成骨分化中糖皮质激素信号通路的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:骨质疏松(Osteoporosis)是最常见的骨骼代谢性疾病,其特征包括正常骨密度的减少、骨质脆弱增加以及容易轻微外伤后骨折。糖皮质激素(Glucocorticoids, GCs)是一类包括天然或人工合成的类固醇激素,主要作用是抑制炎性反应和治疗自身免疫性疾病。在临床上,天然和人工合成的糖皮质激素,尤其是病人需要大量或长期激素治疗时,都可能导致患者骨量减少或骨质疏松。糖皮质激素性骨质疏松症(Glucocorticoids-induced Osteoporosis, GCOP)是20-45岁成人骨质疏松症以及医源性骨质疏松症(Iatrogenic osteoporosis)最常见的原因。虽然人工合成的糖皮质激素如强的松、地塞米松等有GCOP等严重的并发症,由于具有突出的免疫抑制和抗炎作用,所以广泛应用于治疗过敏、类风湿性关节炎,以及抑制器官移植排斥。
     尽管骨吸收是GCOP的重要原因,最近的研究也表明长期糖皮质激素应用的主要后果是成骨细胞功能障碍。糖皮质激素对成骨细胞分化和骨形成的抑制作用可能与多种机制有关。骨形成蛋白-2(Bone morphogenetic protein 2, BMP-2)具有骨诱导作用。糖皮质激素通过阻滞BMP-2的作用而抑制成骨细胞分化。Wnt信号通路也是骨形成的一个重要信号通路。研究表明,糖皮质激素也通过阻滞Wnt-b.catenin信号通路抑制成骨分化。此外,糖皮质激素也能使处于成骨分化的骨髓基质细胞转向脂肪细胞分化,并且诱导产生过氧化物酶增殖体激活受体Y(Peroxisome proliferator-activated receptorγ,PPARγ).然而除上述机制外,成骨分化中糖皮质激素信号通路目前不清楚。
     具有PDZ结合序列的转录共活化因子(Transcriptional coactivator with PDZ-binding motif,TAZ)是类似β-catenin的一种分子,通过共活化Runx2依赖的基因转录和抑制PPARγ依赖的基因转录而促使间充质干细胞(Mesenchymal stem cell,MSCs)成骨分化。地塞米松(Dexamethasone,DEX)是一种人工合成和临床广泛使用的糖皮质激素,目前地塞米松如何影响成骨分化仍不清楚。
     稳定同位素标记的氨基酸细胞培养(Stable-isotope labeling by amino acids in cell culture,SILAC)的通过代谢将同位素质靶导入蛋白质。两种不同生物状态的细胞在正常培养基(轻同位素)和稳定同位素标记(重同位素)培养基中生长,当细胞在培养基中增值6次以上时,稳定同位素的嵌入可达到近100%。通过液相色谱串联质谱法分析(LC-MS/MS)进行定量蛋白组学检测,肽质谱显示了两种培养基下的不同SILAC波峰,两种波峰之间的高度比代表了不同蛋白量之间准确比值,所以SIALC蛋白组学是一种精确的定量蛋白组学
     材料与方法:我们从16只4周龄雌性SD大鼠中获得骨髓细胞原代培养,并通过表面抗原和多能分化能力鉴定MSCs.P1代MSCs重新以5×105/cm2的密度种植于六孔板。为诱导MSCs成骨分化,MSCs以各种不同的诱导剂诱导,并以钙盐沉积能力(茜素红染色)和ALP活性检测细胞的成骨分化能力,以RT-PCR. Real-time PCR.Western blot.免疫组化等检测MSCs诱导成骨分化时TAZ.ALP. BMP-2.Runx-2的mRNA和蛋白质表达情况。我们还将高浓度的地塞米松作用于成骨前体MC3T3-E1细胞,观察地塞米松对MC3T3-E1细胞的成骨和增值能力影响,并利用SILAC定量蛋白组学进行筛选蛋白进行分析。
     结果:我们的研究中原代培养贴壁细胞是CD54和CD90阳性而CD14和CD34阴性,而且这些细胞具有向成骨细胞、脂肪细胞、软骨细胞分化的多能分化能力,表明这些分离的细胞属于MSCs。我们的研究还发现,间充质干细胞10-8M地塞米松诱导14天后钙盐沉积能力明显增强,而抗坏血酸和β-甘油磷酸明显增强了地塞米松的成骨分化效果。Real-time PCR和免疫印迹结果支持10-8 M地塞米松处理间充质干细胞7天后TAZ mRNA和蛋白质水平均有提高,免疫组化也表明10-8M地塞米松处理后TAZ阳性的MSCs数量比例显著大于对照组。RU486是一种糖皮质受体拮抗剂,研究表明10-5M RU486拮抗了10-8 M DEX提高TAZ水平的能力。单纯抗坏血酸和β-甘油磷酸没有明显提高TAZ的表达水平。此外,我们的研究发现,10-8 M和10-9 M地塞米松显著提高了大鼠间充质干细胞ALP活性(P<0.01),而10-7 M地塞米松(P<0.05)和10-6 M地塞米松(P<0.01)显著抑制了间充质干细胞的ALP活性,而且10-7 M地塞米松处理间充质干细胞3至7天时显著降低了TAZ的表达水平,提示TAZ的表达和成骨分化活性相关。成骨前体MC3T3-E1细胞10-6M地塞米松治疗7天后,MTT和ALP酶活性检测表明地塞米松抑制了骨前体MC3T3-E1细胞的增值和成骨分化能力。SILAC定量蛋白组学检测发现10-6M地塞米松作用7天抑制了成骨前体细胞的成骨分化和细胞增值能力,上调了微管蛋白(TUBA1A、TUBB2B、TUBB5)、IQGAP1、S100蛋白(S100A11.S100A6、S100A4、S100A10)的表达水平,并下调了G3BP-1和Ras相关蛋白(Rab-1A. Rab-2A、Rab-7)的表达。
     结论:我们的研究表明地塞米松在诱导间充质干细胞成骨分化中调节了TAZ的表达,而这种作用与地塞米松的浓度有关。所以TAZ可能不仅是BMP-2诱导成骨分化中的重要通路,而且地塞米松诱导成骨中的信号通路有关。因此,TAZ作为一种β-catenin分子,可能是BMP-2信号通路和Wnt-β-catenin信号通路的重要交叉点。高浓度地塞米松抑制了成骨前体细胞的成骨分化和细胞增值能力。上调的微管蛋白、IQGAP1、S100蛋白以及下调的G3BP-1和Ras相关蛋白可能和地塞米松诱导的细胞成骨分化和增值功能抑制有关。本研究中的成骨分化中糖皮质激素信号通路的调节机制分析可能有助于将来GCOP治疗。
Background:Osteoporosis is the most common metabolic disease characterized by loss of the normal density of bone, resulting in fragile bone and a higher risk of fractures in response to relatively minor injuries. Glucocorticoids (GCs) are naturally-produced steroid hormones, or synthetic compounds, that inhibit the process of inflammation or autoimmune disorders. Clinically, both of the natural or synthetic glucocorticoids can lead to the side effects of bone loss or osteoporosis while they are administrated especially of over dose and in long term. Patients under glucocorticoids treatment are one of the main groups of persons who suffer from osteoporosis. Glucocorticoids-induced Osteoporosis (GCOP) is the most common cause of adult osteoporosis in population aged from 20 to 45 and iatrogenic osteoporosis. Though the synthetic glucocorticoids such as prednisone and dexamethasone (DEX) have severe GCOP complication, they are still widely used in treatment of allergy, rheumatoid arthritis, and allograft rejection.
