半干旱区陆面过程参数化及其遥感反演研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地球生物圈活动和人类活动不仅直接改变陆地land use和land cover,而且调节着地表与大气之间的物质、能量、水分的交换。由于考虑生物圈的调节作用,陆面过程的研究已经从最初的物理过程研究拓展到生物圈化学过程的研究。要客观评价陆地生物圈对气候变化的脆弱性和适应性,就有必要系统地认识清楚生物圈、人类活动及其与气候系统之间的相互关系,这就需要一个具有完善的陆面过程模式的气候模式。
     陆面过程模式的发展寄希望于发展完善的陆面过程参数化方案。国际上曾开展过超过50多个陆面过程试验,从局地的土壤—植被—大气相互作用的综合观测入手,借助卫星遥感资料和数值模式由点及面地分析,研究了陆面过程特征及其参数化,探索提出用于大气数值模式的陆面过程参数化方案。由于复杂、非均匀下垫面和稀疏植被特征存在,我国相继开展的一些较有影响的陆面过程观测试验结果并未被目前国际上流行的陆面过程模式或卫星遥感反演方法所采纳。因为遥感可以获得连续、真实的植被活动信息,针对我国稀疏植被特征,发展一套完善的遥感参数化方案对陆面过程模式的改进有重要意义。
     本研究针对我国典型的稀疏植被半干旱地区,结合黄土高原定西试验站的观测资料、卫星遥感资料,对半干旱区的陆面过程参数进行研究,建立了针对稀疏植被区的卫星遥感参数化方案和模型。陆面过程参数化目的是获取准确的能量参数如净辐射量、感热通量、土壤热通量和潜热通量,水分参数如蒸散发量,物质参数如NPP等,这些参数的参数化前提就是获得高精度的反照率、表面温度、空气温度、以及空气动力学阻抗及其相关联的动力学粗糙度特征,本研究根据遥感参数化的思路,进行观测分析和参数化研究。
     本研究在系统分析陆面过程参数化中存在的问题以及各参数的参数化思路基础上,首次对影响感热通量变化的重要参数粗糙度长度进行参数化,同时对适于半干旱稀疏植被区的Choud-1空气动力学阻抗方法进行了遥感反演;采用二向反射模型对遥感几何效应问题进行研究,实现了反照率的反演;在空气温度的估算上,首次提出了采用高垂直分辨率和光谱分辨率的遥感资料结合反演边界层廓线的方法得到表层空气温度的思路;在水分特征的研究中除了蒸散发量的反演,首次提出了遥感反演叶水势的方法,为微观用水特征的认识提供了参考,另外,在地表温度的反演基础上,采用能量和物质平衡算法实现了陆面各能量通量和Npp的反演,将参数化方案应用到黄土高原对其陆面过程特征进行了详细研究。并得出以下几点结论:
     (1)本研究首次提出了稀疏植被粗糙度参数化方案,替代了以前的经验关系,有助于提高对稀疏植被粗糙度的认识。得出:稀疏植被区的粗糙度对植被区域植株的密度、覆盖度、风速等的响应很敏感。在风速一定的情况下,随着植株数量的增加,粗糙度有增加的趋势;单位面积植株越稠密,叶面积越大,粗糙度越高。根据动力学模型的模拟结果建立了粗糙度与LAI和风速的关系,实现了粗糙度的遥感参数化。
     (2)在粗糙度参数化的基础上,基于Choudh-1计算空气动力学阻抗的方法,结合冠-气温度差关系,实现了空气动力学阻抗的遥感参数化。
     (3)反照率和表面温度是陆面过程的两个重要参数。考虑稀疏植被对光学特性的影响,采用二向反射模型反演反照率,进而对几何效应进行了订正,得到反照率的反演误差大部分在5%左右。采用温度—比辐射率分离方法得到表面温度的反演误差大部分在±1.8℃范围内。
     (4)空气温度一直是遥感参数化方面比较困难、反演误差较大的参数,很多研究直接用观测资料替代。本研究采用边界层温度廓线的遥感反演方法得到地表层空气温度,提高了对空气温度的遥感估算精度,考虑到北方地区大气中气溶胶含量较高,对红外遥感大气温度廓线的方法进行了气溶胶订正研究,订正后可提高反演精度0.38K。
     (5)基于上述几个参数的参数化,根据能量平衡原理、物质平衡原理,建立了能量、碳以及其它陆面过程参数化的陆面过程参数化模型,模型应用到黄土高原地区得到效果较好。由于降水分布的时间差异,产生了土壤湿度空间分布与植被覆盖度分布的不一致性,使得区域反照率、能量通量和蒸散发量呈现出3种分布模态。
     (6)水分参数除了蒸散发量外,叶水势被认为是反映植被水分特征的重要参数,本研究在粗糙度、空气动力学阻抗以及反照率、温度参数化的基础上,采用能量平衡理论方法,提出了叶水势的遥感参数化方案,实现了对微观用水特征认识,该模型对植被水分胁迫的监测有一定指导意义。
It is found that biosphere activity and human activity change not only land use and land cover, but also the matter, energy and water exchange. Because of biosphere system considered, land process researches have been developed from physical process to biosphere chemical process. As the main body of land process, biosphere activity and the relations between atmosphere and human activity are needed to resolve so as to evaluate biosphere frangibility and adaptability, all these need to developing a perfect land process model for climate model.
     Developping a good land processing model relays on developping a perfect parameterizing project. To these days, there are more than 50 land process experiments, all these experiments paying attentions to integrate observation of the interaction between land, vegetation and atmosphere, and analyzing land process character and parameterize relation from stations to wide range by using satellite and numerical model. On the basis of above means, the land process parameterize project is developed for atmospheric numerical model. Due to complex, heterogeneous surface, and sparse vegetation, some land process experiments results have never been used by land process model and satellite retrieval method. Because continuum and real vegetation activity information can be obtained from remote sensing, the perfect land process parameterizing project for improving land process model is important aiming at sparse vegetation.
     The research do some experiments, by combining experiment over Dingxi station in loess plateau, with remote sensing data, the parameterize researches in heterogeneous are done, and the parameterize model for remote sensing are built. The intention of land process parameterizing is obtaining land energy, water and matter, the energy parameters are net radiance, sensible heat flux, soil heat flux and latent heat flux, water parameter is evaportranspiration, matter parameter is Npp. The prime of these parameterizing is obtaining albedo, surface and air temperature, and aerodynamic resistance and aerodynamic roughness length.
