大鼠脑基底动脉舒张作用的EDHF机制及杜鹃花总黄酮的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
内皮依赖性超极化因子(endothelium-derived hyperpolarizing factor, EDHF)是除NO和PGI2外血管内皮细胞合成分泌的第三种舒张血管的物质。目前,在多种属、多部位的血管中都发现存在EDHF反应,但血管中,尤其是在脑血管中,EDHF到底是哪种物质还不清楚。
     杜鹃花总黄酮(total flavones of Rhododendra,TFR)是从植物杜鹃花中提取的有效部位,本实验室曾发现TFR的抗心脑血管损伤的作用,本实验拟对其抗心脑血管损伤作用的部分机制进行探讨。
     目的:
     1.探讨大鼠基底动脉的EDHF反应;
     2.研究在大鼠基底动脉中,H2S是否具有EDHF样作用;
     3. TFR对大鼠基底动脉的扩张作用及其EDHF机制研究;
     4. TFR抗心肌缺血损伤时对iNOS表达的影响。
     方法:
     1.采用离体微血管舒缩功能测定实验,检测ACh对基底动脉的舒张作用、基底动脉的EDHF反应、PPG对EDHF舒张作用的影响、NaHS及L-cys对血管的舒张作用、TFR对血管的舒张作用及其EDHF机制。实验结束后,收集各组血管管腔内灌流液,用以检测H2S的含量。
     2.细胞膜电位记录实验,研究ACh对大鼠基底动脉平滑肌细胞膜电位的超极化作用及内源性和外源性EDHF的超极化作用。
     3.原代培养大鼠基底动脉内皮细胞,采用RT-PCR的方法检测内源性合成硫化氢的酶的表达,并观察ACh及TFR对酶表达的影响。
     4.在体结扎冠脉前降支致心肌缺血损伤模型,TFR预处理给药,检测心肌梗死面积、血清中cTnI、NO含量,western blot方法检测心肌组织中iNOS的蛋白表达水平。
     结果:
     1.在离体血管舒缩功能测定实验中,用30 mmol/L的KCl或10-7 mol/L的U46619预收缩的大鼠基底动脉,ACh均可产生浓度依赖性的舒张作用,其最大舒张率分别是80.97±1.27 %和80.84±5.10 %,与溶媒对照组比较差异有显著性(P<0.01);而去除血管内皮后,ACh的舒张作用消失。
     2.应用NO合酶抑制剂(L-NAME,3×10-5mol/L)和PGI2合酶抑制剂(Indo,10-5mol/L)后,ACh对基底动脉还存在部分舒张作用,其最大舒张率分别是31.51±3.55(KCl)%和38.87±3.48(U46619)%,与溶媒对照组比较差异有显著性(P<0.01);在细胞膜电位记录实验中,应用L-NAME和Indo后,ACh对大鼠基底动脉平滑肌细胞的超极化作用并未被完全抑制,其最大超极化作用为-63.11±4.47 mV,与溶媒对照组比较差异有显著性(P<0.01)。此结果表明,在大鼠基底动脉中,这种非NO、非PGI2、内皮依赖的超极化及舒张血管作用可能为EDHF的作用。
     3.在离体血管舒缩功能测定实验中发现,10-5-10-2.5mol/L NaHS(H2S外源性供体)可产生浓度依赖性的舒张作用;同时,在细胞膜电位记录实验中也发现,10-5-10-2.5mol/L NaHS具有浓度依赖性超极化血管平滑肌细胞的作用。
     4.在离体血管舒缩功能测定实验中发现,内源性合成硫化氢的酶胱硫醚-γ-裂解酶(cystathionine-γ-lyase, CSE)的阻断剂DL-炔丙基甘氨酸(DL-propargylglycine, PPG, 10-4mol/L)可以抑制EDHF引起的血管舒张作用,与未用阻断剂组比较差异有显著性(P<0.01);同样,在细胞膜电位记录实验中也发现,PPG可以明显抑制EDHF对基底动脉平滑肌细胞的超极化作用,与不加阻断剂组相比差异有显著性(P<0.05 or P<0.01)。
     5.在离体血管舒缩功能测定实验中发现,合成硫化氢的底物L-半胱氨酸(L-cysteine,L-cys, 10-5-10-2.5mol/L)可产生浓度依赖性的舒张作用;去除血管内皮后L-cys的舒张作用被部分抑制。
     6.在离体血管舒缩功能测定实验中,收集血管内腔灌流液,用来检测H2S的含量,结果显示大鼠基底动脉基础状态下就有H2S的产生,其含量为3.92±0.25×10-5 mol/L,用ACh联合L-NAME,Indo灌流结束后H2S的含量有明显的增加,与基础含量比较差异有显著性(P<0.01),而加用PPG(10-4mol/L)预灌后H2S的含量明显降低(P<0.01)。
     7.在原代培养的大鼠基底动脉内皮细胞中,采用RT-PCR的方法检测合成硫化氢的酶的表达,结果显示,血管内皮细胞中表达CSE而不表达CBS;而且ACh(10-4.5mol/L)可以上调基底动脉内皮细胞中CSE的表达。
     8.在离体血管舒缩功能测定实验中发现,TFR(0.011~2.7g/L)对大鼠基底动脉具有明显的浓度依赖性舒张作用;去除血管内皮细胞后,TFR的舒张作用被部分抑制;在血管内腔灌流液中用L-NAME(3×10-5mol/L)和Indo(10-5mol/L)预灌30min后,TFR舒张作用被部分抑制。结果表明在TFR舒张基底动脉的作用中除NO和PGI2外,尚有EDHF机制的参与。
     9.在离体血管舒缩功能测定实验中,用L-NAME(3×10-5mol/L),Indo(10-5mol/L)和PPG(10-4mol/L)同时预灌30min后,TFR舒张作用被部分抑制,与仅用L-NAME和Indo预灌组比较差异有显著性;TFR灌流结束后,血管内腔灌流液中H2S的含量有明显的增加,与基础生成量比较差异有显著性,联合L-NAME, Indo预灌组,H2S的含量较基础生成量也明显增加,而加用PPG预灌后H2S的含量则明显降低。RT-PCR半定量结果显示,TFR(2.7g/L)可以上调大鼠基底动脉内皮细胞CSE的mRNA表达水平,与溶媒对照组比较,差异有显著性(P<0.01)。此结果进一步提示,在TFR扩张基底动脉的机制中有EDHF作用的参与。
     10.在结扎冠脉前降支致心肌缺血损伤模型中发现,TFR预处理具有明显的抗心肌缺血再灌注损伤的作用,可以降低心肌梗死面积,明显抑制急性心肌梗死造成的血清中cTnI的升高,增加血清中NO含量,上调心肌组织中iNOS的蛋白表达水平。
     结论:
     1.大鼠基底动脉中,乙酰胆碱可产生非NO、非PGI2、内皮依赖的超极化及舒张血管作用,即EDHF反应;
     2.在原代培养的大鼠基底动脉内皮细胞中,有内源性合成的酶胱硫醚-γ-裂解酶(cystathionine-γ-lyase, CSE)的表达,而且CSE的抑制剂可以抑制这种非NO、非PGI2、内皮依赖的超极化及舒张血管作用,同时发现NaHS(H2S外源性供体)具有超极化及舒张血管的作用,提示H2S可能是大鼠基底动脉中的EDHF;
     3. TFR对大鼠基底动脉具有明显的舒张作用,而且TFR对大鼠基底动脉的扩张作用中有EDHF作用的参与,此作用可能是TFR其抗脑缺血损伤的机制之一;TFR可通过增强iNOS基因的表达,增加NO的水平,从而起到抗心肌缺血损伤的作用。
