lee, J.B. Son, S. Jung, et al. Mechanism of action of base-catalyzed oxygenation of phenol derivatives. Tetrahedron Lett. 2005, 46, 7721~7723.
    112 Y.E. Yan, F.W. Schwartz. Oxidative degradation and kinetics of chlorinated ethylenes by potassium permanganate. J. Contam. Hydrol. 1999, 37, 343~365.
    113 M.A. Nanny, J.P. Maza, Noncovalent interactions between monoaromatic compounds and dissolved humic acids: a deuterium NMR T1 relaxation study. Environ. Sci. Technol. 2001, 35, 379~384.
    114 D. Smejkalova, R. Spaccini, B. Fontaine, et al. Binding of phenol and differently halogenated phenols to dissolved humic matter as measured by NMR spectroscopy. Environ. Sci. Technol. 2009, 43, 5377~5382.
    115 D.G. Lee, C.F. Sebastián, The oxidation of phenol and chlorophenols by alkaline permanganate. Can. J. Chem. 1981, 59, 2776~2779.
    116 J. Jiang, S.Y. Pang, J. Ma Oxidation of triclosan by permanganate (Mn(VII)): Importance of ligands and in situ formed manganese oxides. Envrion. Sci. Technol. 2009, 43, 8326~8331.
    117 O. Francioso, S. Sánchez-Cortés, V. Tugnoli, et al. Infrared, Raman, and nuclear magnetic resonance (1H, 13C, and 31P) spectroscopy in the study of fractions of peat humic acids. Appl. Spectrosc. 1996, 50, 1165~1174.
    118 C.N.R. Rao, Chemical Applications of Infrared Spectroscopy. Academic Press: New York, 1963.
    119 O. Francioso, S. Sánchez-Cortés, D. Casarini, et al. Spectroscopic study of humic acids fractionated by means of tangential ultrafiltration. J. Mol. Struct. 2002, 609, 137~147.
    120 M. Fukushima, Y. Tanabe, K. Morimoto, et al. Role of humic acid fractionwith higher aromaticity in enhancing the activity of a biomimetic catalyst, tetra(p-sulfonatophenyl)porphineiron (III). Biomacromolecules 2007, 8, 386~391.
    121 F.J. Stevenson. Humic Chemistry: Genesis, Composition, Reactions. John Wiley & Sons: New York, 1994.
    122 T.M. Miano, G. Sposito, J.P. Martin. Fluorescence spectroscopy of humic substances. Soil Sci. Soc. Am. J. 1988, 52, 1016~1019.
    123 N. Senesi. Molecular and quantitative aspects of the chemistry of fulvic acid and its interactions with metal ions and organic chemicals. Part 2. The fluorescence spectroscopy approach. Anal. Chim. Acta 1990, 232, 77~106.
    124 P.G. Coble. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Mar. Chem. 1996, 51, 325~346.
    125 J. Chen, E.J. LeBoeuf, S. Dai, et al. Fluorescence spectroscopic studies of natural organic matter fractions. Chemosphere 2003, 50, 639~647.
    126 S. Mounier, R. Braucher, J.Y. Benaim. Differentiation of organic matter’s properties of the Rio Negro basin by crossflow ultra-filtration and UV-spectrofluorescence. Water Res. 1999, 33, 2363~2373.
    127 S.J. Traina, J. Novak, N.E. Smeck. An ultraviolet absorbance method of estimating the percent aromatic carbon content of humic acids. J. Environ. Qual. 1990, 19, 151~153.
    128 M. Dedorde, U. von Gunten. Reactions of chlorine with inorganic and organic compounds during water treatment-Kinetics and mechanisms: A critical review. Water Res. 2008, 42, 13~51.
    129 W. Chen, P. Westerhoff, J.A. Leenheer, et al. Fluorescence excitation-emission matrix integration to quantify spectra for dissolved organic matter. Environ. Sci. Technol. 2003, 37, 5701~5710.
    130 X. Yang, C. Shang, W. Lee, et al. Correlations between organic matter properties and DBP formation during chloramination. Water Res. 2008, 42, 2329~2334.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700