     According to the parameter idea, paramterizing research is performed, the aerodynamic roughness length is parameterized for the first time.BRDF model is used for geometry revising of albedo retrieval. On the air temperature parameterizing, high vertical resolution and high spectrum resolution data was used for atmospheric profile retrieved so as to obtain surface air temperature for the first time.Except for evapor-transpiration, leaf water potential is parameterized for the first time for evaluating water status.In addition, on the basis of surface temperature retrieval and energy balance and matter balance theory, land energy flux and NPP is retrieved, the parameterizeing projects were used over loess plateau, and some interesting conclusions were drawn.
     a. Aerodynamic roughness length project over sparse vegetation region is put forward in the research, the project replace the experience relation performed former, and help to realize roughness length over sparse vegetation. Aerodynamic roughness length is sensible to vegetation density, land cover and wind speed. Under the condition of wind speed, with increasing of vegetation amount, zero displacement height and aerodynamic roughness are increased. Under the condition of vegetation amounts, with amounts increasing, zero displacement height and aerodynamic roughness are also increased.
     b. On the basis of aerodynamic roughness length, aerodynamic resistance is parameterized by using Choudh-1 arithmetic, according to canopy-air temperature difference.
     c. Albedo and surface temperature are two important parameters. Consider the effect of sparse vegetation on multi reflecting, BRDF model was used for retrieval albedo, so as to correct geometry domino effect, and the retrieval error is about 5% for many cases. TISIE algorithm is used for retrieval surface temperature, and the retrieval error is about±1.8℃for many cases.
     d. Air temperature is the complex parameter with large retrieval error, and which is replaced by observed value at weather stations.The research also retrieval boundary layer temperature and surface air temperature so as to get spatial temperature. And aerosol effect on atmospheric temperature structure within boundary layer and infrared remote sensing was considered. The retrieval error was improved about 0.38K after aerosol effect was considered.
     e. On the basis of above parameters parameterizing and energy balance theory, matter balance theory, the model including energy, C and land process parameterize is built, the model is used in loess plateau, testing results show that the model have good effect. There are inconsistent distributing between soil humidity and vegetation fraction due to regional precipitation difference, which results three distributing modes about albedo, energy flux and evaportranspiration.
     f. Except evapor-transpiration, leaf water potential is deemed to another moisture parameter.On the basis of roughness length, aerodynamic resistance, albedo and temperature parameterizing, and energy balance theory, leaf water potential model is put forward, the method is realized on microcosmic water usage, and it also connected microcosmic water with macroscopical water usage. The method also has application value, which can be used for water inspecting.
引文
1.刘玉洁,扬忠东,郭华东.MODIS遥感信息处理原理与方法.科学出版社,2002,1-346
    2.IPCC.Climate change 2001:the scientific basis.In:Houghton J T,Ding Y H,Griggs D J(eds.),Contribution of Working Group I to the Third Assessment Report of the lntergovernmental Panel on Climate Change.Cambridge,UK;Cambridge University Press,2001.881.
    3.Myneni R B,Tucker C J,Asar G et al.Internal variations in satellite-sensed vegetation index data from 1981to 1991[J].J.Geophysical Research,1998,103(6):6145-6160.
    4.Myneni R B,Keeling C D,Tucker C J et al.Increased plant growth in the northern high latitudes from 1981-1991[J].Nature,1997,386:698-702.
    5.Cramer W P.R Leemans.Assessing impacts of climate change on vegetation using climate classification systems.In:Solomon A M.Shugart H H(eds.),Vegetation Dynamics and Global Change,London:Chapman and Hall,1993,190-217.
    6.Keeling C D,J F S Chin,T P Whorf.Increasing activity of northern vegetation in inferred from atmospheric CO2 measurement[J].Nature,1996,382:146-149.
    7.Fang J Y,A P Chen,c h Peng et al.Change in forest biomass carbon storage in China between 1949 and 1998[J].Science,2001,292:2320-2322.
    8.Zhou L M,C J Tucker,R K Kaufmann et al.Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999[J].Journal of Geophsical Research,2001,106:20069-20083.
    9.龚道溢,史培军,何学兆.北半球春季植被NDVI对温度变化响应的区域差异[J].地理学报,2005,57(5):506-514.
    10.朴世龙,方精云.1982-1999年我国陆地植被活动对气候变化响应的季节差异[J].地理学报,2002.58(1):119-124.
    11.张强,胡隐樵.绿洲地理特征及其气候效应[J].地球科学进展,2002,17(4):477-486.
    12.孙 岚,吴国雄.陆面蒸散对气候变化的影响[J].中国科学,2001,31(1):59-69.
    13.李国平,段廷扬,巩远发.青藏高原近地层通量特征的合成分析[J].气象学报,2002.60(4):453-460.
    14.张强,黄土高原陆面过程观测试验研究,国家自然科学基金重点项目,2008.
    15.刘绍民,孙睿,孙中平等.基于互补相关原理的区域蒸散量估算模型比较[J].地理学报,2004,59(3):331-340.
    16.NishidaK,Nemani R R,Running S W J.et al.An operational remote sensing algorithm of land surface evaporation[J].Journal of Geophysics Research,2003,108(9):4270.
    17.Jiang L.,Ialam S.A methodology for estimation of surface evapotranspiration over large areas using remote sensing observations[J].Geophysical Research Letter,1999,26(17):2773-2776.
    18.Bastiaanssen W,Menenti M M,Feddes R,et al.The surface energy balance algorithm for land(SEBAL):Part 1 Formulation[J].Journal of Hydr.,1998,212-213:198-212.
    19.Su Z.The surface Energy Balance System(SEBS) for estimation of turbulent heat fluxes[J].Hydrol.Earth Syst.Sci,2002,6(1):85-99.
    20.王介民,刘绍民,孙敏章等.ET的遥感监测与流域尺度水资源管理[J].干旱气象,2005,23(2):1-7.
    21.戴小华,余世孝.遥感技术支持下的植被生产力与生物量研究进展[J].生态学杂志,2004,23(4):92-98.