9 Endothelium-dependent hyperpolarizing factor (EDHF) is the third relaxing factor derived from vascular endothelium besides NO and PGI2. At present, EDHF responses are reported in a wide variety of arteries from different species including humans. One purpose of the present article was to evaluate whether or not there is the role of EDHF in the basilar artery in rats. From the proposed EDHF to now, the chemical nature of EDHF was also a puzzle. Especially in cerebral arteries, there are still unkown. Total flavones of Rhododendra (TFR) was extracted from the flower of Cuckoo. The essential components of TFR are quercetin, hyperin and other flavonoids. It has been preliminary assessed to be of protection against myocardial and cerebral ischemia. In the present study the partial mechanism of the effects of TFR against myocardial and cerebral were studied in this paper.
     Purposes:
     1. To evaluate whether there was EDHF in the rat basilar arteries.
     2. To evaluate whether H2S was the chemical nature of EDHF.
     3. To evaluate the relaxation effects of TFR on rat basilar arteries, and to assess whether the efffects of EDHF were involved in the mechanism.
     4. To evaluate the effects of TFR on the expression of iNOS in myocardial ischemia reperfusion rats.
     Methods:
     1. The basilar arteries in vitro were used to observe the relaxation effects to drugs or blockers. In this model it was observed that the relaxation effects of ACh, EDHF, NaHS, L-cys, and TFR. And the influence of PPG to the relaxation of EDHF and TFR was also observed. The luminal perfusate of each artery was collected and the content of H2S was evaluated.
     2. Transmembrane potentials were recorded to evaluate the hyperpolarization effects of drugs and the blockers. In this model the hyperpolarization effects of ACh, EDHF and NaHS were observed. And the influence of PPG to the effects of EDHF was also observed.
     3. Endothelial cells of rat basilar arteries were primary cultured, and used to detect the expression of cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE). And the effect of ACh and TFR on the expression of CSE was also evaluated.
     4. On the model of myocardial ischemia and reperfusion in rat, all animals were subjected to 30 minutes occlusion of the left anterior descending coronary artery (LAD). The protective effects of TFR preconditioning were observed in this model. In this model the IS/AAR, and the contents of cTnI and NO in rat serum were evaluated. The expression of iNOS in myocardium were evaluated by the western blot method.
     Results:
     1. In the rat basilar arteries, preconstricted by 30mmol/L KCl or 10-7mol/L U46619 in vitro, ACh (10-7-10-4.5mol/L) had the concentration-dependent relaxations, and the effects disappeared by removal of the vascular endothelial cells.
     2. 3×10-5mol/L L-NAME and 10-5mol/L Indo could partly inhibit the relaxation of ACh to the rat basilar arteries, but there were still partial relaxation effect (P<0.01 vs Vehicle). After preperfusion of L-NAME and Indo there also had the effects of ACh to hyperpolarize the smooth muscle cells. These results suggested that the effect of EDHF existed in rat basilar arteries.
     3. 10-5-10-2.5mol/L NaHS had concentration-dependent relaxations on KCl- or U46619- preconstricted rat basilar arteries. And NaHS could induce concentration-dependent hyperpolarization to the smooth muscles of rat basilar arteries.
