Mitoflash和蛋白组研究揭示线粒体在线虫衰老中的重要作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物衰老的时钟理论已经被提出几十年1,暗示线粒体是调节衰老的核心因素,但是直到目前为止,仍缺少支持证据。在本研究中,通过活体线虫的单个线粒体水平观察超氧炫来研究线粒体与生物衰老理论。线粒体超氧炫作为读码器,可以反映单个线粒体的活性氧自由基的产生和能量代谢状态2。本实验室的早期研究已经有很多发现,例如,在线虫成年第三天和第九天的咽部肌肉细胞中会分别出现两个非常强的超氧炫信号峰,第一个可能与线虫的产卵有关,第二个可能与线虫的死亡有关。
     我们发现电子传递链的活性与超氧炫的发生密切相关,而且,饥饿或者激光诱导荧光蛋白所产生的超氧化合物也能够分别抑制或者增加超氧炫活性,表明超氧炫与线粒体的氧化状态和代谢活性有密切联系。此外,我采用RNAi沉默靶基因的方法使线虫寿命延长或缩短,发现两个超氧炫信号峰的位置在长寿或者短寿的线虫中确实会出现明显移动,短寿线虫的信号峰前移,长寿线虫的信号峰后移,该结果揭示了线粒体超氧炫与衰老之间有密切关系。用24种环境因素影响线虫寿命和相应的超氧炫信号,发现这些成虫第三天的超氧炫信号强度与它们的寿命呈负相关。除环境因素外,也验证了随机因素对寿命和超氧炫信号的影响,分别在长寿age-1和短寿elo-5线虫的单个个体中进行比较,发现超氧炫信号与单个线虫的寿命也呈负相关,该结果与环境因素所引起的变化非常相似。最后,研究胰岛素信号通路调节的衰老与超氧炫的关系。我们发现线粒体复合物Ⅱ和乙醛酸循环活性在长寿线虫daf-2(e1370)中上调,推测可能与daf-2突变株的长寿有关。通过研究异柠檬酸裂解酶ICL-1与寿命和超氧炫信号的关系,我们发现该酶贡献了daf-2的长寿和使超氧炫信号降低。总之,遗传因素、环境因素和随机因素是决定生物体寿命的主要因素,线粒体在这些因素引起的寿命变化中起着重要的作用。而且成虫第三天的超氧炫信号能够指示寿命。这些结果与衰老时钟理论非常吻合,暗示着在相当大程度上线虫的衰老速度在成年早期已经被决定了。
     抑制胰岛素信号通路(IIS)可以延长线虫,果蝇和小鼠的寿命3。考虑到线粒体在生物衰老过程中起着重要作用4,5,我们结合定量线粒体蛋白组方法,分析线粒体在IIS中的作用。DAF-2是胰岛素受体,DAF-16是IIS下游的负调控转录因子。我们纯化了野生型线虫N2、突变体线虫daf-2和daf-2; daf-16的线粒体,通过定量蛋白组的方法分析了线粒体蛋白的丰度,鉴定了1824个线粒体蛋白。其中,有83个蛋白的表达在daf-2突变体中被上调,60个蛋白的表达被下调。通过Gene Ontology和KEGG对所有定量蛋白进行分析,发现参与线虫寿命、过氧化物清除和线粒体脂肪酸、乙醛酸、丙酸和支链氨基酸代谢的相关过程都上调。代谢网络的构建表明daf-2突变体的线粒体代谢状态处于一种和谐的上调模式。通过对该模式的上调因子进行研究,我们发现它们对daf-2突变体的长寿起着重要作用。
It has been theorized for decades that mitochondria act as the biological clock of ageing1, but direct evidence is lacking. Here, we investigated the mitochondrial theory of ageing by in vivo visualization of the mitochondrial flash (mitoflash), a frequency-coded optical readout reflecting free-radical production and energy metabolism at the single-mitochondrion level2. In the previous study, the rate of occurrence of spontaneous mitoflashes in C. elegans pharyngeal muscles peaked on day3during activere production and on day9when animals started to die off. Inhibition of electron transport chain (ETC) strongly decreases mitoflash. Moreover, photo-induced free radical production clearly activates the singal of mitoflash. RNAi of age-1or elo-5caused longer or shorter lifespan, respectively. In the animals with longevity, peaks of mitoflash shifted backward, contrastly, peaks of mitoflash shifted forward in short-lived animals. A plethora of24environmental factors inversely modified the lifespan and the day-3mitoflash frequency. Effects of stochastic factors on individual lifespan and mitoflash was also investigated in animals with longer and shorter lifespan, the result is very similar to that in environmental treatment. Furthermore, we showed that reduced mitochondrial superoxide production in early adulthood due to coordinately enhanced complex II activity and the glyoxylate cycle contributed to the longevity of daf-2(e1370) mutant animals. RNAi of icl-1, an isocitrate lyase, could shorten the lifespan of daf-2mutant and meantime increase mitoflash.