    22.Veroustraete F.,Patyn J.,and Myneni R.B..Estimating net ecosystem exchange of carbon using the normalized difference vegetation index and an ecosystem model[J].Remote sensing environment,1996,58:115-130.
    23.姜凤歧.小叶锦鸡儿灌丛生物量的预测模型[J].生态学报,1982(2):103
    24.Bryant F C,Kothmann M M.Variability in predicting edible browse from crown volume[J].Journal of range management,1979,32(2):144.
    25.Rittenhouse L R,Sneva F A.A technique for estimating big sagebrush production[J].Journal of range management,1977,30:68.
    26.Harniss J H,Murray R B.Reducing bias in dry leaf weight estimates of big sagebrush[J].Journal of range management,1976,29:430.
    27.Lyon L J.Estimating twig production of serviceberry from crown volumes[J].Journal of Wildlife Manage,1968,32:115.
    28.Kimes,DS,et al.Radiative transfer model for heterogeneous 3D scenes[J].A ppl.Opt.,1982,21:4119-4129.
    29.Li X,et al.Modeling the gap probability of discontinuous vegetation canopy[J].I EEE Trans.Geosci.Remote Sens.,1988,26:161-170.
    30.Hame T,et al.A new methodology for the estimation of biomass of conifer2dominated boreal forest using NOAAAVHRR data[J].Int.J.Remote Sens.,1997,18(15):3211-3243.
    31.Kaufman Y J,et al.Detection of forests using mid-IR reflectance:An application for aerosol studies[J].I EEE Trans.Geosci.Remote Sens.,1994,32:672-683.
    32.Harrell P A.Evaluation of approaches to estimating aboveground biomass in Southern pine forests using SIR-C data[J].Remote Sens.Envi ron.,1997,59:223-233.
    33.Prince S D,et al.Global primary production:remote sensing approach[J].J.Biogeogr.,1995,22:815-835.
    34.Vanderbilt VC,et al.用激光技术判断小麦冠层中的太阳辐照度分布[A].见:作物气象译丛(3)[C].北 京:科学出版社.1984,74-82.
    35.Rees WG,et al.Are vegetation indices useful in the Arctic ?[J].Polar Record,1998,34,191:333-336.
    36.Thenkabail P S,et al.Hyperspectral vegetation indices and their relationships with agricultural crop characteristics[J].Remote Sens.Envi ron.,2000,71:158-182.
    1.Chamberlain A C.Roughness length of sea,sand and snow[J[.Boundary Layer Meteorology,1983,25:405-409.
    2.LI Sen,Liu Xianwan,LI Huichuan,Zheng Yinghua.WEI Xinghu.A wind tunnel simulation of the dynamic processes involved in sand dune formation on the western coast of Hainan Island[J].Journal of Geographical Sciences,2007,DOI:10.1007/s11442-007-0453-7.
    3.Tsai J-L,Tsuang B-J.Aerodynamic roughness over an urban area and over two farmlands in a populated area as determined by wind profiles and surface energy flux measurements[J].Agricultural and Forest Meteorology,2005,132:154-170.
    4.Clarke M A,Walsh R P D.Long-term erosion and surface roughness change of rain-forest terrain following selective logging,Danum Valley,Sabah,Malaysia[J].Catena,2006,68:109-123.
    5.岳天祥,王薇,于强等.中性条件下垂直风速廓线及其参数模拟分析[J].资源科学,2006,28(1):136-144
    6.张雅静,申向东.植被覆盖地表空气动力学粗糙度与零平面位移高度的模拟分析[J].中国沙漠,2008.28(1):21-26
    7.朱彩英,张仁华,王劲峰等.运用SAR图像和TM热红外图像定量反演地表空气动力学粗糙度的二维分布[J].中国科学D辑,地球科学,2004,34(4):385-393.
    8.刘静,卓慕宁,胡耀国.初论地表粗糙度[J].生态环境,2007,16(6):1829-1836.
    9.胡张保,俞炳丰.城市下垫面空气动力学参数确定方法综述[J].气象与环境学报,2008,24(5):35-41.
    10.Delage Y.and Verseghy D.Testing the effects of a new land surface scheme and of initial soil moisture conditions in the Canadian Global Forescast Model[J].Monthly Weather Review,1995,123:3305-3317.
    11.Garratt J.R.The atmospheric boundary layer[M].London:Cambridge University Press,1992.
    12.胡隐憔,奇跃进,杨选利.黑河戈壁小气候和热量平衡的初步分析[J].高原气象,1990,29:113-119.
    13.吕萍,董治宝.戈壁风蚀面与植被覆盖面地表性质粗糙度长度的确定[J].中国沙漠,2004,24(3):279-285.
    14.刘小平,董治宝.空气动力学粗糙度的物理意义与实践意义[J].中国沙漠,2003,23(4):337-346.
    15.Nichols W D.Energy budgets and resistances to energy transport in sparsely vegetated,rangeland[J].Agriculture and Forest Meteorology,1992,60:221-247.
    16.Grimmond,C.S.B.and Oke,T.R.Aerodynamic properties of urban areas derived from analysis of surface form[J].Journal of Applied Meteorology,1999,38:1262-1292.
    17.Garratt,J.R.The Atmospheric Boundary Layer[M].London:Cambridge University Press,1992.
    18.Raupach,M.R.Drag and drag partition on rough surface[J].Boundary Layer Meteorology,1992,60:375-395.
    19.Parlange,M.R.and Brutsaert,W.Regional roughness of the Landes Forest and surface shear stress under neutral conditions[J].Boundary Layer Meteorology,1989,48:69-76.
    20.Gash,J.H.,Shuttleworth,W.J.and Lioyd,C.R.Micrometeorological measurements in Les Landes Forest during HAPEX2Mobilhy[J].Agricultural and Forest Meteorology,1989,46:131-147.
    21.Raupach,M.R.Simplified expressions for vegetation roughness length and zero2plane displacement as functions of canopy height and area index[J].Boundary Layer Meteorology,1994,71:211-216.
    22.Hanna,S.R.and Chang,J.C.Boundary layer parameterizations for applied dispersion modelling over urban areas[J].Boundary2Layer Meteorology,1992,58:229-259.