     4. 10-4mol/L PPG, the inhibitor of CSE, could markedly inhibit the effects of relaxation and hyperpolarization to EDHF.
     5. 10-5-10-2.5mol/L L-cys could induce concentration-dependent relaxations on KCl- or U46619- preconstricted endothelium-intact rat basilar arteries. And the relaxation was significantly attenuated by removal of endothelium.
     6. The luminal perfusate was collected to measure the contents of H2S after the end of perfusion of drugs or vehicle. It was found that there had the produce of H2S in the normal condition, and after perfusion of ACh the contents of H2S were increased, which was also found after perfusion in combination of L-NAME and Indo. PPG could inhibit the increase of H2S contents.
     7. The method of RT-PCR was used to evaluate the expression of CSE and CBS in the primary cultured endothelial cells of rat basilar arteries. It was found that in the primary cultured endothelial cells there was CSE not CBS expressing. And the expression of CSE in the primary cultured endothelial cells could be increased by ACh.
     8. TFR could induce concentration-dependent relaxations on U46619- preconstricted endothelium-intact rat basilar arteries. The relaxation of TFR on rat basilar arteries was significantly attenuated by removal of endothelium or pre-perfusion of L-NAME and Indo. Which suggestted that the effect of EDHF was included in the relaxation of TFR.
     9. After perfusion of TFR the contents of H2S were increased, which was also found after perfusion in combination of L-NAME and Indo. PPG could inhibit the increase of H2S contents. It was found that TFR could increase the expression of CSE in the primary cultured endothelial cells. These results further suggested that the effect of EDHF was included in the relaxation of TFR.
     10. In the model of myocardial ischemia and reperfusion in rat, all animals were subjected to 30 minutes occlusion of the left anterior descending coronary artery(LAD) and 60 minutes of reperfusion. TFR preconditioning could markedly inhibit the increase of cTnI in rat serum, and the reduction of serum NO contents. TFR (20, 40mg/kg) preconditioning could markedly decrease IS/AAR, and TFR (40 mg/kg) preconditioning could significantly increase the expression of inducible nitricoxide synthase (iNOS) in rat myocardium.
     Conclusions:
     1. In rat basilar arteries, acetylcholine could induce the no-NO, no-PGI2, endothelium-dependent relaxation, which suggested EDHF may be existing in rat basilar arteries.
     2. It was found that it was CSE not CBS expressing in the primary cultured endothelial cell. And the inhibitor of CSE could markedly inhibit the effects of hyperpolarization and relaxation of EDHF. It was also found that NaHS had concentration-dependent hyperpolarization and relaxation effect in rat basilar arteries. Theses results suggested that H2S may be the chemical nature of EDHF.
     3. TFR has the effects of relaxation in rat basilar arteries and the effect of EDHF was included in the relaxation of TFR, which may be one of the mechanisms of TFR against cerebral ischemia injury. TFR preconditioning could induce the expression of iNOS in myocardium and increase the content of NO in rat serum, which may be the mechanism of TFR against myocardial ischemia injury.
引文
1. Cohen RA. The endothelium-derived hyperpolarizing factor puzzle: a mechanism without a mediator? Circulation. 2005; 111(6):724-7.
    2. Feletou M, Vanhoutte PM. Endothelium-dependent hyperpolarization of canine coronary smooth muscle. Br J Pharmacol. 1988; 93(3):515-24.
    3. Chen G, Suzuki H, Weston AH. Acetylcholine releases endothelium-derived hyperpolarizing factor and EDRF from rat blood vessels. Br J Pharmacol. 1988; 95(4):1165-74.
    4. Larsen BT, Gutterman DD, Sato A, et al. Hydrogen peroxide inhibits cytochrome p450 epoxygenases: interaction between two endothelium-derived hyperpolarizing factors. Circ Res. 2008; 102(1):59-67.
    5. Gauthier KM, Jagadeesh SG, Falck JR, et al. 14,15-epoxyeicosa-5(Z)-enoic-mSI: a 14,15- and 5,6-EET antagonist in bovine coronary arteries. Hypertension. 2003; 42(4):555-61.
    6. Bény JL, Schaad O. An evaluation of potassium ions as endothelium-derived hyperpolarizing factor in porcine coronary arteries. Br J Pharmacol. 2000; 131(5):965-73.
    7. Nakashima Y, Toki Y, Fukami Y, et al. Role of K+ channels in EDHF-dependent relaxation induced by acetylcholine in canine coronary artery. Heart Vessels. 1997; 12(6):287-93.
    8. Hammarstr?m AK, Parkington HC, Coleman HA. Release of endothelium-derived hyperpolarizing factor (EDHF) by M3 receptor stimulation in guinea-pig coronary artery. Br J Pharmacol. 1995; 115(5):717-22.
    9. Ueda A, Ohyanagi M, Koida S, et al. Enhanced release of endothelium-derived hyperpolarizing factor in small coronary arteries from rats with congestive heart failure. Clin Exp Pharmacol Physiol. 2005; 32(8):615-21.
    10. Dora KA, Gallagher NT, McNeish A, et al. Modulation of endothelial cell KCa3.1 channels during endothelium-derived hyperpolarizing factor signaling in mesenteric resistance arteries. Circ Res. 2008; 102(10):1247-55.
    11. Hercule HC, Schunck WH, Gross V, et al. Interaction between P450 eicosanoids and nitric oxide in the control of arterial tone in mice. Arterioscler Thromb Vasc Biol. 2009; 29(1):54-60.