     Although bone resorption has been suggested to cause GIO, recent studies have revealed the main mechanism underlying long-term GCs-induced bone loss is the impairment of osteoblast function and bone formation. Glucocorticoids may inhibit osteoblasts through multiple mechanisms with the results of significant reduction in bone formation. Bone morphogenetic protein 2 (BMP-2) is proven to inducing bone formation and currently clinically used in orthopedic surgery. Glucocorticoid is revealed to inhibit osteoblast cell differentiation through the repression of bone morphogenetic protein 2, which leads to a decrease in bone formation. Wnt signaling pathway, a complex network of proteins most well known for their roles in embryogenesis and cancer, is also another key pathway for promoting osteoblastogenesis. In studies, glucocorticoids inhibit osteoblast cell differentiation by opposing Wnt-b-catenin signaling.
     Moreover, glucocorticoids are able to redirect differentiation of bone marrow stromal cells from the osteoblastic lineage to the adipocyte lineage. The underlying mechanisms involve the regulation of nuclear factors of the CAAT enhancer-binding protein family, which might also indirectly reduce osteoblast proliferation and decrease IGF-I transcription, and the induction of peroxisome proliferator-activated receptor y2 (PPARy2). However, the glucocorticoid signaling pathway during osteoblast differentiation remains unclear.
     Transcriptional coactivator with PDZ-binding motif (TAZ), aβ-catenin-like molecule, drives mesenchymal stem cells (MSCs) to differentiate into osteoblast lineage through co-activation of Runx2-dependent gene transcription and repression of peroxisome proliferator-activated receptor y (PPARy)-dependent gene transcription. Dexamethasone (DEX), a synthetic and widely used glucocorticoid, affects osteogenesis. However, the signaling pathway by which DEX affects osteoblastic differentiation remains obscure.
     Stable-isotope labeling by amino acids in cell culture (SILAC) enables metabolic incorporation of isotope mass tags into proteins [1]. The cells representing two biological conditions are grown in normal medium (light medium) and isotope amino acid labeled medium (heavy medium), respectively. After grown for six cell divisions in labeled medium to reach 100% of the incorporation of the isotope amino acid, the cells are processed for further treatment, followed by liquid chromatography-coupled tandem mass spectrometry (LC-MS/MS) analysis. Therefore the relative intensity ratio of the two pairs of "light" and "heavy "peaks in the peptide mass spectrum can reflect the protein quantitative expression levels under different conditions [1].
     Materials and methods:The bone marrow cells from sixteen four-week-old virgin female Sprague-Dawley rats were harvested. The primary-MSCs were isolated and identified through detection of surface antigens and multi-differentiation ability. The passage 1 MSCs were reseeded in the density of 5x105/cm2 in six-well-plates. To induce osteoblast differentiation, the MSCs were cultured in different differentiation mediums. The calcium deposition ability (AR-S staining) and ALP activity were detected to evaluate the osteoblast differentiation ability of the MSCs. In addition, we carried out RT-PCR, Real-time PCR, Western blot, and immunochemistry to measure the mRNA and protein levels of TAZ, ALP, BMP-2, and Runx-2 during the osteoblast differentiation.
     Results:In this study, we found that isolated adhere cells in our study were CD54 positive and CD90 positive, but CD14 negative and CD34 negative. In addition, the MSCs possess the abilities of differentiating into osteoblast, adipocyte, and chondrocyte. Osteoprogenitor MC3T3-E1 cells were treated with or without 10-6 M DEX for 7 days and the differentiation ability, proliferation, the cells were measured. The protein level changes were analyzed using SILAC and liquid chromatography-coupled tandem mass spectrometry (LC-MS/MS). Therefore, the surface antigen identification and mutilineage differentiation ability supported that these isolated cells were MSCs. Present study showed that 10-8 M DEX increased calcium formation in MSCs at day 14 and the effect was synergized by AA andβ-GP. Real-time PCR and immunobloting analysis showed that TAZ mRNA level and protein expression were enhanced in MSCs treated with 10-8 M DEX at day 7. In addition, the number of TAZ-positive MSCs after 10-8 M DEX treatment significantly increased compared to control using immunochemistry assay. The stimulative effect of 10-8 M DEX on TAZ was blocked by 10-5M RU486, an antagonist of glucocorticoid receptor and MSCs were treated with AA orβ-GP did not show increased TAZ level. In the present study,DEX at 10-8 M and 10-9 M significantly elevated ALP activity (P< 0.01) whereas 10-7 M DEX (P<0.05) and 10-6M DEX (P< 0.01) inhibited ALP activity in rat MSCs. We also demonstrated that higher concentration of DEX (10-7M) decreased TAZ mRNA level and ALP activity from day 3 to day 7, which indicates that TAZ level is closely related with osteoblast differentiation ability. In this study,10-6 M DEX inhibited both osteoblast differentiation and proliferation but induced apoptosis in osteoprogenitor MC3T3-E1 cells on day 7. We found that 10-6 M DEX increased the levels of tubulins (TUBA1A, TUBB2B, and TUBB5), IQGAP1, and S100 proteins (S100A11, S100A6, S100A4, and S100A10), while inhibited the protein levels of G3BP-1 and Ras related proteins (Rab-1A, Rab-2A and Rab-7) in MC3T3-E1 cells.
     Conclusions:These findings suggests that TAZ is not only involved in the signal pathway of BMP-2 induced osteoblastic differentiation, but also involved in the signaling pathway of DEX-induced osteoblastic differentiation, supporting the notion that TAZ is a convergence point of two signaling pathways, BMP-2 signaling pathway and Wnt-β-catenin signaling pathway.10-6 M DEX inhibited the osteoblast differentiation and proliferation in MC3T3-E1 cells on day 7. The upregulated levels of tubulin, IQGAP1, and S100 proteins and the downregulated protein levels of G3BP-1 and Ras related proteins (Rab-1A, Rab-2A and Rab-7) may be critical in the mechanism of the DEX-induced results. Such protein expression changes may be of pathological significance in coping with GCOP.
引文
[1]S.E. Ong, B. Blagoev, I. Kratchmarova, D.B. Kristensen, H. Steen, A. Pandey, M. Mann, Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics, Mol Cell Proteomics 1 (2002) 376-386.
    [2]B. Bouvard, C. LeGrand, M. Audran, D. Chappard, Glucocorticoid-Induced Osteoporosis:A Review, Clinic Rev Bone Miner Metab 8 (2010) 15-26.
    [3]J.L. Shaker, B.P. Lukert, Osteoporosis associated with excess glucocorticoids, Endocrinol Metab Clin North Am 34 (2005) 341-356,ⅴⅲ-ⅸ.
    [4]E. Canalis, Clinical review 83:Mechanisms of glucocorticoid action in bone: implications to glucocorticoid-induced osteoporosis, J Clin Endocrinol Metab 81 (1996) 3441-3447.
    [5]M.B. Leonard, Glucocorticoid-induced osteoporosis in children:impact of the underlying disease, Pediatrics 119 Suppl 2 (2007) S166-174.
    [6]T.P. van Staa, C. Cooper, H.G. Leufkens, N. Bishop, Children and the risk of fractures caused by oral corticosteroids, J Bone Miner Res 18 (2003) 913-918.
    [7]E. Canalis, Mechanisms of glucocorticoid action in bone, Curr Osteoporos Rep 3 (2005) 98-102.
    [8]T.P. van Staa, The pathogenesis, epidemiology and management of glucocorticoid-induced osteoporosis, Calcif Tissue Int 79 (2006) 129-137.
    [9]E. Canalis, Mechanisms of glucocorticoid-induced osteoporosis, Curr Opin Rheumatol 15 (2003) 454-457.