     Collectively, these results provide compelling evidence bolstering the central role of mitochondria in lifespan regulation by genetic, environmental, and stochastic factors.That day-3mitoflash frequency is a unifying predictor of C. elegans lifespan supports the notion that the rate of aging, although adjustable in later life, has been set to a considerable degree before reproduction ceases.
     The insulin/insulin-like signaling pathway (IIS) is an evolutionarily conserved mechanism that regulates aging3. Given the importance of mitochondria in the aging process, we decided to investigate IIS-mediated the mitochondrial functional fluctuations by quantitative proteomics approach4,5. DAF-2acts as insulin receptor, and DAF-16is a main downstream target negatively regulated by IIS. We performed quantitative proteomic analysis of mitochondria purified from N2(wild type, WT), a long-lived daf-2(e1370) mutant, and a slightly short-lived daf-2(e1370); daf-16(mu86) double mutant.1824potential mitochondrial proteins were identified, of which83were up-regulated and60were down-regulated in daf-2compared to WT and daf-2; daf-16. Gene Ontology and KEGG analysis of all the quantitative proteins showed that aging-related processes like adult lifespan and radical oxygen species (ROS) defense were in up-regulatioin, as well as mitochondrial intermediary metabolims including fatty acid degradation, proproate catabolism, glyoxylate and branch chain amino acid metabolism were also up-regulated. Interconnect network of these metabolims was constructed and suggested a coherently modulated module. Inactivation of some candidates involving in these metabolisms by RNA intereference (RNAi) revealed that the coordinated mediated catabolism exerted a potential effect on the healthy longevity in daf-2mutant.
引文
1 Harman, D. The biologic clock:the mitochondria? Journal of the American Geriatrics Society 20, 145-147, (1972).
    2 Wang, W. et al. Superoxide flashes in single mitochondria. Cell 134,279-290, (2008).
    3 Kenyon, C., Chang, J., Gensch, E., Rudner, A. & Tabtiang, R. A C. elegans mutant that lives twice as long as wild type. Nature 366,461-464, (1993).
    4 Dillin, A. et al. in Science Vol.298 2398-2401 (2002).
    5 Lee, S. J., Hwang, A. B. & Kenyon, C. Inhibition of respiration extends C. elegans life span via reactive oxygen species that increase HIF-1 activity. Current biology:CB 20,2131-2136, (2010).
    6 Avery, L. & Thomas, J. H. in C. elegans Ⅱ (eds D. L. Riddle, T. Blumenthal, B. J. Meyer, & J. R. Priess) (1997).
    7 Avery, L. & Horvitz, H. R. Pharyngeal pumping continues after laser killing of the pharyngeal nervous system of C. elegans. Neuron 3,473-485, (1989).
    8 Franks, D. M., Izumikawa, T., Kitagawa, H., Sugahara, K. & Okkema, P. G. C. elegans pharyngeal morphogenesis requires both de novo synthesis of pyrimidines and synthesis of heparan sulfate proteoglycans. Developmental biology 296,409-420, (2006).
    9 Mango, S. E. The C. elegans pharynx:a model for organogenesis. WormBook:the online review of C. elegans biology,1-26, (2007).
    10 Brunk, U. T. & Terman, A. The mitochondrial-lysosomal axis theory of aging:accumulation of damaged mitochondria as a result of imperfect autophagocytosis. European journal of biochemistry/ FEBS 269,1996-2002, (2002).