    12. Fleming I, Schermer B, Popp R, et al. Inhibition of the production of endothelium-derived hyperpolarizing factor by cannabinoid receptor agonists. Br J Pharmacol. 1999; 126(4):949-60.
    13. Shimokawa H, Morikawa K. Hydrogen peroxide is an endothelium-derived hyperpolarizing factor in animals and humans J Mol Cell Cardiol. 2005; 39(5):725-32.
    14. Dong H, Jiang Y, Cole WC, et al. Comparison of the pharmacological properties of EDHF-mediated vasorelaxation in guinea-pig cerebral and mesenteric resistance vessels. Br J Pharmacol. 2000; 130(8):1983-91.
    15. Zhang JY, Cao YX, Xu CB, et al. Lipid-soluble smoke particles damage endothelial cells and reduce endothelium-dependent dilatation in rat and man. BMC Cardiovasc Disord. 2006 ; 6:3
    16. Sokoya EM, Burns AR, Marrelli SP, et al. Myoendothelial gap junction frequency does not account for sex differences in EDHF responses in rat MCA. Microvasc Res. 2007; 74(1):39-44.
    17. Yamakawa N, Ohhashi M, Waga S, et al. Role of endothelium in regulation of smooth muscle membrane potential and tone in the rabbit middle cerebral artery. Br J Pharmacol. 1997; 121(7):1315-22.
    18. Zygmunt PM, S?rg?rd M, Petersson J, et al. Differential actions of anandamide, potassium ions and endothelium-derived hyperpolarizing factor in guinea-pig basilar artery. Naunyn Schmiedebergs Arch Pharmacol. 2000; 361(5):535-42.
    19. Trezise DJ, Drew GM, Weston AH. Analysis of the depressant effect of the endothelium on contractions of rabbit isolated basilar artery to 5-hydroxytryptamine Br J Pharmacol. 1992; 106(3):587-92
    20. Zhang RZ, Yang Q, Yim AP, et al. Role of NO and EDHF-mediated endothelial function in the porcine pulmonary circulation: comparison between pulmonary artery and vein. Vascul Pharmacol. 2006; 44(3):183-91.
    21. Tracey A, MacDonald A, Shaw AM. Involvement of gap junctions in bradykinin-induced relaxation of bovine pulmonary supernumerary arteries before and after inhibition of nitric oxide/guanylate cyclase. Clin Sci (Lond). 2002; 03(6):553-7.
    22. Morio Y, Carter EP, Oka M, et al. EDHF-mediated vasodilation involves different mechanisms in normotensive and hypertensive rat lungs. Am J Physiol Heart Circ Physiol. 2003; 284(5):H1762-70.
    23. Chaytor AT, Martin PE, Edwards DH, et al. Gap junctional communication underpins EDHF-type relaxations evoked by ACh in the rat hepatic artery. Am J Physiol Heart Circ Physiol. 2001; 280(6):H2441-50.
    24. Leuranguer V, Vanhoutte PM, Verbeuren T, et al. C-type natriuretic peptide and endothelium-dependent hyperpolarization in the guinea-pig carotid artery Br J Pharmacol. 2008; 153(1):57-65.
    25. Rasmussen LE, Vanhoutte PM, Jensen BL, et al. Continuous flow augments reactivity of rabbit carotid artery by reducing bioavailability of NO despite an increase in release of EDHF. Am J Physiol Heart Circ Physiol. 2006 ; 291(4):H1521-8.
    26. Chataigneau T, Félétou M, Huang PL, et al. Acetylcholine-induced relaxation in blood vessels from endothelial nitric oxide synthase knockout mice. Br J Pharmacol. 1999; 126(1):219-26.
    27. You J, Johnson TD, Marrelli SP, et al. Functional heterogeneity of endothelial P2purinoceptors in the cerebrovascular tree of the rat. Am J Physiol. 1999; 277(3 Pt 2):H893-900.
    28. Hwa JJ, Ghibaudi L, Williams P, et al. Comparison of acetylcholine-dependent relaxation in large and small arteries of rat mesenteric vascular bed. Am J Physiol. 1994; 266(3 Pt 2):H952-8.
    29. Vanhoutte PM. Endothelium-dependent hyperpolarizations: the history. Pharmacol Res. 2004; 49(6):503-8.
    30. Shimokawa H. Primary endothelial dysfunction: atherosclerosis. J Mol Cell Cardiol. 1999; 31(1):23-37.
    31. Archer SL, Gragasin FS, Wu X, et al. Endothelium-derived hyperpolarizing factor in human internal mammary artery is 11,12-epoxyeicosatrienoic acid and causes relaxation by activating smooth muscle BK(Ca) channels. Circulation. 2003; 107(5):769-76.
    32. Bauersachs J, Hecker M, Busse R. Display of the characteristics of endothelium-derived hyperpolarizing factor by a cytochrome P450-derived arachidonic acid metabolite in the coronary microcirculation. Br J Pharmacol. 1994; 113(4):1548-53.
    33. Matoba T, Shimokawa H, Nakashima M, et al. Hydrogen peroxide is an endothelium-derived hyperpolarizing factor in mice. J Clin Invest. 2000; 106(12):1521-30.
    34. Edwards G, Dora KA, Gardener MJ, et al. K+ is an endothelium-derived hyperpolarizing factor in rat arteries. Nature. 1998; 396(6708):269-72.