    [10]E. Canalis, J.P. Bilezikian, A. Angeli, A. Giustina, Perspectives on glucocorticoid-induced osteoporosis, Bone 34 (2004) 593-598.
    [11]D. Hong, H.X. Chen, R.S. Ge, J.C. Li, The biological roles of extracellular and intracytoplasmic glucocorticoids in skeletal cells, J Steroid Biochem Mol Biol 111 (2008) 164-170.
    [12]H.H. Mcllwain, Glucocorticoid-induced osteoporosis:pathogenesis, diagnosis, and management, Prev Med 36 (2003) 243-249.
    [13]S. Sivagurunathan, M.M. Muir, T.C. Brennan, J.P. Seale, R.S. Mason, Influence of glucocorticoids on human osteoclast generation and activity, J Bone Miner Res 20 (2005) 390-398.
    [14]C.A. Luppen, E. Smith, L. Spevak, A.L. Boskey, B. Frenkel, Bone morphogenetic protein-2 restores mineralization in glucocorticoid-inhibited MC3T3-E1 osteoblast cultures, J Bone Miner Res 18 (2003) 1186-1197.
    [15]P.V. Bodine, B.S. Komm, Wnt signaling and osteoblastogenesis, Rev Endocr Metab Disord 7 (2006) 33-39.
    [16]A.J. Friedenstein, J.F. Gorskaja, N.N. Kulagina, Fibroblast precursors in normal and irradiated mouse hematopoietic organs, Exp Hematol 4 (1976) 261-274.
    [17]A. Takuma, T. Kaneda, T. Sato, S. Ninomiya, M. Kumegawa, Y. Hakeda, Dexamethasone enhances osteoclast formation synergistically with transforming growth factor-beta by stimulating the priming of osteoclast progenitors for differentiation into osteoclasts, J Biol Chem 278 (2003) 44667-44674.
    [18]R.S. Weinstein, J.R. Chen, C.C. Powers, S.A. Stewart, R.D. Landes, T. Bellido, R.L. Jilka, A.M. Parfitt, S.C. Manolagas, Promotion of osteoclast survival and antagonism of bisphosphonate-induced osteoclast apoptosis by glucocorticoids, J Clin Invest 109 (2002) 1041-1048.
    [19]M.R. Rubin, J.P. Bilezikian, Clinical review 151:The role of parathyroid hormone in the pathogenesis of glucocorticoid-induced osteoporosis:a re-examination of the evidence, J Clin Endocrinol Metab 87 (2002) 4033-4041.
    [20]E. Canalis, A.M. Delany, Mechanisms of glucocorticoid action in bone, Ann N Y Acad Sci 966 (2002) 73-81.
    [21]A.D. Woolf, An update on glucocorticoid-induced osteoporosis, Curr Opin Rheumatol 19 (2007) 370-375.
    [22]R.S. Weinstein, R.L. Jilka, A.M. Parfitt, S.C. Manolagas, Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids. Potential mechanisms of their deleterious effects on bone, J Clin Invest 102 (1998) 274-282.
    [23]M. Eijken, M. Koedam, M. van Driel, C.J. Buurman, H.A. Pols, J.P. van Leeuwen, The essential role of glucocorticoids for proper human osteoblast differentiation and matrix mineralization, Mol Cell Endocrinol 248 (2006) 87-93.
    [24]Y. Liu, A. Porta, X. Peng, K. Gengaro, E.B. Cunningham, H. Li, L.A. Dominguez, T. Bellido, S. Christakos, Prevention of glucocorticoid-induced apoptosis in osteocytes and osteoblasts by calbindin-D28k, J Bone Miner Res 19 (2004) 479-490.
    [25]T.L. Chen, Inhibition of growth and differentiation of osteoprogenitors in mouse bone marrow stromal cell cultures by increased donor age and glucocorticoid treatment, Bone 35 (2004) 83-95.
    [26]H. Atmani, D. Chappard, M.F. Basle, Proliferation and differentiation of osteoblasts and adipocytes in rat bone marrow stromal cell cultures:effects of dexamethasone and calcitriol, J Cell Biochem 89 (2003) 364-372.
    [27]Y. Engelbrecht, H. de Wet, K. Horsch, C.R. Langeveldt, F.S. Hough, P.A. Hulley, Glucocorticoids induce rapid up-regulation of mitogen-activated protein kinase phosphatase-1 and dephosphorylation of extracellular signal-regulated kinase and impair proliferation in human and mouse osteoblast cell lines, Endocrinology 144 (2003) 412-422.
    [28]E. Smith, B. Frenkel, Glucocorticoids inhibit the transcriptional activity of LEF/TCF in differentiating osteoblasts in a glycogen synthase kinase-3beta-dependent and-independent manner, J Biol Chem 280 (2005) 2388-2394.
    [29]N. Leclerc, C.A. Luppen, V.V. Ho, S. Nagpal, J.G Hacia, E. Smith, B. Frenkel, Gene expression profiling of glucocorticoid-inhibited osteoblasts, J Mol Endocrinol 33 (2004) 175-193.
    [30]R.M. Pereira, A.M. Delany, E. Canalis, Cortisol inhibits the differentiation and apoptosis of osteoblasts in culture, Bone 28 (2001) 484-490.
    [31]P. De Biase, R. Capanna, Clinical applications of BMPs, Injury 36 Suppl 3 (2005) S43-46.
    [32]Y.T. Xiao, L.X. Xiang, J.Z. Shao, Bone morphogenetic protein, Biochem Biophys Res Commun 362 (2007) 550-553.
    [33]K. Ohnaka, M. Tanabe, H. Kawate, H. Nawata, R. Takayanagi, Glucocorticoid suppresses the canonical Wnt signal in cultured human osteoblasts, Biochem Biophys Res Commun 329 (2005) 177-181.
    [34]L. Siminovitch, E.A. McCulloch, J.E. Till, The Distribution Of Colony-Forming Cells Among Spleen Colonies, J Cell Physiol 62 (1963) 327-336.
    [35]A.J. Becker, C.E. Mc, J.E. Till, Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells, Nature 197 (1963) 452-454.
    [36]A.J. Friedenstein, U.F. Deriglasova, N.N. Kulagina, A.F. Panasuk, S.F. Rudakowa, E.A. Luria, I.A. Ruadkow, Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method, Exp Hematol 2 (1974) 83-92.
    [37]P. Tropel, D. Noel, N. Platet, P. Legrand, A.L. Benabid, F. Berger, Isolation and characterisation of mesenchymal stem cells from adult mouse bone marrow, Exp Cell Res 295 (2004) 395-406.
    [38]K. Sudo, M. Kanno, K. Miharada, S. Ogawa, T. Hiroyama, K. Saijo, Y. Nakamura, Mesenchymal progenitors able to differentiate into osteogenic, chondrogenic, and/or adipogenic cells in vitro are present in most primary fibroblast-like cell populations, Stem Cells 25 (2007) 1610-1617.
    [39]G.D. Palmer, A. Steinert, A. Pascher, E. Gouze, J.N. Gouze, O. Betz, B. Johnstone, C.H. Evans, S.C. Ghivizzani, Gene-induced chondrogenesis of primary mesenchymal stem cells in vitro, Mol Ther 12 (2005) 219-228.
    [40]G. Lisignoli, S. Cristino, A. Piacentini, S. Toneguzzi, F. Grassi, C. Cavallo, N. Zini, L. Solimando, N. Mario Maraldi, A. Facchini, Cellular and molecular events during chondrogenesis of human mesenchymal stromal cells grown in a three-dimensional hyaluronan based scaffold, Biomaterials 26 (2005) 5677-5686.