    11 Harman, D. Aging:a theory based on free radical and radiation chemistry. Journal of gerontology 11, 298-300, (1956).
    12 Pagliarini, D. J. & Dixon, J. E. Mitochondrial modulation:reversible phosphorylation takes center stage? Trends in biochemical sciences 31,26-34, (2006).
    13 Alexeyev, M. F. Is there more to aging than mitochondrial DNA and reactive oxygen species? The FEBS journal 276,5768-5787, (2009).
    14 Wang, X. The expanding role of mitochondria in apoptosis. Genes & development 15,2922-2933, (2001).
    15 Beckman, K. B. & Ames, B. N. The free radical theory of aging matures. Physiological reviews 78, 547-581, (1998).
    16 Morris, J. Z., Tissenbaum, H. A. & Ruvkun, G. A phosphatidylinositol-3-OH kinase family member regulating longevity and diapause in Caenorhabditis elegans. Nature 382,536-539, (1996).
    17 Wood, W. B. & Johnson, T. E. Aging. Stopping the clock. Current biology:CB 4,151-153, (1994).
    18 Kops, G. J. et al. Direct control of the Forkhead transcription factor AFX by protein kinase B. Nature 398,630-634, (1999).
    19 Lin, K., Dorman, J. B., Rodan, A. & Kenyon, C. daf-16:An HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science 278,1319-1322, (1997).
    20 Clancy, D. J. et al. Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein. Science 292,104-106, (2001).
    21 Giannakou, M. E. & Partridge, L. The interaction between FOXO and SIRT1:tipping the balance towards survival. Trends in cell biology 14,408-412, (2004).
    22 Holzenberger, M. et al. IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature 421,182-187, (2003).
    23 Greer, E. L. & Brunet, A. Signaling networks in aging. Journal of cell science 121,407-412, (2008).
    24 Walker, G., Houthoofd, K., Vanfleteren, J. R. & Gems, D. Dietary restriction in C. elegans:from rate-of-living effects to nutrient sensing pathways. Mechanisms of ageing and development 126,929-937, (2005).
    25 Hansen, M., Hsu, A. L., Dillin, A. & Kenyon, C. New genes tied to endocrine, metabolic, and dietary regulation of lifespan from a Caenorhabditis elegans genomic RNAi screen. PLoS genetics 1,119-128, (2005).
    26 Schulz, T. J. et al. Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress. Cell metabolism 6,280-293, (2007).
    27 Greer, E. L. et al. An AMPK-FOXO pathway mediates longevity induced by a novel method of dietary restriction in C. elegans. Current biology:CB 17,1646-1656, (2007).
    28 Bishop, N. A. & Guarente, L. Two neurons mediate diet-restriction-induced longevity in C. elegans. Nature 447,545-549, (2007).
    29 Vellai, T. et al. Genetics:influence of TOR kinase on lifespan in C. elegans. Nature 426,620, (2003).
    30 Jia, K. & Levine, B. Autophagy is required for dietary restriction-mediated life span extension in C. elegans. Autophagy 3,597-599, (2007).
    31 Hansen, M. et al. A role for autophagy in the extension of lifespan by dietary restriction in C. elegans. PLoS genetics 4, e24, (2008).
    32 Panowski, S. H., Wolff, S., Aguilaniu, H., Durieux, J. & Dillin, A. PHA-4/Foxa mediates diet-restriction-induced longevity of C. elegans. Nature 447,550-555, (2007).
    33 Feng, J., Bussiere, F. & Hekimi, S. Mitochondrial electron transport is a key determinant of life span in Caenorhabditis elegans. Dev Cell 1,633-644, (2001).
    34 Dillin, A., Crawford, D. K. & Kenyon, C. Timing requirements for insulin/IGF-1 signaling in C. elegans. Science 298,830-834, (2002).
    35 Lee, S. S. et al. A systematic RNAi screen identifies a critical role for mitochondria in C. elegans longevity. Nature genetics 33,40-48, (2003).
    36 Lapierre, L. R. & Hansen, M. Lessons from C. elegans:signaling pathways for longevity. Trends in endocrinology and metabolism:TEM23,637-644, (2012).