    35. Chauhan SD, Nilsson H, Ahluwalia A, et al. Release of C-type natriuretic peptide accounts for the biological activity of endothelium-derived hyperpolarizing factor. Proc Natl Acad Sci U S A. 2003; 100(3):1426-31.
    36. You J, Golding EM, Bryan RM Jr. Arachidonic acid metabolites, hydrogen peroxide, and EDHF in cerebral arteries. Am J Physiol Heart Circ Physiol. 2005;289(3):H1077-83.
    37. Golding EM, Marrelli SP, You J, et al. Endotheliumderived hyperpolarizing factor in the brain: a new regulator of cerebral blood flow? Stroke. 2002; 33(3): 661-3.
    38. Zhao W, Zhang J, Lu Y, et al. The vasorelaxant effect of H(2)S as a novel endogenous gaseous K(ATP) channel opener. EMBO J. 2001; 20(21):6008-16.
    39. Zhao W, Wang R. H(2)S-induced vasorelaxation and underlying cellular and molecular mechanisms. Am J Physiol Heart Circ Physiol. 2002; 283(2):H474 -80.
    40. Geng B, Yang J, Qi Y, et al. H2S generated by heart in rat and its effects on cardic function.Biochem Biophys Res Commun. 2004; 313(2):362-8.
    41. Yang G, Cao K, Wu L, et al. Cystathionine gamma-lyase overexpression inhibits cell proliferation via a H2Sdependent modulation of ERK1/2 phosphorylation and p21Cip/WAK-1. J Biol Chem. 2004; 279(47):49199-205.
    42.石琳,杜军保,定方等.高肺血流量对肺血管结构及胱硫醚-γ-裂解酶基因表达的影响.北京大学学报(医学版).2003; 35(6):566-70.
    43.罗胜勇,董六一,范丽等.山茶花总黄酮对缺血性脑损伤的保护作用.中国临床药理学与治疗学. 2004; 9(10):1157-9.
    44.罗胜勇,董六一,范丽等.山茶花总黄酮对缺血性脑损伤的保护作用.中药新药与临床药理. 2004; 15(6):376-9.
    45.罗胜勇,董六一,范丽等.山茶花总黄酮对大鼠脑缺血再灌注损伤的保护作用.中国药理学通报. 2006; 22(11):1383-6.
    46.袁丽萍,范丽,董六一等.山茶花总黄酮TFC对实验性心肌缺血的保护作用.中药新药与临床药理. 2004; 15(1):25-8.
    47.袁丽萍,陈飞虎,范丽等.映山红花总黄酮对盐酸异丙肾上腺素诱导大鼠心肌缺血的保护作用.中国现代应用药学杂志. 2007; 24(5):356-9.
    48.范一菲,孔德虎,陈志武等.杜鹃花总黄酮对心肌缺血损伤的保护作用.安徽医科大学学报. 2006; 41(2):157-60.
    49.张建华,武征,陈志武.杜鹃花总黄酮预处理对大鼠离体心脏缺血再灌注损伤的保护作用.安徽医科大学学报. 2006; 41(3):286-90.
    50.张建华,陈志武,武征.杜鹃花总黄酮预处理对大鼠心肌缺血再灌注损伤的延迟相保护作用.中国中医基础医学杂志. 2007; 13(3):192-4.
    51.张建华,武征,陈志武.杜鹃花总黄酮药理性预处理对大鼠心肌缺血/再灌注损伤中炎症反应的影响.中国药理学通报. 2007; 23(10):1349-52.
    52.范一菲,王云海,张建华等.杜鹃花总黄酮对在体大鼠心肌缺血再灌注损伤的保护作用及其机制.中草药. 2008; 39(2):240-4.
    53.郭岩,陈志武.映山红总黄酮对脑缺血再灌注损伤的保护作用及其机制.中国博士学位论文数据库. 2008.
    54. Petersen KA, Nilsson E, Olesen J, et al. Presence and function of the calcitonin gene-related peptide receptor on rat pial arteries investigated in vitro and in vivo. Cephalalgia. 2005; 25(6):424-32.
    55. Miura H, Liu Y, Gutterman DD. Human coronary arteriolar dilation to bradykinin depends on membrane hyperpolarization: contribution of nitric oxide and Ca2+-activated K+ channels. Circulation. 1999; 99(24):3132-8.
    56. Wang TL, Chang H, Hung CR, et al. Morphine preconditioning attenuates neutrophil activation in rat models of myocardial infarction. Cardiovasc Res. 1998; 40(3):557-63.
    57. Bolton TB, Lang RJ, Takewaki T. Mechanism of action of noradrenaline and carbachol on smooth muscle of guinea-pig anterior mesenteric artery. J Physiol. 1984; 351: 549–572.
    58. Félétou M, Vanhoutte PM. Endothelium-dependent hyperpolarisation of canine coronary smooth muscle. Br J Pharmacol. 1988; 93(3):515-24.
    59. Taylor SG, Southerton JS, Weston AH, et al. Endothelium-dependent effects of acetylcholine in rat aorta: a comparison with sodium nitroprusside and cromakalim. Br J Pharmacol. 1988; 94(3): 853-63.
    60. Huang AH, Busse R, Bassenge E. Endothelium-dependent hyperpolarization ofsmooth muscle cells in rabbit femoral arteries is not mediated by EDRF (nitric oxide). Naunyn-Schmiedebergs Arch Pharmacol. 1988; 338(4):438-42.
    61. Nagao T, Vanhoutte PM. Hyperpolarization as a mechanism for endothelium-dependent relaxations in the porcine coronary artery. J Physiol. 1992; 445:355-67.