    [41]A.K. Chong, J. Chang, J.C. Go, Mesenchymal stem cells and tendon healing, Front Biosci 14 (2009) 4598-4605.
    [42]G Chamberlain, J. Fox, B. Ashton, J. Middleton, Concise review:mesenchymal stem cells:their phenotype, differentiation capacity, immunological features, and potential-for homing, Stem Cells 25 (2007) 2739-2749.
    [43]A.E. Grigoriadis, J.N. Heersche, J.E. Aubin, Differentiation of muscle, fat, cartilage, and bone from progenitor cells present in a bone-derived clonal cell population:effect of dexamethasone, J Cell Biol 106 (1988) 2139-2151.
    [44]M. Sudol, P. Bork, A. Einbond, K. Kastury, T. Druck, M. Negrini, K. Huebner, D. Lehman, Characterization of the mammalian YAP (Yes-associated protein) gene and its role in defining a novel protein module, the WW domain, J Biol Chem 270 (1995) 14733-14741.
    [45]J.H. Hong, M.B. Yaffe, TAZ:a beta-catenin-like molecule that regulates mesenchymal stem cell differentiation, Cell Cycle 5 (2006) 176-179.
    [46]C.B. Cui, L.F. Cooper, X. Yang, G. Karsenty, I. Aukhil, Transcriptional coactivation of bone-specific transcription factor Cbfal by TAZ, Mol Cell Biol 23 (2003) 1004-1013.
    [47]J.H. Hong, E.S. Hwang, M.T. McManus, A. Amsterdam, Y. Tian, R. Kalmukova, E. Mueller, T. Benjamin, B.M. Spiegelman, P.A. Sharp, N. Hopkins, M.B. Yaffe, TAZ, a transcriptional modulator of mesenchymal stem cell differentiation, Science 309 (2005) 1074-1078.
    [48]W.M. Mahoney, Jr., J.H. Hong, M.B. Yaffe, I.K. Farrance, The transcriptional co-activator TAZ interacts differentially with transcriptional enhancer factor-1 (TEF-1) family members, Biochem J 388 (2005) 217-225.
    [49]B.M. McCartney, R.M. Kulikauskas, D.R. LaJeunesse, R.G. Fehon, The neurofibromatosis-2 homologue, Merlin, and the tumor suppressor expanded function together in Drosophila to regulate cell proliferation and differentiation, Development 127 (2000) 1315-1324.
    [50]M. Murakami, J. Tominaga, R. Makita, Y. Uchijima, Y. Kurihara, O. Nakagawa, T. Asano, H. Kurihara, Transcriptional activity of Pax3 is co-activated by TAZ, Biochem Biophys Res Commun 339 (2006) 533-539.
    [51]K.S. Park, J.A. Whitsett, T. Di Palma, J.H. Hong, M.B. Yaffe, M. Zannini, TAZ interacts with TTF-1 and regulates expression of surfactant protein-C, J Biol Chem 279 (2004) 17384-17390.
    [52]M. Murakami, M. Nakagawa, E.N. Olson, O. Nakagawa, A WW domain protein TAZ is a critical coactivator for TBX5, a transcription factor implicated in Holt-Oram syndrome, Proc Natl Acad Sci U S A 102 (2005) 18034-18039.
    [53]Q.Y. Lei, H. Zhang, B. Zhao, Z.Y. Zha, F. Bai, X.H. Pei, S. Zhao, Y. Xiong, K.L. Guan, TAZ promotes cell proliferation and epithelial-mesenchymal transition and is inhibited by the hippo pathway, Mol Cell Biol 28 (2008) 2426-2436.
    [54]H. Eda, K. Aoki, K. Marumo, K. Fujii, K. Ohkawa, FGF-2 signaling induces downregulation of TAZ protein in osteoblastic MC3T3-E1 cells, Biochem Biophys Res Commun 366 (2008) 471-475.
    [55]J. Cox, M. Mann, Is proteomics the new genomics?, Cell 130 (2007) 395-398.
    [56]I. Kratchmarova, B. Blagoev, M. Haack-Sorensen, M. Kassem, M. Mann, Mechanism of divergent growth factor effects in mesenchymal stem cell differentiation, Science 308 (2005) 1472-1477.
    [57]B. Blagoev, S.E. Ong, I. Kratchmarova, M. Mann, Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics, Nat Biotechnol 22 (2004) 1139-1145.
    [58]M. Mann, Functional and quantitative proteomics using SILAC, Nat Rev Mol Cell Biol 7 (2006) 952-958.
    [59]M. Kruger, M. Moser, S. Ussar, I. Thievessen, C.A. Luber, F. Forner, S. Schmidt, S. Zanivan, R. Fassler, M. Mann, SILAC mouse for quantitative proteomics uncovers kindlin-3 as an essential factor for red blood cell function, Cell 134 (2008) 353-364.
    [60]T. Komori, H. Yagi, S. Nomura, A. Yamaguchi, K. Sasaki, K. Deguchi, Y. Shimizu, R.T. Bronson, Y.H. Gao, M. Inada, M. Sato, R. Okamoto, Y. Kitamura, S. Yoshiki, T. Kishimoto, Targeted disruption of Cbfal results in a complete lack of bone formation owing to maturational arrest of osteoblasts, Cell 89 (1997) 755-764.
    [61]I. Marenholz, C.W. Heizmann, G. Fritz, S100 proteins in mouse and man:from evolution to function and pathology (including an update of the nomenclature), Biochem Biophys Res Commun 322 (2004) 1111-1122.
    [62]B.M. Abdallah, M. Kassem, Human mesenchymal stem cells:from basic biology to clinical applications, Gene Ther 15 (2008) 109-116.
    [63]N. Blow, Stem cells:in search of common ground, Nature 451 (2008) 855-858.
    [64]A. Alhadlaq, J.J. Mao, Mesenchymal stem cells:isolation and therapeutics, Stem Cells Dev 13 (2004) 436-448.
    [65]H. Aslan, D. Sheyn, D. Gazit, Genetically engineered mesenchymal stem cells: applications in spine therapy, Regen Med 4 (2009) 99-108.
    [66]P. Bianco, P.G Robey, Stem cells in tissue engineering, Nature 414 (2001) 118-121.
    [67]R. Bielby, E. Jones, D. McGonagle, The role of mesenchymal stem cells in maintenance and repair of bone, Injury 38 Suppl 1 (2007) S26-32.
    [68]S.P. Bruder, D.J. Fink, A.I. Caplan, Mesenchymal stem cells in bone development, bone repair, and skeletal regeneration therapy, J Cell Biochem 56 (1994) 283-294.
    [69]J.D. Adachi, Glucocorticoid-induced osteoporosis, Osteoporos Int 20 Suppl 3 (2009) S239-240.
    [70]S. Alesci, M.U. De Martino, I. Ilias, P.W. Gold, G.P. Chrousos, Glucocorticoid-induced osteoporosis:from basic mechanisms to clinical aspects, Neuroimmunomodulation 12 (2005) 1-19.
    [71]R.S. Weinstein, Glucocorticoid-induced osteoporosis, Rev Endocr Metab Disord 2 (2001) 65-73.
    [72]D.A. Glass,2nd, G. Karsenty, Canonical Wnt signaling in osteoblasts is required for osteoclast differentiation, Ann N Y Acad Sci 1068 (2006) 117-130.
    [73]H. Hu, M.J. Hilton, X. Tu, K. Yu, D.M. Ornitz, F. Long, Sequential roles of Hedgehog and Wnt signaling in osteoblast development, Development 132 (2005) 49-60.