    37 Gerisch, B., Weitzel, C., Kober-Eisermann, C., Rottiers, V. & Antebi, A, A hormonal signaling pathway influencing C. elegans metabolism, reproductive development, and life span. Developmental cell 1,841-851,(2001).
    38 Sgro, C. M. & Partridge, L. A delayed wave of death from reproduction in Drosophila. Science 286, 2521-2524, (1999).
    39 Berman, J. R. & Kenyon, C. Germ-cell loss extends C. elegans life span through regulation of DAF-16 by kri-1 and lipophilic-hormone signaling. Cell 124,1055-1068, (2006).
    40 Boveris, A., Oshino, N. & Chance, B. The cellular production of hydrogen peroxide. The Biochemical journal 128,617-630, (1972).
    41 Boveris, A. & Chance, B. The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. The Biochemical journal 134,707-716, (1973).
    42 Ames, B. N., Shigenaga, M. K. & Hagen, T. M. Oxidants, antioxidants, and the degenerative diseases of aging. Proceedings of the National Academy of Sciences of the United States of America 90,7915-7922, (1993).
    43 Raha, S. & Robinson, B. H. Mitochondria, oxygen free radicals, disease and ageing. Trends in biochemical sciences 25,502-508, (2000).
    44 St-Pierre, J., Buckingham, J. A., Roebuck, S. J. & Brand, M. D. Topology of superoxide production from different sites in the mitochondrial electron transport chain. The Journal of biological chemistry 277,44784-44790, (2002).
    45 Nakano, H. et al. Reactive oxygen species mediate crosstalk between NF-kappaB and JNK. Cell death and differentiation 13,730-737, (2006).
    46 Wickens, A. P. Ageing and the free radical theory. Respiration physiology 128,379-391, (2001).
    47 Batty, E., Jensen, K. & Freemont, P. PML nuclear bodies and their spatial relationships in the mammalian cell nucleus. Frontiers in bioscience:a journal and virtual library 14,1182-1196, (2009).
    48 Haigis, M. C. & Yankner, B. A. The aging stress response. Molecular cell 40,333-344, (2010).
    49 Chinta, S. J., Mallajosyula, J. K., Rane, A. & Andersen, J. K. Mitochondrial alpha-synuclein accumulation impairs complex I function in dopaminergic neurons and results in increased mitophagy in vivo. Neuroscience letters 486,235-239, (2010).
    50 Van Raamsdonk, J. M. & Hekimi, S. Reactive Oxygen Species and Aging in Caenorhabditis elegans: Causal or Casual Relationship? Antioxidants & redox signaling 13,1911-1953, (2010).
    51 Gruber, J. et al. Mitochondrial changes in ageing Caenorhabditis elegans--what do we learn from superoxide dismutase knockouts? PloS one 6, e19444, (2011).
    52 Dai, D. F. et al. Overexpression of catalase targeted to mitochondria attenuates murine cardiac aging. Circulation 119,2789-2797, (2009).
    53 Schriner, S. E. & Linford, N. J. Extension of mouse lifespan by overexpression of catalase. Age (Dordr) 28,209-218,(2006).
    54 McElwee, J. J., Schuster, E., Blanc, E., Thomas, J. H. & Gems, D. Shared transcriptional signature in Caenorhabditis elegans Dauer larvae and long-lived daf-2 mutants implicates detoxification system in longevity assurance. The Journal of biological chemistry 279,44533-44543, (2004).
    55 Murphy, C. T. et al. Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 424,277-283, (2003).
    56 Dong, M. Q. et al. Quantitative mass spectrometry identifies insulin signaling targets in C. elegans. Science 317,660-663, (2007).
    57 Sohal, R. S. Role of oxidative stress and protein oxidation in the aging process. Free radical biology & medicine 33,37-44, (2002).
    58 Sanz, A., Pamplona, R. & Barja, G. Is the mitochondrial free radical theory of aging intact? Antioxidants & redox signaling 8,582-599, (2006).
    59 Fang, H. et al. Imaging superoxide flash and metabolism-coupled mitochondrial permeability transition in living animals. Cell research 21,1295-1304, (2011).
    60 Wang, X. et al. Superoxide flashes:elemental events of mitochondrial ROS signaling in the heart. Journal of molecular and cellular cardiology 52,940-948, (2012).