    62. Garland JG, McPherson GA. Evidence that nitric oxide does not mediate the hyperpolarization and relaxation to acetylcholine in the rat small mesentery artery. Br J Pharmacol. 1992; 105(2): 429-35.
    63. McGuire JJ, Ding H, Triggle CR. Endothelium-derived relaxing factors: a focus on endothelium-derived hyperpolarizing factor(s). Can J Physiol Pharmacol. 2001; 79(6):443-70.
    64. Scotland RS, Madhani M, Chauhan S, et al. Investigation of vascular responses in endothelial nitric oxide synthase/cyclooxygenase-1 double-knockout mice: key role for endothelium-derived hyperpolarizing factor in the regulation of blood pressure in vivo. Circulation. 2005; 111(6):796-803.
    65. Bellien J, Iacob M, Gutierrez L, et al. Crucial role of NO and endothelium-derived hyperpolarizing factor in human sustained conduit artery flow-mediated dilatation. Hypertension. 2006; 48(6):1088-94.
    66. Garland CJ, Dora KA. Evidence against C-type natriuretic peptide as an arterial 'EDHF'. Br J Pharmacol. 2008; 153(1):4-5.
    67. Berhane Y, Bailey SR, Putignano C, et al. Characterization of agonist-induced endothelium-dependent vasodilatory responses in the vascular bed of the equine digit. J Vet Pharmacol Ther. 2008; 31(1):1-8.
    68. Winter P, Dora KA. Spreading dilatation to luminal perfusion of ATP and UTP in rat isolated small mesenteric arteries. J Physiol. 2007; 582(Pt 1):335-47.
    69. Zygmunt PM, H?gest?tt ED. Role of potassium channels in endothelium-dependent relaxation resistant to nitroarginine in the rat hepatic artery. Br J Pharmacol. 1996;117(7):1600-6.
    70. Marrelli SP, Eckmann MS, Hunte MS. Role of endothelial intermediate conductance KCa channels in cerebral EDHF-mediated dilations. Am J Physiol Heart Circ Physiol. 2003; 285(4):H1590-9.
    71. Bauersachs J, Popp R, Hecker M, et al. Nitric oxide attenuates the release of endothelium-derived hyperpolarizing factor. Circulation. 1996; 94(12):3341-7.
    72. Schildmeyer LA, Bryan RM Jr. Effect of NO on EDHF response in rat middle cerebral arteries. Am J Physiol Heart Circ Physiol. 2002; 282(2):H734-8.
    73. Eto K, Ogasawara M, Umemura K, et al. Hydrogen sulfide is produced in response to neuronal excitation. J Neurosci. 2002; 22(9):3386-91.
    74. Hosoki R, MatsukiN, Kimura H. The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. Biochem Biophys Res Commun. 1997; 237(3):527-31.
    75. Chen P, Poddar R, Tipa EV, et al. Homocysteine metabolism in cardiovascular cells and tissues: implications for hyperhomocysteinemia and cardiovascular disease. Adv Enzyme Regul. 1999;39:93-109.
    76. Bao L, Vlcek C, Paces V, et al. Identification and tissue distribution of human cystathionine beta-synthase mRNA isoforms. Arch Biochem Biophys. 1998; 350:95-103.
    77.石琳,杜军保,定方等.高肺血流量对肺血管结构及胱硫醚-γ-裂解酶基因表达的影响.北京大学学报(医学版). 2003; 35(6):566- 570.
    78. Usi F, Saponara S, Pessina F, et al. Effects of quercetin and rutin on vascular preparations: a comparison between mechanical and electrophysiological phenomena. Eur J Nutr. 2003; 42(1):10-7.
    79. Warren JB, Pons F, Brady AJ. Nitric Oxide biology: implication for cardiovascular therapeutics. Cardiovasc Res. 1994; 28(1):25-30.
    80. Cuong DV, Kim N, Youm JB, et al. Nitric oxide-cGMP-protein kinase G signalingpathway induces anoxic preconditioning through activation of ATP-sensitive K+ channels in rat hearts. Am J Physiol Heart Circ Physiol. 2006; 290(5):H1808-17.
    81. Ping P, Takano H, Zhang J, et al. Isoform-selective activation of protein kinase C by nitric oxide in the heart of conscious rabbits: a signaling mechanism for both nitric oxide-induced and ischemia-induced preconditioning. Circ Res. 1999; 84:587-604.
    1. Reiffenstein RJ, Hulbert WC, Roth SH. Toxicology of hydrogen sulfide. Annu Rev Pharmacol Toxicol. 1992; 32:109–134.
    2. Warenycia MW, Goodwin LR, Benishin CG, et al. Acute hydrogen sulfide poisoning. Demonstration of selective uptake of sulfide by the brainstem by measurement of brain sulfide levels. Biochem Pharmacol. 1989; 38(6):973–81.
    3. Abe K, Kimura H. The possible role of hydrogen sulfide as an endogenous neuromodulator. J Neurosci. 1996; 16(3):1066-71.
    4. Hosoki R, Matsuki N, Kimura H. The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. Biochem Biophys Res Commun. 1997; 237(3):527-31.
    5. Wang R. Two’s company, three’s a crowd: can H2S be the third endogenous gaseous transmitter? FASEB J. 2002; 16(13): 1792-8.