    [74]M.P. Yavropoulou, J.G Yovos, The role of the Wnt signaling pathway in osteoblast commitment and differentiation, Hormones (Athens) 6 (2007) 279-294.
    [75]D.A. Glass,2nd, G Karsenty, In vivo analysis of Wnt signaling in bone, Endocrinology 148 (2007) 2630-2634.
    [76]D.A. Glass,2nd, G Karsenty, Molecular bases of the regulation of bone remodeling by the canonical Wnt signaling pathway, Curr Top Dev Biol 73 (2006) 43-84.
    [77]T. Gaur, C.J. Lengner, H. Hovhannisyan, R.A. Bhat, P.V. Bodine, B.S. Komm, A. Javed, A.J. van Wijnen, J.L. Stein, GS. Stein, J.B. Lian, Canonical WNT signaling promotes osteogenesis by directly stimulating Runx2 gene expression, J Biol Chem 280 (2005) 33132-33140.
    [78]G Mbalaviele, S. Sheikh, J.P. Stains, V.S. Salazar, S.L. Cheng, D. Chen, R. Civitelli, Beta-catenin and BMP-2 synergize to promote osteoblast differentiation and new bone formation, J Cell Biochem 94 (2005) 403-418.
    [79]S.E. Ross, N. Hemati, K.A. Longo, C.N. Bennett, P.C. Lucas, R.L. Erickson, O.A. MacDougald, Inhibition of adipogenesis by Wnt signaling, Science 289 (2000) 950-953.
    [80]J. Liu, S.R. Farmer, Regulating the balance between peroxisome proliferator-activated receptor gamma and beta-catenin signaling during adipogenesis. A glycogen synthase kinase 3beta phosphorylation-defective mutant of beta-catenin inhibits expression of a subset of adipogenic genes, J Biol Chem 279 (2004) 45020-45027.
    [81]X.H. Jaglin, K. Poirier, Y. Saillour, E. Buhler, G Tian, N. Bahi-Buisson, C. Fallet-Bianco, F. Phan-Dinh-Tuy, X.P. Kong, P. Bomont, L. Castelnau-Ptakhine, S. Odent, P. Loget, M. Kossorotoff, I. Snoeck, G Plessis, P. Parent, C. Beldjord, C. Cardoso, A. Represa, J. Flint, D.A. Keays, N.J. Cowan, J. Chelly, Mutations in the beta-tubulin gene TUBB2B result in asymmetrical polymicrogyria, Nat Genet (2009).
    [82]D.A. Keays, G Tian, K. Poirier, GJ. Huang, C. Siebold, J. Cleak, P.L. Oliver, M. Fray, R.J. Harvey, Z. Molnar, M.C. Pinon, N. Dear, W. Valdar, S.D. Brown, K.E. Davies, J.N. Rawlins, N.J. Cowan, P. Nolan, J. Chelly, J. Flint, Mutations in alpha-tubulin cause abnormal neuronal migration in mice and lissencephaly in humans, Cell 128 (2007) 45-57.
    [83]H. Plauchu, F. Encha-Razavi, M. Hermier, J. Attia-Sobol, D. Vitrey, A. Verloes, Lissencephaly type Ⅲ, stippled epiphyses and loose, thick skin:a new recessively inherited syndrome, Am J Med Genet 99 (2001) 14-20.
    [84]X. Shi, X. Yang, D. Chen, Z. Chang, X. Cao, Smadl interacts with homeobox DNA-binding proteins in bone morphogenetic protein signaling, J Biol Chem 274 (1999) 13711-13717.
    [85]X. Yang, X. Ji, X. Shi, X. Cao, Smadl domains interacting with Hoxc-8 induce osteoblast differentiation, J Biol Chem 275 (2000) 1065-1072.
    [86]M. Sakaguchi, H. Sonegawa, H. Murata, M. Kitazoe, J. Futami, K. Kataoka, H. Yamada, N.H. Huh, S100A11, an dual mediator for growth regulation of human keratinocytes, Mol Biol Cell 19 (2008) 78-85.
    [87]D.R. Fullen, J.A. Reed, B. Finnerty, N.S. McNutt, S100A6 expression in fibrohistiocytic lesions, J Cutan Pathol 28 (2001) 229-234.
    [88]E.C. Ilg, B.W. Schafer, C.W. Heizmann, Expression pattern of S100 calcium-binding proteins in human tumors, Int J Cancer 68 (1996) 325-332.
    [89]G.E. Holt, H.S. Schwartz, R.L. Caldwell, Proteomic profiling in musculoskeletal oncology by MALDI mass spectrometry, Clin Orthop Relat Res 450 (2006) 105-110.
    [90]X. Luo, K.A. Sharff, J. Chen, T.C. He, H.H. Luu, S100A6 expression and function in human osteosarcoma, Clin Orthop Relat Res 466 (2008) 2060-2070.
    [91]I. Marenholz, R.C. Lovering, C.W. Heizmann, An update of the S100 nomenclature, Biochim Biophys Acta 1763 (2006) 1282-1283.
    [92]U. Rescher, V. Gerke, S100A10/pll:family, friends and functions, Pflugers Arch 455 (2008) 575-582.
    [93]X.L. Yao, M.J. Cowan, M.T. Gladwin, M.M. Lawrence, C.W. Angus, J.H. Shelhamer, Dexamethasone alters arachidonate release from human epithelial cells by induction of pll protein synthesis and inhibition of phospholipase A2 activity, J Biol Chem 274 (1999) 17202-17208.
    [94]R. Siddappa, R. Licht, C. van Blitterswijk, J. de Boer, Donor variation and loss of multipotency during in vitro expansion of human mesenchymal stem cells for bone tissue engineering, J Orthop Res 25 (2007) 1029-1041.
    [95]R.J. Kemppainen, E.N. Behrend, Dexamethasone rapidly induces a novel ras superfamily member-related gene in AtT-20 cells, J Biol Chem 273 (1998) 3129-3131.
    [96]Y.X. Chen, Z.B. Li, F. Diao, D.M. Cao, C.C. Fu, J. Lu, Up-regulation of RhoB by glucocorticoids and its effects on the cell proliferation and NF-kappaB transcriptional activity, J Steroid Biochem Mol Biol 101 (2006) 179-187.
    [97]M.W. Briggs, D.B. Sacks, IQGAP1 as signal integrator:Ca2+, calmodulin, Cdc42 and the cytoskeleton, FEBS Lett 542 (2003) 7-11.
    [98]S.C. Mateer, N. Wang, G.S. Bloom, IQGAPs:integrators of the cytoskeleton, cell adhesion machinery, and signaling networks, Cell Motil Cytoskeleton 55 (2003) 147-155.
    [99]F. Parker, F. Maurier, I. Delumeau, M. Duchesne, D. Faucher, L. Debussche, A. Dugue, F. Schweighoffer, B. Tocque, A Ras-GTPase-activating protein SH3-domain-binding protein, Mol Cell Biol 16 (1996) 2561-2569.
    [100]B. Tocque, I. Delumeau, F. Parker, F. Maurier, M.C. Multon, F. Schweighoffer, Ras-GTPase activating protein (GAP):a putative effector for Ras, Cell Signal 9 (1997) 153-158.
    [101]I.E. Gallouzi, F. Parker, K. Chebli, F. Maurier, E. Labourier, I. Barlat, J.P. Capony, B. Tocque, J. Tazi, A novel phosphorylation-dependent RNase activity of GAP-SH3 binding protein:a potential link between signal transduction and RNA stability, Mol Cell Biol 18 (1998) 3956-3965.
    [102]C. Soncini, I. Berdo, G. Draetta, Ras-GAP SH3 domain binding protein (G3BP) is a modulator of USP10, a novel human ubiquitin specific protease, Oncogene 20 (2001) 3869-3879.