    61 Hou, T. et al. Synergistic triggering of superoxide flashes by mitochondrial Ca2+ uniport and basal reactive oxygen species elevation. The Journal of biological chemistry 288,4602-4612, (2013).
    62 Wei, L. et al. Mitochondrial superoxide flashes:metabolic biomarkers of skeletal muscle activity and disease. FASEB journal:official publication of the Federation of American Societies for Experimental Biology 25,3068-3078, (2011).
    63 Ma, Q. et al. Superoxide flashes:early mitochondrial signals for oxidative stress-induced apoptosis. The Journal of biological chemistry 286,27573-27581, (2011).
    64 Wainio, W. W. An assessment of the chemiosmotic hypothesis of mitochondrial energy transduction. International review of cytology 96,29-50, (1985).
    65 Giorgio, M. et al. Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis. Cell 122,221-233, (2005).
    66 Pinton, P. et al. Protein kinase C beta and prolyl isomerase 1 regulate mitochondrial effects of the life-span determinant p66Shc. Science 315,659-663, (2007).
    67 Bulina, M. E. et al. A genetically encoded photosensitizer. Nature biotechnology 24,95-99, (2006).
    68 Choi, S. S. High glucose diets shorten lifespan of Caenorhabditis elegans via ectopic apoptosis induction. Nutrition research and practice 5,214-218, (2011).
    69 Steinbaugh, M. J., Sun, L. Y., Bartke, A. & Miller, R. A. Activation of genes involved in xenobiotic metabolism is a shared signature of mouse models with extended lifespan. American journal of physiology. Endocrinology and metabolism 303, E488-495, (2012).
    70 Alavez, S., Vantipalli, M. C., Zucker, D. J., Klang, I. M. & Lithgow, G. J. Amyloid-binding compounds maintain protein homeostasis during ageing and extend lifespan. Nature 472,226-229, (2011).
    71 Cho, S. C. et al. DDS,4,4'-diaminodiphenylsulfone, extends organismic lifespan. Proceedings of the National Academy of Sciences of the United States of America 107,19326-19331, (2010).
    72 Maier, W., Adilov, B., Regenass, M. & Alcedo, J. A neuromedin U receptor acts with the sensory system to modulate food type-dependent effects on C. elegans lifespan. PLoS biology 8, e1000376, (2010).
    73 Wu, D., Cypser, J. R., Yashin, A. I. & Johnson, T. E. Multiple mild heat-shocks decrease the Gompertz component of mortality in Caenorhabditis elegans. Experimental gerontology 44,607-612, (2009).
    74 Liao, V. H. et al. Curcumin-mediated lifespan extension in Caenorhabditis elegans. Mechanisms of ageing and development 132,480-487, (2011).
    75 Honda, Y, Tanaka, M. & Honda, S. Trehalose extends longevity in the nematode Caenorhabditis elegans. Aging cell 9,558-569, (2010).
    76 Robida-Stubbs, S. et al. TOR signaling and rapamycin influence longevity by regulating SKN-1/Nrf and DAF-16/FoxO. Cell metabolism 15,713-724, (2012).
    77 Kirkwood, T. B. & Austad, S. N. Why do we age? Nature 408,233-238, (2000).
    78 Pincus, Z., Smith-Vikos, T. & Slack, F. J. MicroRNA predictors of longevity in Caenorhabditis elegans. PLoS genetics 7, e1002306, (2011).
    79 Li, J. et al. Proteomic analysis of mitochondria from Caenorhabditis elegans. Proteomics 9,4539-4553, (2009).
    80 Wang, J. & Kim, S. K. Global analysis of dauer gene expression in Caenorhabditis elegans. Development 130,1621-1634, (2003).
    81 Ogg, S. et al. The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature 389,994-999, (1997).
    82 Berdichevsky, A. et al.3-Ketoacyl thiolase delays aging of Caenorhabditis elegans and is required for lifespan extension mediated by sir-2.1. Proceedings of the National Academy of Sciences of the United States of America 107,18927-18932, (2010).
    83 Howard, C. F., Jr. Synthesis of fatty acids in outer and inner membranes of mitochondria. The Journal of biological chemistry 245,462-468, (1970).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700