    23.Yang,R.Q.and Friedl,M.A.Determination of roughness lengthe for heat and momentum over boreal forests[J].Boundary Layer Meteorology,2003,107:581-603.
    24.Mihailovic,D.T.,Rao,S.T.,Hogrefe,C.,Clark,R.D.An approach for the aggregation of aerodynamic surface parameters in calculating the turbulent fluxes over heterogeneous surfaces in Atmospheric Models[J].Environmental Fluid Mechanics,2002,2
    25.关德新,朱廷曜,金昌杰.中性温度层结时森林郁闭度与树冠上风速廓线的关系[J].北京林业大学学报,1997,19(1):71-76.
    26.朱廷曜,孔繁智等.白音他拉疏林草场气象效应初步分析[J].生态学报,1991,11(1):1-6
    27.刘小平,董治宝.零平面位移高度的Marquardt算法[J].中国沙漠,2002,22(3):233-236
    28.TakagiK,Mi yataA,HarazonoY,etal.Analternative approach to determining zero plane dislacement,and its application toalotus paddy field[J].Agricultural and Forest Meteorology.2003.115(3/4):173-181.
    29.Dolman A J.Estimates of roughness length and zero plane displacement for afoliatedandnon foliatedoak canopy[J].Agricultural and Forest Meteorology,1986,36(3):241-248.
    30.Rotach M W.Determination of the zero plane displacement in an urban environment[J].Boundary Layer Meteorology,1994,67(1/2):187-193.
    31.Martano P.Estimaion of surface roughness length and displacement height from single level sonicanemometer data[J].Journal of Applied Meteorology,2000,39(5):708-715.
    32.张强,吕世华.城市表面粗糙度长度的确定[J].高原气象,2003,22(1):24-32.
    33.Garratt J R.The atmospheric boundary layer[M].Cambridge:Cambridge University Press,1992:87.
    34.赵晓松,关德新,吴家兵等.长白山阔叶红松林的零平面位移和粗糙度[J].生态学杂志,2004,23(5):84-88.
    35.慕青松,王建成,苗天德.粗糙度动力学特性的初步研究[J].力学学报,2003,35(2):129-134.
    36.Thom A S.Momentum absorption by vegetation.Quart.J Roy Met Soc.1971,97:414-428.
    37.Jackson P S.On the displacement height in the logarithmic velocity profile[J].J Fluid Mech,1981,111:15-25.
    38.Schlichting H.Experimentelle untersuchungen zum rauhigkeitsproblem[J].Ingenieur Archiv,1936,7:1-34.
    39.Marshall J K.Drag measurements in roughness arrays of varying density[J].Agricultural Meteorogy. 1971,8:269-292.
    40.Morris H M.Flow in rough conduits[J].Transactions of the American Society of Agricultural Engineers,1955,120:373-398.
    41.Wooding R A,Bradley E F,Marshall J K.Drag due to regular arrays of roughness elements os varying geometry[J].Boundary layer Meteorology,1973,5:285-308.
    42.Wolfe S A,Nicking W G.The protective role of sparse vegetation in wind erosion[J].Progress in Physical Geography,1993,17:50-68
    47.Su Z.The surface energy balance system(SEBS)for estimation of turbulence heat fluxes[J].Hydrology and Earth System Sciences,2002,6:85-99.
    48.宋小宁,赵英时.改进的区域缺水遥感监测方法[J].中国科学 D辑 2006,36(2):188-194.
    49.Nichols W D.Energy budgets and resistances to energy transport in sparsely vegetated rangeland[J].Agriculture and Forest Meteorology,1992,60:2212247.
    50.Monteith,J.L.:Principles 5 of Environmental Physics,Arnold,Paris,1973.
    51.Monteith J L.Evaporation and surface temperature.Quarterly Journal of the Royal Meteorological Society,1981,107:1227.
    52.Brown K W,Rosenberg H T.A Resistance Model to Predict Evapotranspiration and It s Application to a Sugar Beet field[J].Agronomy Journal,1985,65:341-347.
    53.Verma,S.B.,Rosenberg,N.J.,Blad,B.L.,and Baradas,M.W.:Resistance-energy balance method for predicting evapotranspiration:Determination of boundary layer resistance and evaluation of error effects[J],Agronomy Journal,1976,68:776-782.
    54.Thom,A.S.:Momentum,mass and heat exchange of plant communities,in:Vegetation and the Atmosphere,edited by:Monteith,J.L.,Academic Press,London,1975,57-109.
    55.Hatfield,J.L.,Perrier,A.,and Jackson,R.D.:Estimation of evapotranspiration at one-time-ofday using remotely sensed surface temperature[J].Agric.Water Manag.,1983,7:341-350.
    56.Mahrt,L.and Ek,M.:The influence of atmospheric stability on potential evaporation[J].J.Clim.Appl.Meteorol.,1984,23:222-234.
    57.Choudhury,B.J.and Monteith,J.L.:A four-layer model for the heat budget of homogeneous land surfaces [J],Quart.J.Roy.Meteorol.Soc.,1988,11:373-398.
    58.Choudhury,B.J.,Reginato,R.J.,and Idso,S.B.:An analysis of infrared temperature observations over wheat and calculation of latent heat flux,[J].Agric.For.Meteorol.,1986,37:75-88.
    59.Xie Xiaqun:An improved energy balance-aerodynamic resistance model used estimation of evapotranspiration on the wheat field[J].Acta Meteorology Sinica(in Chinese),1988,46:102-106.
    60.Chen,J.M.:The main problem with modern remote sensing evapotranspiration model and ways of improvement[J].Chinese Science Bulletin(in Chinese),1988,6:454-457.
    61.S.Liu,D.Mao,and L.Lu.Measurement and estimation of the aerodynamic resistance[J].Hydrol.Earth Syst.Sci.Discuss.,2006,3:681-705.
    62.刘绍民,卢 俐,毛德发等.空气动力学阻抗的测量研究[J].应用气象学报,2007,18(2):247-250.
    63.Thom,A.S.:Momentum,mass and heat exchange of vegetation[J].Quarterly J.Roy.Meteorol.15 Soc.,19729,8:124-134.