    [103]M. Zerial, H. McBride, Rab proteins as membrane organizers, Nat Rev Mol Cell Biol 2 (2001) 107-117.
    [104]C. Nuoffer, H.W. Davidson, J. Matteson, J. Meinkoth, W.E. Balch, A GDP-bound of rabl inhibits protein export from the endoplasmic reticulum and transport between Golgi compartments, J Cell Biol 125 (1994) 225-237.
    [105]E.J. Tisdale, J.R. Bourne, R. Khosravi-Far, C.J. Der, W.E. Balch, GTP-binding mutants of rabl and rab2 are potent inhibitors of vesicular transport from the endoplasmic reticulum to the Golgi complex, J Cell Biol 119 (1992) 749-761.
    [106]C. Bucci, P. Thomsen, P. Nicoziani, J. McCarthy, B. van Deurs, Rab7:a key to lysosome biogenesis, Mol Biol Cell 11 (2000) 467-480.
    [107]A. Mukhopadhyay, K. Funato, P.D. Stahl, Rab7 regulates transport from early to late endocytic compartments in Xenopus oocytes, J Biol Chem 272 (1997) 13055-13059.
    [108]B. Press, Y. Feng, B. Hoflack, A. Wandinger-Ness, Mutant Rab7 causes the accumulation of cathepsin D and cation-independent mannose 6-phosphate receptor in an early endocytic compartment, J Cell Biol 140 (1998) 1075-1089.
    [109]A. Vonderheit, A. Helenius, Rab7 associates with early endosomes to mediate sorting and transport of Semliki forest virus to late endosomes, PLoS Biol 3 (2005)e233.
    [1]S. Sivagurunathan, M.M. Muir, T.C. Brennan, J.P. Seale, R.S. Mason, Influence of glucocorticoids on human osteoclast generation and activity, J Bone Miner Res 20 (2005) 390-398.
    [2]R.S. Weinstein, Glucocorticoid-induced osteoporosis, Rev Endocr Metab Disord 2 (2001) 65-73.
    [3]E. Canalis, Mechanisms of glucocorticoid action in bone, Curr Osteoporos Rep 3 (2005) 98-102.
    [4]K. Natsui, K. Tanaka, M. Suda, A. Yasoda, Y. Sakuma, A. Ozasa, S. Ozaki, K. Nakao, High-dose glucocorticoid treatment induces rapid loss of trabecular bone mineral density and lean body mass, Osteoporos Int 17 (2006) 105-108.
    [5]T.J. Wronski, L.M. Dann, K.S. Scott, M. Cintron, Long-term effects of ovariectomy and aging on the rat skeleton, Calcif Tissue Int 45 (1989) 360-366.
    [6]A. Takuma, T. Kaneda, T. Sato, S. Ninomiya, M. Kumegawa, Y. Hakeda, Dexamethasone enhances osteoclast formation synergistically with transforming growth factor-beta by stimulating the priming of osteoclast progenitors for differentiation into osteoclasts, J Biol Chem 278 (2003) 44667-44674.
    [7]R.S. Weinstein, J.R. Chen, C.C. Powers, S.A. Stewart, R.D. Landes, T. Bellido, R.L. Jilka, A.M. Parfitt, S.C. Manolagas, Promotion of osteoclast survival and antagonism of bisphosphonate-induced osteoclast apoptosis by glucocorticoids, J Clin Invest 109 (2002) 1041-1048.
    [8]M. Jevon, A. Sabokbar, Y. Fujikawa, T. Hirayama, S.D. Neale, J. Wass, N.A. Athanasou, Gender-and age-related differences in osteoclast formation from circulating precursors, J Endocrinol 172 (2002) 673-681.
    [9]T. Hirayama, A. Sabokbar, N.A. Athanasou, Effect of corticosteroids on human osteoclast formation and activity, J Endocrinol 175 (2002) 155-163.
    [10]D.W. Dempster, B.S. Moonga, L.S. Stein, W.R. Horbert, T. Antakly, Glucocorticoids inhibit bone resorption by isolated rat osteoclasts by enhancing apoptosis, J Endocrinol 154 (1997) 397-406.
    [11]H.J. Kim, H. Zhao, H. Kitaura, S. Bhattacharyya, J.A. Brewer, L.J. Muglia, F. Patrick Ross, S.L. Teitelbaum, Glucocorticoids and the osteoclast, Ann N Y Acad Sci 1116 (2007) 335-339.
    [12]T. Efstratiadis, D.W. Moss, Tartrate-resistant acid phosphatase of human lung: apparent identity with osteoclastic acid phosphatase, Enzyme 33 (1985) 34-40.
    [13]E.H. Burger, J.W. van der Meer, P.J. Nijweide, Osteoclast formation from mononuclear phagocytes:role of bone-forming cells, J Cell Biol 99 (1984) 1901-1906.
    [14]S.L. Teitelbaum, Bone resorption by osteoclasts, Science 289 (2000) 1504-1508.
    [15]E. Canalis, J.P. Bilezikian, A. Angeli, A. Giustina, Perspectives on glucocorticoid-induced osteoporosis, Bone 34 (2004) 593-598.
    [16]M.R. Rubin, J.P. Bilezikian, Clinical review 151:The role of parathyroid hormone in the pathogenesis of glucocorticoid-induced osteoporosis:a re-examination of the evidence, J Clin Endocrinol Metab 87 (2002) 4033-4041.
    [17]E. Canalis, A.M. Delany, Mechanisms of glucocorticoid action in bone, Ann N Y Acad Sci 966 (2002) 73-81.
    [18]E. Canalis, Mechanisms of glucocorticoid-induced osteoporosis, Curr Opin Rheumatol 15 (2003) 454-457.
    [19]A.D. Woolf, An update on glucocorticoid-induced osteoporosis, Curr Opin Rheumatol 19 (2007) 370-375.
    [20]R.S. Weinstein, R.L. Jilka, A.M. Parfitt, S.C. Manolagas, Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids. Potential mechanisms of their deleterious effects on bone, J Clin Invest 102 (1998) 274-282.
    [21]N.R. Jorgensen, Z. Henriksen, O.H. Sorensen, R. Civitelli, Dexamethasone, BMP-2, and 1,25-dihydroxyvitamin D enhance a more differentiated osteoblast phenotype:validation of an in vitro model for human bone marrow-derived primary osteoblasts, Steroids 69 (2004) 219-226.
    [22]M. Eijken, M. Koedam, M. van Driel, C.J. Buurman, H.A. Pols, J.P. van Leeuwen, The essential role of glucocorticoids for proper human osteoblast differentiation and matrix mineralization, Mol Cell Endocrinol 248 (2006) 87-93.
    [23]Y. Liu, A. Porta, X. Peng, K. Gengaro, E.B. Cunningham, H. Li, L.A. Dominguez, T. Bellido, S. Christakos, Prevention of glucocorticoid-induced apoptosis in osteocytes and osteoblasts by calbindin-D28k, J Bone Miner Res 19 (2004) 479-490.
    [24]T.L. Chen, Inhibition of growth and differentiation of osteoprogenitors in mouse bone marrow stromal cell cultures by increased donor age and glucocorticoid treatment, Bone 35 (2004) 83-95.
    [25]H. Atmani, D. Chappard, M.F. Basle, Proliferation and differentiation of osteoblasts and adipocytes in rat bone marrow stromal cell cultures:effects of dexamethasone and calcitriol, J Cell Biochem 89 (2003) 364-372.