    6. Kubo S, Doe I, Kurokawa Y, et al. Hydrogen sulfide causes relaxation in mouse bronchial smooth muscle. J Pharmacol Sci. 2007; 104(4):392-6.
    7. Zanardo RC, Brancaleone V. Hydrogen sulfide is an endogenous modulator of leukocyte-mediated inflammation. FASEB J. 2006; 20(12): 2118-20.
    8. Doeller JE, Isbell TS. Polarographic measurement of hydrogen sulfide production and consumption by mammalian tissues. Anal Biochem. 2005; 341(1):40-51.
    9. ZhaoW, Ndisang JF, Wang R. Modulation of endogenous production of H2S in rat tissues. Can J Physiol Pharmacol. 2003; 81(9): 848- 53.
    10. Eto K, Ogasawara M, Umemura K, et al. Hydrogen sulfide is produced in response to neuronal excitation. Neurosci. 2002;22(9):3386-91.
    11. Zhao W, Zhang J, Lu Y, et al. The vasorelaxant effect of H(2)S as a novel endogenous gaseous K(ATP) channel opener. EMBO. 2001; 20(21):6008-16.
    12. Eto K, Kimura H. The production of hydrogen sulfide is regulated by testosterone and S-adenosyl-L-methionine in mouse brain. Neurochem. 2002; 83(1):80-6.
    13.石琳,杜军保,定方等.高肺血流量对肺血管结构及胱硫醚-γ-裂解酶基因表达的影响.北京大学学报(医学版). 2003; 35(6): 566-70.
    14. Chen P, Poddar R, Tipa EV, et al. Homocysteine metabolism in cardiovascular cells and tissues: implications for hyperhomocysteinemia and cardiovascular disease. Adv Enzyme Regul. 1999; 39:93-109.
    15. Bao L, Vlcek C, Paces V, et al. Identification and tissue distribution of human cystathionine beta-synthase mRNA isoforms. Arch Biochem Biophys. 1998; 350(1):95-103.
    16. Searcy DG. HS-:O2 oxidoreductase activity of Cu,Zn superoxide dismutase. Arch Biochem Biophys. 1996; 334(1):50-8.
    17. Picton R, Eggo MC, Merrill GA, et al. Mucosal protection against sulphide: importance of the enzyme rhodanese. Gut. 2002; 50(2):201-5.
    18. Kamoun P. Endogenous production of hydrogen sulfide in mammals. Amino Acids. 2004; 26(3):243-54.
    19. Belardinelli MC, Chabli A, Chadefaux-Vekemans B, et al. Urinary sulfur compounds in Down syndrome. Clin Chem. 2001; 47(8):1500-1.
    20. Furne J, Springfield J, Koenig T, et al. Oxidation of hydrogen sulfide and methanethiol to thiosulfate by rat tissues: a specialized function of the colonic mucosa. Biochem Pharmacol. 2001; 62(2):255-9.
    21. Zhao W, Wang R. H(2)S-induced vasorelaxation and underlying cellular and molecular mechanisms. Am J Physiol Heart Circ Physiol. 2002; 283(2):H474 -80.
    22. Cheng Y, Ndisang JF, Tang G, et al. Hydrogen sulfide-induced relaxation of resistance mesenteric artery beds of rats. Am J Physiol Heart Circ Physiol. 2004; 287(5):H2316-23.
    23. Teague B, Asiedu S, Moore PK. The smooth muscle relaxant effect of hydrogensulphide in vitro: evidence for a physiological role to control intestinal contractility. Br Pharmacol. 2002; 137(2):139-45.
    24. Kimura H. Hydrogen sulfide induces cyclic AMP and modulates the NMDA receptor. Biochem Biophys Res Commun. 2000; 267(1):129-33.
    25. Tang G, Wu L, Liang W, et al. Direct stimulation of K(ATP) channels by exogenous and endogenous hydrogen sulfide in vascular smooth muscle cells. Mol Pharmacol. 2005; 68(6):1757-64.
    26. Dombkowski RA, Doellman MM, Head SK, et al. Hydrogen sulfide mediates hypoxia-induced relaxation of trout urinary bladder smooth muscle. Exp Biol. 2006; 209(Pt 16):3234- 40.
    27. Lee SW, Hu YS, Hu LF, et al. Hydrogen sulphide regulates calcium homeostasis in microglial cells. Glia. 2006; 54(2):116-24.
    28. Nagai Y, Tsugane M, Oka J, et al. Hydrogen sulfide induces calcium waves in astrocytes. FASEB J. 2004; 18(3):557-59.
    29. Geng B, Yang J, Qi Y, et al. H2S generated by heart in rat and its effects on cardic function.Biochem Biophys Res Commun. 2004; 313(2):362-8.
    30. Grimm D, Elsner D,Schunkert H , et al. Development of heart failure following isoproterenol administration in the rat: role of the reninangiotensin system. Cardiovasc Res. 1998; 37(1):91-100.
    31. Geng B, Chang L, Pan C, et al. Endogenous hydrogen sulfide regulation of myocardial injury induced by isoproterenol. Biochem Biophys Res Commun. 2004;318(3):756-63.
    32.李晓惠,杜军保,唐朝枢.硫化氢供体对高肺血流性肺动脉在大鼠肺血管结构及血管活性多肽的影响.中国医学科学院学报. 2006; 28(2):159-63.
    33.闫辉,杜军保,唐朝枢.气体分子硫化氢对自发性高血压大鼠主动脉结构重建的调节作用.北京大学学报(医学版). 2004; 36(3):234-7.