    64.Stewart,J.B.and Thom,A.S.:Energy budgets in pine forest[J].Quart.J.Roy.Meteorol.Soc.,1973,99:154-170.
    65.Dyer,A.J.and Hicks,B.B.:Flux-gradient relationships in constant flux layer[J].Quart.J.Roy.Meteorol.Soc.,1970,94:318-332.
    66.Webb,E.K.:Profile relationships:the log-linear range and extension to strong stability [J].Quart..J.Roy.Meteorol.Soc.,1970 ,96:67-90.
    67. Paulson,C.A.:The mathematical representation of wind speed and temperature profiles in the unsiable atmospheric surface layer [J],J.Appl.Meteorol.,1970,9:857-861.
    68. Louis,J.F.,Tiedtke,M.,and Geleyn,J.F.:A short history of the operational PBL30 Parameterization of ECMWF,Workshop on planetary boundary layer parameterization,European center for Medium Range Weather Forecasts,Shinfield Park,Reading Berks,UK,1982.698.
    69. Kustas,W.P.,Choudhury,B.J.,Moran,M.S.,et al.:Determination of sensible heat flux over sparse canopy using thermal infrared data [J],Agric.For.Meteorol.,1989,44:197-216.
    70. Garratt,J.and Hicks.B.:Momentum,heat,and water vapor transfer to and from natural and artificial surfaces [J].Quart.J.Roy.Meteorol.Soc.1973,99:680-687.
    1.Dickinson R E.Land processes in climate models[J].Remote Sensing Environment,1995,55(1):27-38.
    2.Kimes D S,Seller P J.Inferring hemispherical reflectance of Earth's surface for global energy budgets from remotely sensed nadir or directional radiance values[J].Remote Sensing of Environment,1985,18(2):205-223.
    3.Hapke B.W.,Bidirectional reflectance spectroscopy[J].Theory,J.Geophys.Res.,1981,86,3039-3054.
    4.张强,胡隐樵.绿洲地理特征及其气候效应[J].地球科学进展,2002,17(4):477-486.
    5.邹基玲,侯旭宏,季国良.黑河地区夏末太阳辐射特征的初步分析[J].高原气象,1992,11(4):381-387.
    6.Zhang Qiang,Cao Xiaoyan,Wei Guoan,et al.Observation and Study of Land Surface Parameters over Gobi in Typical Arid Region[J].Advances in Atmospheric Sciences,2002,19(1):121-135.
    7.Ma Yaoming,Wang Jiemin,Huang Ronghui et al.Remote sensing parameterization of land surface heat fluxes over Arid and semi-arid area[J].Advances in Atmospheric Sciences,2003,20(4):530-539.
    8.马耀明,王介民.卫星遥感结合地面观测估算非均匀地表区域能量通量[J].气象学报,1999,57(2):180-188.
    9.Roujean M LEROY,Deschamps P Y.A bi-directional reflectance model of the earth's surface for the correction of remote sensing data[J].Geophys.Res.,1992,97:20455-20468.
    10.徐兴奎,林朝晖.青藏高原地表月平均反照率的遥感反演[J].高原气象,2002,21(3):233-237.
    11.Walthall C L,Norman,J M,Wellesetal J M.Simple equation to approximate the bi-directional reflectance from vegetation canopies and bare soil surface[J].Appl.Opt.,1985,24(3):383-387.
    12.Ross J K.The radiation regime and architecture of plant stands.Norwell.The Hague-Boston-London:Dr.W.Junk Publishers,1981,392.
    13.Li X,Strahler A H.Geometric-optical bidirectional reflectancemodeling of the discrete crown vegetation canopy:effect of crown shape and mutual shadowing[J].IEEE Trans.Geosci.Remote Sens.,1992,30:276-292.
    14.Wanner W,Strahler A H,Hu B,et al.Global retrieval of bi-directional reflectance and albedo over land from EOS MODIS and MISR data:theory and algorithm[J].Geophys.Res.,1997,D-102:17143-17162.
    15.Lucht W,H.Hyman A,H.Strahler A,et al.A comparison of satellite-derived spectral albedos to ground-based broadband albedo measurements modeled to satellite spatial scale for a semi-desert landscape[J].Remote Sens.Environ.,2000,74:85- 98.
    16.Crystal B Schaaf,Feng Gao,Alan H.Strahler.First operational BRDF albedo nadir reflectance products from MODIS[J].Remote Sensing of Environment,2002,83:135-148.
    17.Lucht W,Schaaf C B,H.Strahler A.An Algorithm for the retrieval of albedo from space using semiempirical BRDF models[J].IEEE Trans.Geosci.Remote Sens.,2000,38:977-998.
    18.Liang S,Strahler A H,Walthall C W.Retrieval of land surface albedo from satellite observations:a simulation study[J].Appl.Meteorol.,1999,38:712-725.
    19.龚道溢,史学军,何学兆.北半球春季植被指数NDVI对温度变化响应的区域差异[J].地理学报、2002.57(5):505-514.
    20.马耀明,王介民.黑河实验区地表净辐射区域分布及季节变化[J].大气科学,1997,21(6):743-749
    1.Minnaert,M.,The reciprocity principle of lunar photometry[J].Astrophys.J.,1941,93:403-410.
    2.Francois Petitcolin,Eric Vermote,Land surface reflectance,emissivity and temperature from MODIS middle and thermal infrared data[J],Remote Sencing of Environment 2002,83:112-134.
    3.Goita,L.,Royer,A..Surface temperature and emissivity separability over land surface grom combined TIR and SWIR AVHRR data[J].IEEE Transactions on Geoscience and Remote Sensing,1997,35(3):718-733.
    4.Nerry,E.,Petitcolin,E.,Stoll,M,P.Bidirectional reflectivity in AVHRR channel 3:application to a region in northern Africa[J].Remote Sensing of Environment,1998,66:298-316.
    5.Roger,J.C.,Vermote,E..A method to retrieve the reflectivity signature at 3.75 um from AVHRR data[J].Remote Sensing of Environment.1998,64:103-114.
    6.Becker,F.N Li,Z.L.Temperature Independent Spectral Indices in thermal ingrared bands[J].Remote Sensing of Environment.1990,32:17-33.