    [26]R.M. Pereira, A.M. Delany, E. Canalis, Cortisol inhibits the differentiation and apoptosis of osteoblasts in culture, Bone 28 (2001) 484-490.
    [27]P. De Biase, R. Capanna, Clinical applications of BMPs, Injury 36 Suppl 3 (2005) S43-46.
    [28]Y.T. Xiao, L.X. Xiang, J.Z. Shao, Bone morphogenetic protein, Biochem Biophys Res Commun 362 (2007) 550-553.
    [29]C.A. Luppen, E. Smith, L. Spevak, A.L. Boskey, B. Frenkel, Bone morphogenetic protein-2 restores mineralization in glucocorticoid-inhibited MC3T3-E1 osteoblast cultures, J Bone Miner Res 18 (2003) 1186-1197.
    [30]K. Ohnaka, M. Tanabe, H. Kawate, H. Nawata, R. Takayanagi, Glucocorticoid suppresses the canonical Wnt signal in cultured human osteoblasts, Biochem Biophys Res Commun 329 (2005) 177-181.
    [31]E. Smith, B. Frenkel, Glucocorticoids inhibit the transcriptional activity of LEF/TCF in differentiating osteoblasts in a glycogen synthase kinase-3beta-dependent and-independent manner, J Biol Chem 280 (2005) 2388-2394.
    [32]A. Soares-Schanoski, V. Gomez-Pina, C. del Fresno, A. Rodriguez-Rojas, F. Garcia, A. Glaria, M. Sanchez, M.T. Vallejo-Cremades, R. Baos, P. Fuentes-Prior, F. Arnalich, E. Lopez-Collazo,6-Methylprednisolone down-regulates IRAK-M in human and murine osteoclasts and boosts bone-resorbing activity:a putative mechanism for corticoid-induced osteoporosis, J Leukoc Biol 82 (2007) 700-709.
    [33]N.Z. Lu, S.E. Wardell, K.L. Burnstein, D. Defranco, P.J. Fuller, V. Giguere, R.B. Hochberg, L. McKay, J.M. Renoir, N.L. Weigel, E.M. Wilson, D.P. McDonnell, J.A. Cidlowski, International Union of Pharmacology. LXV. The pharmacology and classification of the nuclear receptor superfamily:glucocorticoid, mineralocorticoid, progesterone, and androgen receptors, Pharmacol Rev 58 (2006) 782-797.
    [34]J.C. Buckingham, Glucocorticoids:exemplars of multi-tasking, Br J Pharmacol 147 Suppl 1 (2006) S258-268.
    [35]R. Hayashi, H. Wada, K. Ito, I.M. Adcock, Effects of glucocorticoids on gene transcription, Eur J Pharmacol 500 (2004) 51-62.
    [36]I.M. Spitz, C.W. Bardin, Mifepristone (RU 486)--a modulator of progestin and glucocorticoid action, N Engl J Med 329 (1993) 404-412.
    [37]A. Vegiopoulos, S. Herzig, Glucocorticoids, metabolism and metabolic diseases, Mol Cell Endocrinol 275 (2007) 43-61.
    [38]J.R. Tata, Signalling through nuclear receptors, Nat Rev Mol Cell Biol 3 (2002) 702-710.
    [39]C.S. Watson, B. Gametchu, Membrane-initiated steroid actions and the proteins that mediate them, Proc Soc Exp Biol Med 220 (1999) 9-19.
    [40]R.J. Borski, Nongenomic membrane actions of glucocorticoids in vertebrates, Trends Endocrinol Metab 11 (2000) 427-436.
    [41]M. Lowenberg, A.P. Verhaar, G.R. van den Brink, D.W. Hommes, Glucocorticoid signaling:a nongenomic mechanism for T-cell immunosuppression, Trends Mol Med 13 (2007) 158-163.
    [42]M. Wehling, Specific, nongenomic actions of steroid hormones, Annu Rev Physiol 59 (1997) 365-393.
    [43]S. Daufeldt, R. Lanz, A. Allera, Membrane-initiated steroid signaling (MISS): genomic steroid action starts at the plasma membrane, J Steroid Biochem Mol Biol 85 (2003) 9-23.
    [44]A. Allera, L. Wildt, Glucocorticoid-recognizing and-effector sites in rat liver plasma membrane. Kinetics of corticosterone uptake by isolated membrane vesicles--Ⅱ. Comparative influx and efflux, J Steroid Biochem Mol Biol 42 (1992) 757-771.
    [45]A. Allera, L. Wildt, Glucocorticoid-recognizing and-effector sites in rat liver plasma membrane. Kinetics of corticosterone uptake by isolated membrane vesicles--I. Binding and transport, J Steroid Biochem Mol Biol 42 (1992) 737-756.
    [46]S. Daufeldt, R. Klein, L. Wildt, A. Allera, Membrane initiated steroid signaling (MISS):computational, in vitro and in vivo evidence for a plasma membrane protein initially involved in genomic steroid hormone effects, Mol Cell Endocrinol 246 (2006) 42-52.
    [47]G.M. Howell, C. Po, Y.A. Lefebvre, Identification of dexamethasone-binding sites on male-rat liver plasma membranes by affinity labelling, Biochem J 260 (1989) 435-441.
    [48]F.L. Moore, M. Orchinik, Membrane receptors for corticosterone:a mechanism for rapid behavioral responses in an amphibian, Horm Behav 28 (1994) 512-519.
    [49]F.L. Moore, M. Orchinik, C. Lowry, Functional studies of corticosterone receptors in neuronal membranes, Receptor 5 (1995) 21-28.
    [50]J.G. Tasker, S. Di, R. Malcher-Lopes, Minireview:rapid glucocorticoid signaling via membrane-associated receptors, Endocrinology 147 (2006) 5549-5556.
    [51]C. Maier, D. Runzler, J. Schindelar, G. Grabner, W. Waldhausl, G. Kohler, A. Luger, G-protein-coupled glucocorticoid receptors on the pituitary cell membrane, J Cell Sci 118 (2005) 3353-3361.
    [52]B. Bartholome, C.M. Spies, T. Gaber, S. Schuchmann, T. Berki, D. Kunkel, M. Bienert, A. Radbruch, G.R. Burmester, R. Lauster, A. Scheffold, F. Buttgereit, Membrane glucocorticoid receptors (mGCR) are expressed in normal human peripheral blood mononuclear cells and up-regulated after in vitro stimulation and in patients with rheumatoid arthritis, FASEB J 18 (2004) 70-80.
    [53]M.S. Cooper, E.A. Walker, R. Bland, W.D. Fraser, M. Hewison, P.M. Stewart, Expression and functional consequences of llbeta-hydroxysteroid dehydrogenase activity in human bone, Bone 27 (2000) 375-381.
    [54]P.M. Stewart, Z.S. Krozowski,11 beta-Hydroxysteroid dehydrogenase, Vitam Horm 57 (1999) 249-324.
    [55]GG Lavery, E.A. Walker, N. Draper, P. Jeyasuria, J. Marcos, C.H. Shackleton, K.L. Parker, P.C. White, P.M. Stewart, Hexose-6-phosphate dehydrogenase knock-out mice lack 11 beta-hydroxysteroid dehydrogenase type 1-mediated glucocorticoid generation, J Biol Chem 281 (2006) 6546-6551.
    [56]J.W. Tomlinson, E.A. Walker, I.J. Bujalska, N. Draper, G.G. Lavery, M.S. Cooper, M. Hewison, P.M. Stewart, 11beta-hydroxysteroid dehydrogenase type 1:a tissue-specific regulator of glucocorticoid response, Endocr Rev 25 (2004) 831-866.