    34.闫辉,杜军保,唐朝枢.硫化氢对自发性高血压大鼠主动脉平滑肌细胞增殖与凋亡的影响.实用儿科临床杂志. 2004; 19(3):188-90.
    35.闫辉,杜军保,唐朝枢.自发性高血压大鼠硫化氢/胱硫醚γ-裂解酶体系的实验观察.中华医学杂志. 2004; 84(13):1114-7.
    36. Li XH, Du JB, Bu DF, et al. Sodium hydrosulfide alleviated pulmonary vascular structural remodeling induced by high pulmonary blood flow in rats. Acta Pharmacol Sin. 2006; 27(8):971-80.
    37. Yang G, Cao K, Wu L, et al. Cystathionine gamma-lyase overexpression inhibits cell proliferation via a H2Sdependent modulation of ERK1/2 phosphorylation and p21Cip/WAK-1. Biol Chem. 2004; 279(47):49199-205.
    38. Jin HF, Cong B, Zhao B,et a1. Efects of hydrogensulfide on hypoxic pulmonary vascular structural remodeling. Life Sci. 2006; 78(12):1299-309.
    39. Du J, Hui Y, Cheung Y, et al. The possible role of hydrogen sulfide as a smooth muscle cell proliferation inhibitor in rat cultured cells. Heart Vessels. 2004; 19(2):75-80.
    40. Yan H, Du J, Tang C. The possible role of hydrogen sulfide on the pathogenesis of spontaneous hypertension in rats. Biochem Biophys Res Commun. 2004; 313 (1):22-7.
    41. Yan H, Du J, Tang C. The possible role of hydrogen sulfide on the pathogenesis of spontaneous hypertension in rats. Biochem Biophys Res Commun. 2004; 313(1): 22-7.
    42. Yang G, Wu L, Wang R. Pro-apoptotic effect of endogenous H2S on human aorta smooth muscle cells. FASEB J. 2006; 20(3):553-5.
    43. Oh GS, Pae HO, Lee BS, et al. Hydrogen sulfide inhibits nitric oxide production and nuclear factor-kappaB via heme oxygenase-1 expression in RAW264.7 macrophages stimulated with lipopolysaccharide. Free Radic Biol Med. 2006; 41(1): 106-19.
    44. Jeong SO, Pae HO, Oh GS, et al. Hydrogen sulfide potentiates interleukin-1beta-induced nitric oxide production via enhancement of extracellular signal-regulated kinase activation in rat vascular smooth muscle cells. Biochem Biophys Res Commun. 2006; 345(3):938-44.
    45. Ali MY, Ping CY, Mok YY, et al. Regulation of vascular nitric oxide in vitro and in vivo; a new role for endogenous hydrogen sulphide? Br J Pharmacol. 2006; 149(6): 625-34.
    46. Ma J, Stampfer MJ, Hennekens CH, et al. Methylenetetrahydrofolate reductase polymorphism, plasma folate, homocysteine, and risk of myocardial infarction in US physicians. Circulation. 1996; 94(10):2410-6.
    47. Jacobsen DW. Hyperhomocysteinemia and oxidative stress: time for a reality check? Arterioscler Thromb Vasc Biol. 2000; 20(5):1182-4.
    48. Kamoun P, Belardinelli MC, Chabli A, et al. Endogenous hydrogen sulfide overproduction in Down syndrome. Am J Med Genet A. 2003; 116A(3):310-1.
    49. Johansen D, Ytrehus K, Baxter GF. Exogenous hydrogen sulfide (H2S) protects against regional myocardial ischemia-reperfusion injury-evidence for a role of KATPchannels. Basic Res Cardiol. 2006; 101(1):53-60.
    50. Zhu YZ, Wang ZJ , Ho P, et al. Hydrogen sulfide and its possible roles in myocardial ischemia in experimental rats. J Appl Physiol. 2007; 102(1):261-8.
    51. Bian JS, Yong QC, Pan TT, et al. Role of hydrogen sulfide in the cardioprotection caused by ischemic preconditioning in the rat heart and cardiac myocytes. J Pharmacol Exp Ther. 2006; 316(2):670-8.
    52. Elrod JW, Calvert JW, Morrison J, et al. Hydrogen sulfide attenuates myocardial ischemia-reperfusion injury by preservation of mitochondrial function. Proc Natl Acad Sci USA. 2007; 104(39):15560-5.
    53.常芳,李凌,常庆.硫化氢对大鼠心肌缺血再灌注损伤的保护作用.中原医刊. 2005; 32(9):2-3.
    54. Hongfang J, Cong BL, Zhao B, et al. Effects of hydrogen sulfide on hypoxicpulmonary vascular structural remodeling. Life Sci. 2006; 78(12):1299-309.
    55.石琳,杜军保,齐建光. L-精氨酸对大鼠高肺血流所致肺血管结构重建及内源性硫化氢的影响.基础医学与临床. 2004; 24(2):184-7.
    56. Qingyou Z, Junbao D, Weijin Z, et al. Impact of hydrogen sulfide on carbon monoxide/heme oxygenase pathway in the pathogenesis of hypoxic pulmonary hypertension. Biochem Biophys Res Commun. 2004; 317(1):30-7.
    57. Xiaohui L, Junbao D, Lin S, et al. Down-regulation of endogenous hydrogen sulfide pathway in pulmonary hypertension and pulmonary vascular structural remodeling induced by high pulmonary blood flow in rats. Circ J. 2005; 69(11):1418-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700