    7.Snyder,W.C.,Wan.Z.,Zhang,Y,Feng,Y.Z.Classification based emissivity for land surface temperature measurement from space[J].International Journal of Remote Sensing.1998,19(14):2753-2774.
    8.Wan.Z.Li.Z.L..A physics-based algorithm for retrieving land surface emissivity and temperature from EOS/MODIS data[J].IEEE Transactions on Geoscience and Remote Sensing,1997,35(4):980-996.
    9.Thekaekara,M.P..Evaluating the light from the Sun[J].Photonics Spectra.1972,6(3):32-35.
    10.Salisbury,J.W.,Wald.A.,D'Aria,D.M.Thermal-infrared remote sensing and Kirchhoff's law 1.Laboratory measurements[J].Journal of Geophysical Research,1994,99(6):11897-11911.
    1.Zhang Qiang,Wang Sheng,Sun Zhaoxuan.A study on Atmospheric boundary layer structure on a clear day in the arid regions in Northwest China[J].ACTA Meteorological,sinica,2009,23(1):1-16.
    2.张强,卫国安,黄荣辉.2001,西北干旱区荒漠戈壁动量和感热总体输送系数[J].中国科学,D辑,31(9),783-792.
    3.张强.2005,“西北干旱荒漠区大气边界层厚度特征及其形成机制研究”,国家自然科学基金面上项目.
    4.张蔼.1995,“黑河地区绿洲内大气边界层的研究”,国家自然科学基金面上项目
    5.赵鸣.1996,“边界层和背景场相互作用的研究”,国家自然科学基金面上项目.
    6.胡非2003,“非均匀下垫面大气边界层研究”,国家自然科学基金重点项目.
    7.马刚,邱崇践,王强.用变分法修正边界层资料的数值试验[J].气象学报,2001,59(1):107-114.
    8.余金香,邱崇践.用数值模拟与观测资料相拟合的方法构造边界层流场[J].应用气象学报1997,8(3):302-308.
    9.Michail A.Strunin and Tetsuya Hiyama.Spectral structure of small-scale turbulent and mesoscale fluxes in the atmospheric boundary layer over a thermally inhomogeneous land surface[J].boundary-layer meteorology,2005,117:479-510.
    10.Andrea Ammert and Jens Bosenberg.Determination of the convective boundary-layer height with laser remote sensing[J],boundary-layer meteorology,2006,119:159-170.
    11.陈洪滨,林龙福.从118.75GHz附近六通道亮温反演大气温度廓线的数值模拟研究[J].大气科学,27(5):894-900.
    12.Suzanne W.Seemann Jun Li et al.Operational retrieval of atmospheric temperature moisture and ozone from MODIS infrared radiances[J].Journal of Applied Meteorology,2003,42:1072-1091.
    13.马刚,方宗义,张凤英.云参数对RTTOV5模式模拟误差的影响分析[J].应用气象学报,2001,12(4):385-392.
    14.Barnet,C.D.,and J.Blaisdell.Retrieval of atmospheric and surface parameters from AIRS/AMSU/HSB data in the presenceof clouds[J].IEEE Trans.Geosci.Remote Sens.,2003,41,390-409,
    15.Hannon,S.,Strow,L.L.McMillan W.W..Atmospheric infrared fast transmittance models:A comparison of two approaches.Proc.Conf.on Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research Ⅱ,Denver,CO,SPIE,1996,94-105.
    16.Li,J..Temperature and water vapor weighting functions from radiative transfer equation with surface emissivity and solar reflectivity[J].Adv.Atmos.Sci.,1994,11:421-426.
    17.Li J.,Wolf,W.P.Menzel,W.et al.Globle soundings of the atmosphere from ATOVS measurements:The algorithm and validation[J].J.Appl.Meteorol.,2000,39:1248-1268.
    18.李俊.大气红外遥感及其反演问题研究.研究生学位论文,1995,117.
    19.沈志宝,魏丽.我国西北大气沙尘气溶胶的辐射效应[J].大气科学,2000,24(4):541-548.
    20.刘立超,沈志宝,王涛.敦煌地区沙尘气溶胶质量浓度的观测研究[J].高原气象,2005,24(5):765-771.
    21.Tomasi,C.;Caroli,E.;Vitale,V.Study of the relationship between Angstrom's wavelength exponent and Junge particle size distribution exponent.Journal of Climate and Applied Meteorology,1983,22:1707-1716.
    22.漆成莉,董超华,张文建等.风云三号(A)气象卫星红外分光计大气透过率计算试验[J].红外与毫米波学报,2005,24(3):203-206.
    23.张强,卫国安,侯平.初夏敦煌荒漠戈壁大气边界层结构特征的一次观察研究[J].高原气象,2004,23(5):588-897.
    24.张强,曹晓彦,敦煌地区荒漠戈壁地表热量和辐射平衡特性的研究[J],大气科学,2003,27(2),245-254.
    25.Weiss A.,J.M.Norman,Partitioning s olar radiation into direct and diffuse,visible and near-infrared components.Agric.For.Meteor.,1985,34,205-213.
    1.刘昌明,孙 睿.水循环的生态学方面:土壤-植被-大气系统水分能量平衡研究进展[J].水科学进展,1999,10(3):251-259.
    2.孙 岚,吴国雄.陆面蒸散对气候变化的影响[J].中国科学,2001,31(1):59-69.
    3.李国平,段廷扬,巩远发.青藏高原近地层通量特征的合成分析[J].气象学报,2002.60(4):453-460.
    4.吴洪颜,申双和,徐为根等.关于棉田感热通量和潜热通量的几种计算方法[J].气象科学,2000,20(4):537-542.
    5.陈丽华,王礼先.北京市生态用水分类及森林植被生态用水定额的确定[J].水土保持研究,2001,8(4):161-164
    6.Brulsaerl W,Stricker H.An advection-aridity approach to estimate actual regional evapotranspiration[J].Water Resource Research,1979,15:443-450.
    7.Liu J M,Kotoda K.Estimation of regional evapotranspiration from arid and semi arid surfaces[J].Journal of the American Water Resources Association,1998,34(1):27-41.
    8.陈云浩,李晓兵,史培军.中国西北地区蒸发散量计算的遥感研究[J].地理学报,2001,56(3):261-268.