    [57]K. Mai, V. Kullmann, T. Bobbert, C. Maser-Gluth, M. Mohlig, V. Bahr, A.F. Pfeiffer, J. Spranger, S. Diederich, In vivo activity of 11beta-hydroxysteroid dehydrogenase type 1 and free fatty acid-induced insulin resistance, Clin Endocrinol(Oxf)63 (2005) 442-449.
    [58]H.A. Sigurjonsdottir, J. Koranyi, M. Axelson, B.A. Bengtsson, G Johannsson, GH effect on enzyme activity of 11betaHSD in abdominal obesity is dependent on treatment duration, Eur J Endocrinol 154 (2006) 69-74.
    [59]S.K. Paulsen, S.B. Pedersen, S. Fisker, B. Richelsen, 11Beta-HSD type 1 expression in human adipose tissue:impact of gender, obesity, and fat localization, Obesity (Silver Spring) 15 (2007) 1954-1960.
    [60]P. Marcolongo, S. Piccirella, S. Senesi, L. Wunderlich, I. Gerin, J. Mandl, R. Fulceri, G. Banhegyi, A. Benedetti, The glucose-6-phosphate transporter-hexose-6-phosphate dehydrogenase-llbeta-hydroxysteroid dehydrogenase type 1 system of the adipose tissue, Endocrinology 148 (2007) 2487-2495.
    [61]M.S. Cooper, E.H. Rabbitt, P.E. Goddard, W.A. Bartlett, M. Hewison, P.M. Stewart, Osteoblastic 11beta-hydroxysteroid dehydrogenase type 1 activity increases with age and glucocorticoid exposure, J Bone Miner Res 17 (2002) 979-986.
    [62]E.H. Rabbitt, N.J. Gittoes, P.M. Stewart, M. Hewison, 11beta-hydroxysteroid dehydrogenases, cell proliferation and malignancy, J Steroid Biochem Mol Biol 85 (2003) 415-421.
    [63]C. Jang, V.R. Obeyesekere, R.J. Dilley, F.P. Alford, W.J. Inder, 11Beta hydroxysteroid dehydrogenase type 1 is expressed and is biologically active in human skeletal muscle, Clin Endocrinol (Oxf) 65 (2006) 800-805.
    [64]C. Jang, V.R. Obeyesekere, R.J. Dilley, Z. Krozowski, W.J. Inder, F.P. Alford, Altered activity of 11beta-hydroxysteroid dehydrogenase types 1 and 2 in skeletal muscle confers metabolic protection in subjects with type 2 diabetes, J Clin Endocrinol Metab 92 (2007) 3314-3320.
    [65]H.A. Johnstone, A. Wigger, A.J. Douglas, I.D. Neumann, R. Landgraf, J.R. Seckl, J.A. Russell, Attenuation of hypothalamic-pituitary-adrenal axis stress responses in late pregnancy:changes in feedforward and feedback mechanisms, J Neuroendocrinol 12 (2000) 811-822.
    [66]G. Pelletier, V. Luu-The, S. Li, G. Bujold, F. Labrie, Localization and glucocorticoid regulation of 11beta-hydroxysteroid dehydrogenase type 1 mRNA in the male mouse forebrain, Neuroscience 145 (2007) 110-115.
    [67]M. Eijken, M. Hewison, M.S. Cooper, F.H. de Jong, H. Chiba, P.M. Stewart, A.G Uitterlinden, H.A. Pols, J.P. van Leeuwen, 11beta-Hydroxysteroid dehydrogenase expression and glucocorticoid synthesis are directed by a molecular switch during osteoblast differentiation, Mol Endocrinol 19 (2005) 621-631.
    [68]M.S. Cooper, A. Blumsohn, P.E. Goddard, W.A. Bartlett, C.H. Shackleton, R. Eastell, M. Hewison, P.M. Stewart, 11beta-hydroxysteroid dehydrogenase type 1 activity predicts the effects of glucocorticoids on bone, J Clin Endocrinol Metab 88 (2003) 3874-3877.
    [69]J. Justesen, L. Mosekilde, M. Holmes, K. Stenderup, J. Gasser, J.J. Mullins, J.R. Seckl, M. Kassem, Mice deficient in 11beta-hydroxysteroid dehydrogenase type 1 lack bone marrow adipocytes, but maintain normal bone formation, ndocrinology 145 (2004) 1916-1925.
    [70]E.E. Kershaw, N.M. Morton, H. Dhillon, L. Ramage, J.R. Seckl, J.S. Flier, Adipocyte-specific glucocorticoid inactivation protects against diet-induced obesity, Diabetes 54 (2005) 1023-1031.
    [71]N. Draper, P.M. Stewart, llbeta-hydroxysteroid dehydrogenase and the pre-receptor regulation of corticosteroid hormone action, J Endocrinol 186 (2005) 251-271.
    [72]F.I. Milagro, J. Campion, J.A. Martinez,11-Beta hydroxysteroid dehydrogenase type 2 expression in white adipose tissue is strongly correlated with adiposity, J Steroid Biochem Mol Biol 104 (2007) 81-84.
    [73]S. Engeli, J. Bohnke, M. Feldpausch, K. Gorzelniak, U. Heintze, J. Janke, F.C. Luft, A.M. Sharma, Regulation of 11beta-HSD genes in human adipose tissue: influence of central obesity and weight loss, Obes Res 12 (2004) 9-17.
    [74]R.S. Ge, Q. Dong, E.M. Niu, C.M. Sottas, D.O. Hardy, J.F. Catterall, S.A. Latif, D.J. Morris, M.P. Hardy, 11{beta}-Hydroxysteroid dehydrogenase 2 in rat leydig cells:its role in blunting glucocorticoid action at physiological levels of substrate, Endocrinology 146 (2005) 2657-2664.
    [75]N.S. Sieber-Ruckstuhl, M.L. Meli, F.S. Boretti, E. Gonczi, H. Lutz, C.E. Reusch, Quantitative real-time PCR for the measurement of 11beta-HSD1 and llbeta-HSD2 mRNA levels in tissues of healthy dogs, Horm Metab Res 39 (2007) 548-554.
    [76]H. Woitge, J. Harrison, A. Ivkosic, Z. Krozowski, B. Kream, Cloning and in vitro characterization of alpha 1(I)-collagen 11 beta-hydroxysteroid dehydrogenase type 2 transgenes as models for osteoblast-selective inactivation of natural glucocorticoids, Endocrinology 142 (2001) 1341-1348.
    [77]L.B. Sher, H.W. Woitge, D.J. Adams, G.A. Gronowicz, Z. Krozowski, J.R. Harrison, B.E. Kream, Transgenic expression of 11beta-hydroxysteroid dehydrogenase type 2 in osteoblasts reveals an anabolic role for endogenous glucocorticoids in bone, Endocrinology 145 (2004) 922-929.
    [78]L.B. Sher, J.R. Harrison, D.J. Adams, B.E. Kream, Impaired cortical bone acquisition and osteoblast differentiation in mice with osteoblast-targeted disruption of glucocorticoid signaling, Calcif Tissue Int 79 (2006) 118-125.
    [79]C.A. O'Brien, D. Jia, L.I. Plotkin, T. Bellido, C.C. Powers, S.A. Stewart, S.C. Manolagas, R.S. Weinstein, Glucocorticoids act directly on osteoblasts and osteocytes to induce their apoptosis and reduce bone formation and strength, Endocrinology 145 (2004) 1835-1841.
    [80]D. Jia, C.A. O'Brien, S.A. Stewart, S.C. Manolagas, R.S. Weinstein, Glucocorticoids act directly on osteoclasts to increase their life span and reduce bone density, Endocrinology 147 (2006) 5592-5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700