    9.Dibella C M,Rebella C M,Paruelo J M.Evapotranspiration estimates using NOAA AVHRR imagery in the Pamparegion of Argentina[J].Int.J.Remote Sensing,2000,21(4):791-797.
    10.陈镜明.现用遥感蒸散模式中的一个重要缺点及改进[J].科学通报,1988,6:454-457.
    11.谢贤群.遥感瞬时作物表面温度估算农田全日蒸发散总量[J].环境遥感,1991,6(4):253-259.
    12.李敏,蒋维楣,李昕等.大气边界层湍流的动力非平稳性的验证[J].地球物理学报.2005,48(3):493-500.
    13.Caselles V,Artigao M M,Hurtado E,et al.Mapping actual evapotranspiration by combining Landsat TM and NOAA_AVHRR images:application to the Barrax area,Albacete,Spain[J].Remote Sensing of Environment,1998,63(1):1-10.
    14.沈长寿,资民筠,王劲松等.用AED卫星近地点上观测的n(He)估算湍流层顶高度[J].地球物理学报.2004,47(5):762-766.
    15.封志明,杨艳昭,丁晓强.甘肃地区参考作物蒸散量时空变化研究[J].农业工程学报,2004,20(1): 99-103.
    16.陈昌毓,董安祥.甘肃干旱半干旱地区林木蒸散量估算和水分适生度研究[J].应用气象学报.1998.9(1):79-87.
    17.Zhang Qiang,Cao Xiaoyan,Wei Guoan,et al.Observation and Study of Land Surface Parameters over Gobi in Typical Arid Region[J].Advances in Atmospheric Sciences,2002,19(1):121-135.
    18.刘建军,葡野忠朗,鞠子茂,川武久.放牧对草原生态系统地下生产力及生物量的影响[J].西北植物学报,2005,25(1):0088-0093.
    19.林思祖,杨梅,曹子林.不同强度人为干扰对马尾松地上部分生物量及生产力的影响[J].西北植物学报,2004,24(3):516-522
    20.Chen Lijun,Liu Gaohuan,Feng Xianfeng.Estimation of Net Primary Productivity of Terrestrial Vegetation in China by Remote Sensing[J].Acta Botanica Sinica,2001,43(11):1191-1198.
    21.迪维诺.生态学概论[M].北京:科学出版社,1987:71.
    22.Whittaker,R.H.,P.L.Marks.生物圈的第一性生产力[M].北京:科学出版社,1985:50.
    23.孙睿,朱启疆.陆地植被净第一性生产力的研究[J].应用生态学报,1999,10(6):757-760.
    24.Foley.J.A.Net primary productivity in the terrestrial biosphere:The application of a global model[J].J.Geophys.Res.,1994,99(10):20773-20783.
    25.Prince.S.D,Goward.S,N.Global promary production:a remote sensing approach[J].J.Biogeogr.,1995,22:815-835.
    26.张杰,张强,郭铌等.应用EOS-MODIS卫星资料反演西北干旱绿洲的地表反照率[J].大气科学,2005,29(4):510-517.
    27.张杰,王介民,郭铌.应用6S模式对EOS/MODIS可见光到中红外波段的大气订正[J].应用气象学报,2004,15(6):651-657.
    28.张杰,李栋梁.黑河流域祁连山区局地降水量的空间结构和变化分析[J].高原气象,2004,23(1):61-67.
    29.Montellb.J.L..Solar radition and productivity in tropical ecosystems[J].J.Appl.Ecol.1972,9:747-766.
    30.夏朝宗,熊利亚,庄大方.基于MODIS的陆地植被光合过程参数的反演研究[J].地理科学进展,2004,23(4):10-19.
    31.Kondratyev,K.Y..Calif.:Radiation in the Atmosphere[M].Academic,San Diego,1969,912.
    32.肖乾广,陈维英.用NOAA气象卫星的AVHRR遥感资料估算中国的第一性生产力[J].植物学报1996,38(1):35-39.
    33.Jorg Kaduk,Martin Heimann.A prognostic phenology scheme for global terrestrial carbon cycle models[J].Climate research,1996,6:1-19
    34.周广胜,张新时.全球气候变化的中国自然植被的净第一性生产力研究[J].植物生态学报,1996,20(1):11-19.
    35.Prince,S.D.,Goward S.N..Global primary production:a remote sensing approach[J].J.Biogeogr,1995,22:815-835.
    36.Prince S.D.,Dubayah R.O.,Czajkowski K.P.et al.Inference of surface and air temperature,atmospheric precipitable water and vapor pressure deficit using Advanced Very High-Resolution Radiometer satellite observations:comparison with field observations[J].Journal of Hydrology,1998,212-213:230-249.
    37.Running SW,Thornton P E,Nemani R,et al.Global Terrestrial Gross and Net Primary Productivity from the Earth Observing System[A].Sala O,Jackson R,Mooney H.Methods in Ecosystem Science[C].New York:Springer Verlag,2000,44-57.
    38.Knyazikhin Y,Martonchik J V,Myneni R B et al.Synergistic algorithm for estimating vegetation canopy leaf area index and fraction of absorbed photosynthetically active radiation from MODIS and MISR data[J].J.Geophys.Res.,1998,103:32257-32274.
    39.张佳华,王长耀.以气孔导度为显参的遥感光合水分胁迫作物产量模型研究.http://www.cws.net.cn/Journal/slxb/199908/08.html.
    40.Esser G.The significance of biospheric carbon pools and fluxes for atmospheric CO2:a proposed model structure[J].Prog Biometeorol,1984,3:253-294.
    41.Mack F The influence of vegetation fires on the global carbon cycle.PhD thesis,Institute for Plant Ecology,Justus-Liebig-Universitat,Giessen,1994.
    1. 陈四龙,张喜英,陈素英等.不同供水条件下冬小麦冠气温差叶片水势和水分亏缺指数的变化及其相互 关系[J].麦类作物学报,200fi,25(5):38—43.
    2. 陈万金,信乃诠.中国北方早地农业综合发展与对策.北京:中国农业科学出版社:1997,57.
    3. 胡继超,姜东,曹卫星等.短期干旱对水稻叶水势\光合作用及干物质分配的影响[J].应用生态学报, 2004,15(1):63-67.
    4. 贾秀领,马瑞嵬,张全国等.2005.冬小麦叶片气栓塞与叶水势日变化的关系[J].麦类作物学报,25 (1):50一54.
    5. 康绍忠,熊运章.作物缺水状况的判断方法与灌水指标研究[J].水利学报,1991,(1):33—39。
    6. 刘永忠,李齐霞,孙万荣等.气候干旱与作物干旱指标体系[J].山西农业科学,2005,33(3):50—53.
    7. 罗 丽,王晓蕾,余鹏.饱和水汽压计算公式的比较研究[J].气象水文海洋仪器,2003,4:24—27.
    8. 马柱国,华丽娟,任小波.中国近代北方极端干湿事件的演变规律[J].地理学报,2003。58【增 刊):69-74.
    9. 倪健,张新时.水热积指数的估算及其在中国植被与气候关系研究中的应用[J].植物学报,1997。39 (12):1147-1159.
    10. 司建华,冯起,张小由.极端干旱区胡杨水势及影响因子研究[J].中国沙漠,2005,25(4):505—510.
    11. 王宏.作物水分亏缺诊断研究综述一农田作物环境实验研究.北京:气象出版社,1990,170-185.
    12. 叶笃正,黄荣辉.长江黄河流域旱涝规律和成因研究.济南:山东科学技术出版社:1996,387.
    13. 曾凡江,Andrea Foetzki,李向义等.策乐绿洲多枝圣柳灌溉前后水分生理指标变化的初步研究[J].应 用生态学报,2002,13(7):849—853.
    14. 张斌,丁献文,张桃林等.干旱季节不同耕作制度下红壤一作物一大气连续体水流阻力变化规律[J].土壤 学报,2001,38(1):17—24.
    15.张杰。王介民,郭铌.应用6S模式对EOS—MODIS卫星可见光到中红外波段的大气订正[J].应用气象学报, 2004,15(6):65 1—658.
    16. 张杰。杨兴国,李耀辉,等.应用EOS—MODIS卫星资料反演与估算西北雨养农业区地表能量和蒸散量[J]. 地球物理学报,2005,4日(6):1261-1269.
    17.张杰,张强,郭铌等.应用EOS一~ODIS卫星资料反演西北干旱绿洲的地表反照率[J].大气科学. 2005。29(4):510-517.
    18.张杰,张强,赵建华等.3种作物干旱指标对雨养农业区春小麦缺水特征的反映[J].生态学报,2008,28(4):1646—1654.
    19.张强。胡隐樵.绿洲地理特征及其气候效应[J],地球科学进展,2002,17(4):477—486.
    20.张仁华,孙晓敏,刘纪远等.定量遥感反演作物蒸腾和土壤水分利用率的区域分异[J].中国科学,D辑, 2001。31(11):959-968.
    21. 张仁华,孙晓敏,王伟民等.一种可操作的区域尺度地表通量定量遥感二层模型的物理基础[J].中国科 学D,2004,34(增刊):200-216.
    22.张仁华.以红外辐射信息为基础的估算作物缺水状况的新模式[J].中国科学,B辑,1986,16 (7):776—784.
    23.张仁华.土壤含水量的惯量模型及其应用[J].科学通报,1991。36(12):924-927.
    24.张喜英,斐冬,由懋正.几种作物的生理指标对土壤水分变动的阈值反应[J].植物生态学报,2000,24 (3):280—283.
    25. Boegh E, Soegaard H, Thomsen A. Evaluating evapotranspiration rates and surface conditions using Landsat TM to estimate atmospheric resistance and surface resistance [J]. Remote Sensing of Environment. 2002,79: 329-343.
    26. Kramer PJ. An early discussion of cell water relation in thermodynamic terminology [J]. Plant Cell Env., 8: 1985,171-172.
    27. Moran MS, Clarke TR, Inoue Y., et al. Estimating crop water deficit using the relation between surface air temperature and spectral vegetation index [J]. Remote Sensing of Environment, 1994,49: 246-263.
    28. Ormsby, JP, Choudhury, BJ, and Owe, M.. Vegetation spatial variability and its effect on vegetation indices[J]. Int J. Remote Sens., 1987,8: 1301-1306.
    29. Van D, Griend, AA and, Owe, M.. On the relationship between thermal emissivity and the NDVI for natural surface [J] , Int. J. Remote Sens., 1993,14:1119-1131.
    30. 胡继超,姜东,曹卫星等.短期干旱对水稻叶水势\光和作用及干物质分配的影响[J].应用生态学报 2004, 15(1):63—67.
    31. Kramer PJ . An Early Discussion of Cell Water Relation in Thermodynamic Terminology[J]. Newsletter of Amer Soc Plant Physiol, 1984,115.
    1.郑海雷,米谷俊颜,黄子琛等.考虑土壤水分限制的春小麦生长简化模型[J].Acta Botanica Sinica,2000,42(5):512-517. 2000,42(5):512-517.
    2.董学军,陈仲新,陈锦正.毛乌素沙地油松的水分关系参数随不同土壤基质的变化[J].植物生态学报,1999,23(5) 385-392.
    3.杨建伟,梁宗锁,韩蕊莲等.土壤干旱对油松生长及水分利用的影响[J].西北农林科技大学学报(自然科学版),2004,24(4):88-96.
    4.崔晓阳,宋金凤,屈明华等.土壤水势对水曲柳幼苗水分生态的影响[J].应用生态学报,2004,15(12):2237-2244.
    5.杨鑫光,傅华,张洪荣等.水分胁迫对霸王苗期叶水势和生物量的影响[J].草业学报,2006,15(2):36-42.
    6.曹铁森,许明宪,王维友等.水分胁迫对梨幼树叶水势的影响[J].西北农业大学学报,1992,20(1):10-15.
    7.张正斌,山仑.小麦开花期旗叶水势晴天昼夜变化规律研究[J].西北农业学报,1998,7(1):54-59.
    8.阮成江,李代琼.半干旱黄土丘陵区沙棘叶水势及其影响因子.陕西林业科技,2000,1,1-4.
    9.胡继超,姜东,曹卫星.短期干旱对水稻叶水势、光合作用及干物质分配的影响[J].应用生态学报,2004,15(1):63-67.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700